
MicroPython Documentation
Release v1.20.0

Damien P. George, Paul Sokolovsky, and contributors

May 04, 2023

CONTENTS

1 MicroPython libraries 1
1.1 Python standard libraries and micro-libraries . 1

1.1.1 array – arrays of numeric data . 2
1.1.2 binascii – binary/ASCII conversions . 3
1.1.3 builtins – builtin functions and exceptions . 3
1.1.4 cmath – mathematical functions for complex numbers . 6
1.1.5 collections – collection and container types . 7
1.1.6 errno – system error codes . 8
1.1.7 gc – control the garbage collector . 9
1.1.8 hashlib – hashing algorithms . 10
1.1.9 heapq – heap queue algorithm . 10
1.1.10 io – input/output streams . 11
1.1.11 json – JSON encoding and decoding . 13
1.1.12 math – mathematical functions . 13
1.1.13 os – basic “operating system” services . 15
1.1.14 random – generate random numbers . 20
1.1.15 re – simple regular expressions . 21
1.1.16 select – wait for events on a set of streams . 23
1.1.17 socket – socket module . 25
1.1.18 ssl – SSL/TLS module . 30
1.1.19 struct – pack and unpack primitive data types . 31
1.1.20 sys – system specific functions . 32
1.1.21 time – time related functions . 34
1.1.22 uasyncio— asynchronous I/O scheduler . 38
1.1.23 zlib – zlib decompression . 42
1.1.24 _thread – multithreading support . 43

1.2 MicroPython-specific libraries . 43
1.2.1 bluetooth— low-level Bluetooth . 43
1.2.2 btree – simple BTree database . 55
1.2.3 cryptolib – cryptographic ciphers . 57
1.2.4 framebuf— frame buffer manipulation . 58
1.2.5 machine— functions related to the hardware . 60
1.2.6 micropython – access and control MicroPython internals 91
1.2.7 neopixel— control of WS2812 / NeoPixel LEDs . 93
1.2.8 network— network configuration . 94
1.2.9 uctypes – access binary data in a structured way . 104
1.2.10 WM8960 – Driver for the WM8960 codec . 109

1.3 Port-specific libraries . 114
1.3.1 Libraries specific to the pyboard . 115
1.3.2 Libraries specific to the WiPy . 164

i

1.3.3 Libraries specific to the ESP8266 and ESP32 . 168
1.3.4 Libraries specific to the RP2040 . 174
1.3.5 Libraries specific to Zephyr . 181

1.4 Extending built-in libraries from Python . 185

2 MicroPython language and implementation 187
2.1 Glossary . 187
2.2 The MicroPython Interactive Interpreter Mode (aka REPL) . 189

2.2.1 Auto-indent . 189
2.2.2 Auto-completion . 190
2.2.3 Interrupting a running program . 191
2.2.4 Paste mode . 191
2.2.5 Soft reset . 192
2.2.6 The special variable _ (underscore) . 192
2.2.7 Raw mode and raw-paste mode . 193

2.3 MicroPython remote control: mpremote . 194
2.3.1 Commands . 194
2.3.2 Auto connection and soft-reset . 196
2.3.3 Shortcuts . 197
2.3.4 Examples . 197

2.4 MicroPython .mpy files . 198
2.4.1 Versioning and compatibility of .mpy files . 198
2.4.2 Binary encoding of .mpy files . 200

2.5 Writing interrupt handlers . 201
2.5.1 Tips and recommended practices . 201
2.5.2 MicroPython issues . 202
2.5.3 Exceptions . 205
2.5.4 Interfacing to uasyncio . 205
2.5.5 General issues . 205

2.6 Maximising MicroPython speed . 208
2.6.1 Designing for speed . 209
2.6.2 Identifying the slowest section of code . 210
2.6.3 MicroPython code improvements . 211
2.6.4 The Native code emitter . 211
2.6.5 The Viper code emitter . 212
2.6.6 Accessing hardware directly . 213

2.7 MicroPython on microcontrollers . 214
2.7.1 Flash memory . 214
2.7.2 RAM . 214
2.7.3 The heap . 218
2.7.4 String operations . 220
2.7.5 Postscript . 220

