This is the v1.27.0 version of the MicroPython documentation. The latest development version of this page may be more current.

Quick reference for the Zephyr port

Below is a quick reference for the Zephyr port. If it is your first time working with this port please consider reading the following sections first:

Running MicroPython

See the corresponding section of the tutorial: Getting started with MicroPython on the ESP8266.

Delay and timing

Use the time module:

import time

time.sleep(1)               # sleep for 1 second
time.sleep_ms(500)          # sleep for 500 milliseconds
time.sleep_us(10)           # sleep for 10 microseconds
start = time.ticks_ms()     # get millisecond counter
delta = time.ticks_diff(time.ticks_ms(), start) # compute time difference

Pins and GPIO

Use the machine.Pin class:

from machine import Pin

pin = Pin(("gpiob", 21), Pin.IN)    # create input pin on GPIO port B
print(pin)                          # print pin port and number

pin.init(Pin.OUT, Pin.PULL_UP, value=1)     # reinitialize pin

pin.value(1)                        # set pin to high
pin.value(0)                        # set pin to low

pin.on()                            # set pin to high
pin.off()                           # set pin to low

pin = Pin(("gpiob", 21), Pin.IN)              # create input pin on GPIO port B

pin = Pin(("gpiob", 21), Pin.OUT, value=1)    # set pin high on creation

pin = Pin(("gpiob", 21), Pin.IN, Pin.PULL_UP) # enable internal pull-up resistor

switch = Pin(("gpioc", 6), Pin.IN)            # create input pin for a switch
switch.irq(lambda t: print("SW2 changed"))    # enable an interrupt when switch state is changed

PWM

Use the machine.PWM class:

from machine import PWM

pwm = PWM(("pwm0", 0), freq=3921568, duty_ns=200, invert=True)    # create pwm on PWM0
print(pwm)                                                        # print pwm

print(pwm.duty_ns())                                              # print pwm duty cycle in nanoseconds
pwm.duty_ns(255)                                                  # set new pwm duty cycle in nanoseconds

pwm.deinit()

Hardware I2C bus

Hardware I2C is accessed via the machine.I2C class:

from machine import I2C

i2c = I2C("i2c0")           # construct an i2c bus
print(i2c)                  # print device name

i2c.scan()                  # scan the device for available I2C slaves

i2c.readfrom(0x1D, 4)                # read 4 bytes from slave 0x1D
i2c.readfrom_mem(0x1D, 0x0D, 1)      # read 1 byte from slave 0x1D at slave memory 0x0D

i2c.writeto(0x1D, b'abcd')           # write to slave with address 0x1D
i2c.writeto_mem(0x1D, 0x0D, b'ab')   # write to slave 0x1D at slave memory 0x0D

buf = bytearray(8)                  # create buffer of size 8
i2c.writeto(0x1D, b'abcd')          # write buf to slave 0x1D

Hardware SPI bus

Hardware SPI is accessed via the machine.SPI class:

from machine import SPI

spi = SPI("spi0")           # construct a SPI bus with default configuration
spi.init(baudrate=100000, polarity=0, phase=0, bits=8, firstbit=SPI.MSB) # set configuration

# equivalently, construct the SPI bus and set configuration at the same time
spi = SPI("spi0", baudrate=100000, polarity=0, phase=0, bits=8, firstbit=SPI.MSB)
print(spi)                  # print device name and bus configuration

spi.read(4)                 # read 4 bytes on MISO
spi.read(4, write=0xF)      # read 4 bytes while writing 0xF on MOSI

buf = bytearray(8)          # create a buffer of size 8
spi.readinto(buf)           # read into the buffer (reads number of bytes equal to the buffer size)
spi.readinto(buf, 0xF)      # read into the buffer while writing 0xF on MOSI

spi.write(b'abcd')          # write 4 bytes on MOSI

buf = bytearray(4)                  # create buffer of size 8
spi.write_readinto(b'abcd', buf)    # write to MOSI and read from MISO into the buffer
spi.write_readinto(buf, buf)        # write buf to MOSI and read back into the buf

Analog to Digital Converter (ADC)

Use the machine.ADC class.

