usocket
– socket module¶
This module provides access to the BSD socket interface.
See the corresponding CPython module for comparison.
Difference to CPython
CPython used to have a socket.error
exception which is now deprecated,
and is an alias of OSError. In MicroPython, use OSError directly.
Difference to CPython
For efficiency and consistency, socket objects in MicroPython implement a stream
(file-like) interface directly. In CPython, you need to convert a socket to
a file-like object using makefile()
method. This method is still supported
by MicroPython (but is a no-op), so where compatibility with CPython matters,
be sure to use it.
Socket address format(s)¶
The functions below which expect a network address, accept it in the format of
(ipv4_address, port), where ipv4_address is a string with dot-notation numeric
IPv4 address, e.g. "8.8.8.8"
, and port is integer port number in the range
1-65535. Note the domain names are not accepted as ipv4_address, they should be
resolved first using socket.getaddrinfo()
.
Functions¶
-
socket.
socket
(socket.AF_INET, socket.SOCK_STREAM, socket.IPPROTO_TCP)¶ Create a new socket using the given address family, socket type and protocol number.
-
socket.
getaddrinfo
(host, port)¶ Translate the host/port argument into a sequence of 5-tuples that contain all the necessary arguments for creating a socket connected to that service. The list of 5-tuples has following structure:
(family, type, proto, canonname, sockaddr)
The following example shows how to connect to a given url:
s = socket.socket() s.connect(socket.getaddrinfo('www.micropython.org', 80)[0][-1])
Difference to CPython
CPython raises a
socket.gaierror
exception (OSError subclass) in case of error in this function. MicroPython doesn’t havesocket.gaierror
and raises OSError directly. Note that error numbers ofgetaddrinfo()
form a separate namespace and may not match error numbers fromuerrno
module. To distinguishgetaddrinfo()
errors, they are represented by negative numbers, whereas standard system errors are positive numbers (error numbers are accessible usinge.args[0]
property from an exception object). The use of negative values is a provisional detail which may change in the future.
Constants¶
-
socket.SOL_*
Socket option levels (an argument to
setsockopt()
). The exact inventory depends on a board.
-
socket.SO_*
Socket options (an argument to
setsockopt()
). The exact inventory depends on a board.
Constants specific to WiPy:
-
socket.
IPPROTO_SEC
¶ Special protocol value to create SSL-compatible socket.
class socket¶
Methods¶
-
socket.
close
()¶ Mark the socket closed. Once that happens, all future operations on the socket object will fail. The remote end will receive no more data (after queued data is flushed).
Sockets are automatically closed when they are garbage-collected, but it is recommended to close() them explicitly, or to use a with statement around them.
-
socket.
bind
(address)¶ Bind the socket to address. The socket must not already be bound.
-
socket.
listen
([backlog])¶ Enable a server to accept connections. If backlog is specified, it must be at least 0 (if it’s lower, it will be set to 0); and specifies the number of unaccepted connections that the system will allow before refusing new connections. If not specified, a default reasonable value is chosen.
-
socket.
accept
()¶ Accept a connection. The socket must be bound to an address and listening for connections. The return value is a pair (conn, address) where conn is a new socket object usable to send and receive data on the connection, and address is the address bound to the socket on the other end of the connection.
-
socket.
connect
(address)¶ Connect to a remote socket at address.
-
socket.
send
(bytes)¶ Send data to the socket. The socket must be connected to a remote socket. Returns number of bytes sent, which may be smaller than the length of data (“short write”).
-
socket.
sendall
(bytes)¶ Send all data to the socket. The socket must be connected to a remote socket. Unlike
send()
, this method will try to send all of data, by sending data chunk by chunk consecutively.The behavior of this method on non-blocking sockets is undefined. Due to this, on MicroPython, it’s recommended to use
write()
method instead, which has the same “no short writes” policy for blocking sockets, and will return number of bytes sent on non-blocking sockets.
-
socket.
recv
(bufsize)¶ Receive data from the socket. The return value is a bytes object representing the data received. The maximum amount of data to be received at once is specified by bufsize.
-
socket.
sendto
(bytes, address)¶ Send data to the socket. The socket should not be connected to a remote socket, since the destination socket is specified by address.
-
socket.
recvfrom
(bufsize)¶ Receive data from the socket. The return value is a pair (bytes, address) where bytes is a bytes object representing the data received and address is the address of the socket sending the data.
-
socket.
setsockopt
(level, optname, value)¶ Set the value of the given socket option. The needed symbolic constants are defined in the socket module (SO_* etc.). The value can be an integer or a bytes-like object representing a buffer.
-
socket.
settimeout
(value)¶ Set a timeout on blocking socket operations. The value argument can be a nonnegative floating point number expressing seconds, or None. If a non-zero value is given, subsequent socket operations will raise an
OSError
exception if the timeout period value has elapsed before the operation has completed. If zero is given, the socket is put in non-blocking mode. If None is given, the socket is put in blocking mode.Difference to CPython
CPython raises a
socket.timeout
exception in case of timeout, which is anOSError
subclass. MicroPython raises an OSError directly instead. If you useexcept OSError:
to catch the exception, your code will work both in MicroPython and CPython.
-
socket.
setblocking
(flag)¶ Set blocking or non-blocking mode of the socket: if flag is false, the socket is set to non-blocking, else to blocking mode.
This method is a shorthand for certain
settimeout()
calls:sock.setblocking(True)
is equivalent tosock.settimeout(None)
sock.setblocking(False)
is equivalent tosock.settimeout(0)
-
socket.
makefile
(mode='rb', buffering=0)¶ Return a file object associated with the socket. The exact returned type depends on the arguments given to makefile(). The support is limited to binary modes only (‘rb’, ‘wb’, and ‘rwb’). CPython’s arguments:
encoding
,errors
andnewline
are not supported.Difference to CPython
As MicroPython doesn’t support buffered streams, values of
buffering
parameter is ignored and treated as if it was 0 (unbuffered).Difference to CPython
Closing the file object returned by makefile() WILL close the original socket as well.
-
socket.
read
([size])¶ Read up to size bytes from the socket. Return a bytes object. If
size
is not given, it reads all data available from the socket untilEOF
; as such the method will not return until the socket is closed. This function tries to read as much data as requested (no “short reads”). This may be not possible with non-blocking socket though, and then less data will be returned.
-
socket.
readinto
(buf[, nbytes])¶ Read bytes into the
buf
. Ifnbytes
is specified then read at most that many bytes. Otherwise, read at mostlen(buf)
bytes. Just asread()
, this method follows “no short reads” policy.Return value: number of bytes read and stored into
buf
.
-
socket.
readline
()¶ Read a line, ending in a newline character.
Return value: the line read.
-
socket.
write
(buf)¶ Write the buffer of bytes to the socket. This function will try to write all data to a socket (no “short writes”). This may be not possible with a non-blocking socket though, and returned value will be less than the length of
buf
.Return value: number of bytes written.