2.8 MicroPython manifest files . 220
2.8.1 Summary . 220
2.8.2 Writing manifest files . 221
2.8.3 Examples . 223

2.9 Package management . 224
2.9.1 Installing packages with mip . 224
2.9.2 Installing packages with mpremote . 225
2.9.3 Installing packages manually . 225
2.9.4 Writing & publishing packages . 225
2.9.5 Freezing packages . 226

2.10 Inline assembler for Thumb2 architectures . 226
2.10.1 Document conventions . 226

ii

2.10.2 Instruction categories . 227
2.10.3 Usage examples . 236
2.10.4 References . 240

2.11 Working with filesystems . 240
2.11.1 VFS . 241
2.11.2 Block devices . 241
2.11.3 Filesystems . 243

2.12 The pyboard.py tool . 245
2.12.1 Running a command on the device . 246
2.12.2 Running a script on the device . 247
2.12.3 Filesystem access . 247
2.12.4 Using the pyboard library . 248

3 MicroPython differences from CPython 249
3.1 Python 3.5 . 249
3.2 Python 3.6 . 251
3.3 Python 3.7 . 253
3.4 Python 3.8 . 255
3.5 Python 3.9 . 257
3.6 Python 3.10 . 259
3.7 Syntax . 263

3.7.1 Argument unpacking does not work if the argument being unpacked is the nth or greater argu-
ment where n is the number of bits in an MP_SMALL_INT. 263

3.7.2 MicroPython allows using := to assign to the variable of a comprehension, CPython raises a
SyntaxError. 263

3.7.3 uPy requires spaces between literal numbers and keywords, CPy doesn’t 264
3.7.4 Unicode name escapes are not implemented . 264

3.8 Core language . 265
3.8.1 f-strings don’t support concatenation with adjacent literals if the adjacent literals contain braces

or are f-strings . 265
3.8.2 f-strings cannot support expressions that require parsing to resolve unbalanced nested braces

and brackets . 265
3.8.3 Raw f-strings are not supported . 266
3.8.4 f-strings don’t support the !r, !s, and !a conversions . 266
3.8.5 Special method __del__ not implemented for user-defined classes 266
3.8.6 Method Resolution Order (MRO) is not compliant with CPython 267
3.8.7 When inheriting from multiple classes super() only calls one class 267
3.8.8 Calling super() getter property in subclass will return a property object, not the value 268
3.8.9 Error messages for methods may display unexpected argument counts 269
3.8.10 Function objects do not have the __module__ attribute 269
3.8.11 User-defined attributes for functions are not supported . 269
3.8.12 Context manager __exit__() not called in a generator which does not run to completion 270
3.8.13 Local variables aren’t included in locals() result . 271
3.8.14 Code running in eval() function doesn’t have access to local variables 271
3.8.15 __all__ is unsupported in __init__.py in MicroPython. 272
3.8.16 __path__ attribute of a package has a different type (single string instead of list of strings) in

MicroPython . 272
3.8.17 Failed to load modules are still registered as loaded . 272
3.8.18 MicroPython does’t support namespace packages split across filesystem. 273

3.9 Builtin types . 274
3.9.1 Exception . 274
3.9.2 bytearray . 276
3.9.3 bytes . 276
3.9.4 dict . 278

iii

3.9.5 float . 278
3.9.6 int . 279
3.9.7 list . 279
3.9.8 str . 281
3.9.9 tuple . 283

3.10 Modules . 283
3.10.1 array . 283
3.10.2 builtins . 285
3.10.3 deque . 285
3.10.4 json . 286
3.10.5 os . 286
3.10.6 random . 287
3.10.7 struct . 288
3.10.8 sys . 289

4 MicroPython Internals 291
4.1 Getting Started . 291

4.1.1 Source control with git . 291
4.1.2 Get the code . 291
4.1.3 Compile and build the code . 292
4.1.4 Building the documentation . 294
4.1.5 Running the tests . 295
4.1.6 Folder structure . 295

4.2 Writing tests . 296
4.3 The Compiler . 297

4.3.1 Adding a grammar rule . 297
4.3.2 Adding a lexical token . 298
4.3.3 Parsing . 298
4.3.4 Compiler passes . 299
4.3.5 Emitting bytecode . 301
4.3.6 Emitting native code . 301