Example of using ADC to read a pin’s analog value (the zephyr,user node must contain the io-channels property containing all the ADC channels):

from machine import ADC

adc = ADC(("adc", 0))
adc.read_uv()

Disk Access

Storage devices such as SD cards are automatically mounted at startup (e.g., at /sd). For manual mounting, use the zephyr.DiskAccess class:

import vfs
from zephyr import DiskAccess

print(DiskAccess.disks)             # list available disk names, e.g., ('SDHC',)

block_dev = DiskAccess('SDHC')      # create a block device object for an SD card
vfs.VfsFat.mkfs(block_dev)          # create FAT filesystem object using the disk storage block
vfs.mount(block_dev, '/sd')         # mount the filesystem at the SD card subdirectory

# with the filesystem mounted, files can be manipulated as normal
with open('/sd/hello.txt','w') as f:     # open a new file in the directory
    f.write('Hello world')                  # write to the file
print(open('/sd/hello.txt').read())      # print contents of the file

Flash Area

Flash storage is automatically mounted at /flash at startup with automatic filesystem creation. For manual mounting, use the zephyr.FlashArea class:

import vfs
from zephyr import FlashArea

print(FlashArea.areas)              # list available areas, e.g., {'storage': 1, 'scratch': 4}

block_dev = FlashArea(FlashArea.areas['scratch'], 4096)  # creates a block device object using the scratch partition
vfs.VfsLfs2.mkfs(block_dev)         # create filesystem in lfs2 format using the flash block device
vfs.mount(block_dev, '/flash')      # mount the filesystem at the flash subdirectory

# with the filesystem mounted, files can be manipulated as normal
with open('/flash/hello.txt','w') as f:     # open a new file in the directory
    f.write('Hello world')                  # write to the file
print(open('/flash/hello.txt').read())      # print contents of the file

Sensor

Use the zsensor.Sensor class to access sensor data:

import zsensor
from zsensor import Sensor

accel = Sensor("fxos8700")    # create sensor object for the accelerometer

accel.measure()               # obtain a measurement reading from the accelerometer

# each of these prints the value taken by measure()
accel.get_float(zsensor.ACCEL_X)  # print measurement value for accelerometer X-axis sensor channel as float
accel.get_millis(zsensor.ACCEL_Y) # print measurement value for accelerometer Y-axis sensor channel in millionths
accel.get_micro(zsensor.ACCEL_Z)  # print measurement value for accelerometer Z-axis sensor channel in thousandths
accel.get_int(zsensor.ACCEL_X)    # print measurement integer value only for accelerometer X-axis sensor channel

The channel IDs that are used as arguments to the zsensor.Sensor.get_int(), zsensor.Sensor.get_float(), zsensor.Sensor.get_millis(), and zsensor.Sensor.get_micros() methods are constants in the zsensor module.

You can use the zsensor.Sensor.attr_set() method to set sensor attributes like full-scale range and update rate:

# Example for XIAO BLE NRF52840 SENSE
from zsensor import *
accel = Sensor('lsm6ds3tr_c')  # name from Devicetree
# Set full-scale to 2g (19.613300 m/sec^2)
# units are micro-m/s^2 (given as a float)
accel.attr_set(ACCEL_XYZ, ATTR_FULL_SCALE, 19.613300)
# Set sampling frequency to 104 Hz (as a pair of integers)
accel.attr_set(ACCEL_XYZ, ATTR_SAMPLING_FREQUENCY, 104, 0)
accel.measure()
accel.get_float(ACCEL_X) # -0.508 (m/s^2)
accel.get_float(ACCEL_Y) # -3.62 (m/s^2)
accel.get_float(ACCEL_Z) # 9.504889 (m/s^2)

There are also the zsensor.Sensor.attr_get_float(), zsensor.Sensor.attr_get_int(), zsensor.Sensor.attr_get_millis(), and zsensor.Sensor.attr_get_micros() methods, but many sensors do not support these:

full_scale = accel.attr_get_float(ATTR_FULL_SCALE)

The attribute IDs that are used as arguments to the zsensor.Sensor.attr_set(), zsensor.Sensor.attr_get_float(), zsensor.Sensor.attr_get_int(), zsensor.Sensor.attr_get_millis(), and zsensor.Sensor.attr_get_micros() methods are constants in the zsensor module named ATTR_*.