4.4 Memory Management . 302
4.4.1 The object model . 302
4.4.2 Allocation of objects . 303

4.5 Implementing a Module . 304
4.5.1 Implementing a core module . 305

4.6 Optimizations . 306
4.6.1 Frozen bytecode . 306
4.6.2 Variables . 306
4.6.3 Allocation of memory . 307

4.7 MicroPython string interning . 307
4.7.1 Compile-time QSTR generation . 307
4.7.2 Run-time QSTR generation . 308

4.8 Maps and Dictionaries . 308
4.8.1 Open addressing . 309
4.8.2 Linear probing . 309

4.9 The public C API . 310
4.10 Extending MicroPython in C . 310

4.10.1 MicroPython external C modules . 310
4.10.2 Native machine code in .mpy files . 314

4.11 Porting MicroPython . 318
4.11.1 Minimal MicroPython firmware . 319
4.11.2 MicroPython Configurations . 320
4.11.3 Support for standard input/output . 321

iv

4.11.4 Building and running . 322
4.11.5 Adding a module to the port . 322

5 MicroPython license information 325

6 Quick reference for the pyboard 327
6.1 General information about the pyboard . 328

6.1.1 Local filesystem and SD card . 328
6.1.2 Boot modes . 328
6.1.3 Errors: flashing LEDs . 329
6.1.4 Guide for using the pyboard with Windows . 329
6.1.5 The pyboard hardware . 329
6.1.6 Datasheets for the components on the pyboard . 329
6.1.7 Datasheets for other components . 330

6.2 MicroPython tutorial for the pyboard . 330
6.2.1 Introduction to the pyboard . 330
6.2.2 Running your first script . 331
6.2.3 Getting a MicroPython REPL prompt . 334
6.2.4 Turning on LEDs and basic Python concepts . 336
6.2.5 Switches, callbacks and interrupts . 338
6.2.6 The accelerometer . 339
6.2.7 Safe mode and factory reset . 341
6.2.8 Making the pyboard act as a USB mouse . 342
6.2.9 The Timers . 344
6.2.10 Inline assembler . 346
6.2.11 Power control . 348
6.2.12 Tutorials requiring extra components . 348
6.2.13 Tips, tricks and useful things to know . 360

6.3 General board control . 361
6.4 Delay and timing . 361
6.5 Internal LEDs . 362
6.6 Internal switch . 362
6.7 Pins and GPIO . 362
6.8 Servo control . 362
6.9 External interrupts . 363
6.10 Timers . 363
6.11 RTC (real time clock) . 363
6.12 PWM (pulse width modulation) . 363
6.13 ADC (analog to digital conversion) . 364
6.14 DAC (digital to analog conversion) . 364
6.15 UART (serial bus) . 364
6.16 SPI bus . 364
6.17 I2C bus . 365
6.18 I2S bus . 365
6.19 CAN bus (controller area network) . 365
6.20 Internal accelerometer . 366

7 Quick reference for the ESP8266 367
7.1 General information about the ESP8266 port . 368

7.1.1 Multitude of boards . 368
7.1.2 Technical specifications and SoC datasheets . 368
7.1.3 Scarcity of runtime resources . 369
7.1.4 Boot process . 369
7.1.5 Known Issues . 369

v

7.2 MicroPython tutorial for ESP8266 . 371
7.2.1 Getting started with MicroPython on the ESP8266 . 371
7.2.2 Getting a MicroPython REPL prompt . 374
7.2.3 The internal filesystem . 377
7.2.4 Network basics . 379
7.2.5 Network - TCP sockets . 380
7.2.6 GPIO Pins . 382
7.2.7 Pulse Width Modulation . 383
7.2.8 Analog to Digital Conversion . 385
7.2.9 Power control . 385
7.2.10 Controlling 1-wire devices . 386
7.2.11 Controlling NeoPixels . 387
7.2.12 Controlling APA102 LEDs . 388
7.2.13 Temperature and Humidity . 390
7.2.14 Using a SSD1306 OLED display . 391
7.2.15 Next steps . 392

7.3 Installing MicroPython . 393
7.4 General board control . 393
7.5 Networking . 393
7.6 Delay and timing . 394
7.7 Timers . 394
7.8 Pins and GPIO . 394
7.9 UART (serial bus) . 395
7.10 PWM (pulse width modulation) . 395
7.11 ADC (analog to digital conversion) . 396
7.12 Software SPI bus . 396
7.13 Hardware SPI bus . 396
7.14 I2C bus . 397
7.15 Real time clock (RTC) . 397
7.16 WDT (Watchdog timer) . 397
7.17 Deep-sleep mode . 398
7.18 OneWire driver . 398
7.19 NeoPixel driver . 399
7.20 APA102 driver . 399
7.21 DHT driver . 399
7.22 SSD1306 driver . 400
7.23 WebREPL (web browser interactive prompt) . 400

8 Quick reference for the ESP32 401
8.1 General information about the ESP32 port . 402

8.1.1 Multitude of boards . 402
8.1.2 Technical specifications and SoC datasheets . 402

8.2 MicroPython tutorial for ESP32 . 403
8.2.1 Getting started with MicroPython on the ESP32 . 403
8.2.2 Pulse Width Modulation . 405
8.2.3 Accessing peripherals directly via registers . 407

8.3 Installing MicroPython . 408
8.4 General board control . 408
8.5 Networking . 409

8.5.1 WLAN . 409
8.5.2 LAN . 409

8.6 Delay and timing . 411
8.7 Timers . 411
8.8 Pins and GPIO . 411

vi

8.9 UART (serial bus) . 412
8.10 PWM (pulse width modulation) . 413
8.11 ADC (analog to digital conversion) . 414
8.12 Software SPI bus . 415
8.13 Hardware SPI bus . 416
8.14 Software I2C bus . 416
8.15 Hardware I2C bus . 416
8.16 I2S bus . 417
8.17 Real time clock (RTC) . 417
8.18 WDT (Watchdog timer) . 417
8.19 Deep-sleep mode . 418
8.20 SD card . 419
8.21 RMT . 419
8.22 OneWire driver . 419
8.23 NeoPixel and APA106 driver . 420
8.24 Capacitive touch . 420
8.25 DHT driver . 421
8.26 WebREPL (web browser interactive prompt) . 421

9 Quick reference for the RP2 423
9.1 General information about the RP2xxx port . 424

9.1.1 Technical specifications and SoC datasheets . 424
9.2 Getting started with MicroPython on the RP2xxx . 424

9.2.1 Programmable IO . 424
9.3 Installing MicroPython . 427
9.4 General board control . 427
9.5 Delay and timing . 427
9.6 Timers . 427
9.7 Pins and GPIO . 428
9.8 Programmable IO (PIO) . 428
9.9 UART (serial bus) . 429
9.10 PWM (pulse width modulation) . 429
9.11 ADC (analog to digital conversion) . 429
9.12 Software SPI bus . 430
9.13 Hardware SPI bus . 430
9.14 Software I2C bus . 430
9.15 Hardware I2C bus . 431
9.16 I2S bus . 431
9.17 Real time clock (RTC) . 431
9.18 WDT (Watchdog timer) . 432
9.19 OneWire driver . 432
9.20 NeoPixel and APA106 driver . 432

10 Quick reference for the i.MXRT family 435
10.1 General information about the MIMXRT port . 436

10.1.1 Multitude of boards . 436
10.1.2 Supported MCUs . 436
10.1.3 Technical specifications and SoC datasheets . 437

10.2 Getting started with MicroPython on the i.MXRT . 437
10.2.1 Requirements . 438
10.2.2 Powering the board . 438
10.2.3 Getting the firmware . 438
10.2.4 Deploying the firmware . 438
10.2.5 Serial prompt . 439

vii

10.2.6 Troubleshooting installation problems . 439
10.3 Pinout for the i.MXRT machine modules . 439

10.3.1 UART pin assignment . 440
10.3.2 PWM pin assignment . 441
10.3.3 Hardware SPI pin assignment . 447
10.3.4 Hardware I2C pin assignment . 448
10.3.5 Hardware I2S pin assignment . 449

10.4 Installing MicroPython . 449
10.5 General board control . 449
10.6 Delay and timing . 450
10.7 Timers . 450
10.8 Pins and GPIO . 450
10.9 UART (serial bus) . 451
10.10 PWM (pulse width modulation) . 451

10.10.1 PWM Constructor . 452
10.10.2 PWMMethods . 453
10.10.3 PWM Pin Assignment . 453

10.11 ADC (analog to digital conversion) . 453
10.12 Software SPI bus . 454
10.13 Hardware SPI bus . 454
10.14 Software I2C bus . 455
10.15 Hardware I2C bus . 455
10.16 I2S bus . 455
10.17 Real time clock (RTC) . 456
10.18 SD card . 457
10.19 OneWire driver . 457
10.20 DHT driver . 458
10.21 Ethernet driver . 458
10.22 Transferring files . 458

11 Quick reference for the WiPy 459
11.1 General information about the WiPy . 459

11.1.1 No floating point support . 459
11.1.2 Before applying power . 460
11.1.3 WLAN default behaviour . 460
11.1.4 Telnet REPL . 460
11.1.5 Local file system and FTP access . 460
11.1.6 FileZilla settings . 461
11.1.7 Upgrading the firmware Over The Air . 461
11.1.8 Boot modes and safe boot . 461
11.1.9 The heartbeat LED . 462
11.1.10 Details on sleep modes . 462
11.1.11 Additional details for machine.Pin . 462
11.1.12 Additional details for machine.I2C . 463
11.1.13 Known issues . 464

11.2 WiPy tutorials and examples . 466
11.2.1 Introduction to the WiPy . 466
11.2.2 Getting a MicroPython REPL prompt . 467
11.2.3 Getting started with Blynk and the WiPy . 469
11.2.4 WLAN step by step . 469
11.2.5 Hardware timers . 470
11.2.6 Reset and boot modes . 472

11.3 General board control (including sleep modes) . 473
11.4 Pins and GPIO . 473

viii

11.5 Timers . 474
11.6 PWM (pulse width modulation) . 474
11.7 ADC (analog to digital conversion) . 474
11.8 UART (serial bus) . 474
11.9 SPI bus . 475
11.10 I2C bus . 475
11.11 Watchdog timer (WDT) . 475
11.12 Real time clock (RTC) . 475
11.13 SD card . 476
11.14 WLAN (WiFi) . 476
11.15 Telnet and FTP server . 477
11.16 Heart beat LED . 477

12 Quick reference for the UNIX and Windows ports 479
12.1 Command line options . 479
12.2 Environment variables . 480

13 Quick reference for the Zephyr port 481
13.1 General information about the Zephyr port . 481

13.1.1 Multitude of boards . 481
13.2 MicroPython tutorial for the Zephyr port . 481

13.2.1 Getting started with MicroPython on the Zephyr port . 481
13.2.2 Getting a MicroPython REPL prompt . 482
13.2.3 Filesystems and Storage . 483
13.2.4 GPIO Pins . 484

13.3 Running MicroPython . 485
13.4 Delay and timing . 485
13.5 Pins and GPIO . 485
13.6 Hardware I2C bus . 486
13.7 Hardware SPI bus . 486
13.8 Disk Access . 487
13.9 Flash Area . 487
13.10 Sensor . 488

14 Quick reference for the Renesas RA 489
14.1 General information about Renesas RA port . 489

14.1.1 Overview . 489
14.2 MicroPython tutorial for Renesas RA port . 490

14.2.1 Getting started with MicroPython on the Renesas RA . 490
14.2.2 Using peripherals . 491
14.2.3 Write a program in internal file system . 492
14.2.4 Reset and boot mode . 493
14.2.5 Trouble Shooting . 494

14.3 Installing MicroPython . 495
14.4 General board control . 495
14.5 Delay and timing . 495
14.6 Timers . 496
14.7 Pins and GPIO . 496
14.8 UART (serial bus) . 497
14.9 Real time clock (RTC) . 498
14.10 ADC (analog to digital conversion) . 498
14.11 SPI bus . 498
14.12 I2C bus . 500
14.13 PWM (pulse width modulation) . 501

ix

14.14 WDT (Watchdog timer) . 501
14.15 SDCard . 501
14.16 OneWire driver . 501
14.17 NeoPixel and APA106 driver . 502

15 Quick reference for the SAMD21/SAMD51 family 503
15.1 General information about the SAMD port . 504

15.1.1 Multitude of boards . 504
15.1.2 Technical specifications and SoC data sheets . 504

15.2 Getting started with MicroPython on the SAMD . 505
15.2.1 Requirements . 505
15.2.2 Powering the board . 506
15.2.3 Getting the firmware . 506
15.2.4 Deploying the firmware . 506
15.2.5 Serial prompt . 506
15.2.6 Troubleshooting installation problems . 506

15.3 Pinout for the SAMD machine modules . 507
15.3.1 Adafruit ItsyBitsy M0 Express pin assignment table . 509
15.3.2 Adafruit ItsyBitsy M4 Express pin assignment table . 511
15.3.3 Adafruit Feather M4 Express pin assignment table . 515
15.3.4 SEEED XIAO pin assignment table . 519
15.3.5 Adafruit Feather M0 Express pin assignment table . 521
15.3.6 Adafruit Trinket M0 pin assignment table . 526
15.3.7 SAMD21 Xplained PRO pin assignment table . 527
15.3.8 Minisam M4 pin assignment table . 530
15.3.9 Seeed WIO Terminal pin assignment table . 533
15.3.10 Sparkfun SAMD51 Thing Plus pin assignment table . 539
15.3.11 Scripts for creating the pin assignment tables . 543

15.4 Installing MicroPython . 544
15.5 General board control . 544
15.6 Delay and timing . 544
15.7 Clock and time . 545
15.8 Timers . 545
15.9 Pins and GPIO . 545
15.10 UART (serial bus) . 546
15.11 PWM (pulse width modulation) . 546

15.11.1 PWM Constructor . 547
15.11.2 PWMMethods . 547
15.11.3 PWM Pin Assignment . 547

15.12 ADC (analog to digital conversion) . 547
15.12.1 ADC Constructor . 548
15.12.2 ADC Methods . 548

15.13 DAC (digital to analog conversion) . 548
15.13.1 DAC Constructor . 549
15.13.2 DAC Methods . 549

15.14 Software SPI bus . 549
15.15 Hardware SPI bus . 550
15.16 Software I2C bus . 550
15.17 Hardware I2C bus . 550
15.18 OneWire driver . 551
15.19 DHT driver . 551
15.20 Driving an APA102 LED . 552
15.21 Driving a Neopixel LED . 552
15.22 Transferring files . 552

x

Python Module Index 553

Index 555

xi

xii

CHAPTER

ONE

MICROPYTHON LIBRARIES

Warning: Important summary of this section
• MicroPython provides built-in modules that mirror the functionality of the Python standard library (e.g. os,
time), as well as MicroPython-specific modules (e.g. bluetooth, machine).

• Most standard library modules implement a subset of the functionality of the equivalent Python module, and in
a few cases provide some MicroPython-specific extensions (e.g. array, os)

• Due to resource constraints or other limitations, some ports or firmware versions may not include all the func-
tionality documented here.

• To allow for extensibility, the built-in modules can be extended from Python code loaded onto the device.

This chapter describes modules (function and class libraries) which are built into MicroPython. This documentation in
general aspires to describe all modules and functions/classes which are implemented in theMicroPython project. However,
MicroPython is highly configurable, and each port to a particular board/embedded system may include only a subset of
the available MicroPython libraries.
With that in mind, please be warned that some functions/classes in a module (or even the entire module) described in this
documentation may be unavailable in a particular build of MicroPython on a particular system. The best place to find
general information of the availability/non-availability of a particular feature is the “General Information” section which
contains information pertaining to a specific MicroPython port.
On some ports you are able to discover the available, built-in libraries that can be imported by entering the following at
the REPL:

help('modules')

Beyond the built-in libraries described in this documentation, many more modules from the Python standard library, as
well as further MicroPython extensions to it, can be found in micropython-lib.

1.1 Python standard libraries and micro-libraries

The following standard Python libraries have been “micro-ified” to fit in with the philosophy of MicroPython. They
provide the core functionality of that module and are intended to be a drop-in replacement for the standard Python
library.

1

MicroPython Documentation, Release v1.20.0

1.1.1 array – arrays of numeric data

This module implements a subset of the corresponding CPython module, as described below. For more information, refer
to the original CPython documentation: array.
Supported format codes: b, B, h, H, i, I, l, L, q, Q, f, d (the latter 2 depending on the floating-point support).

Classes

class array.array(typecode[, iterable])
Create array with elements of given type. Initial contents of the array are given by iterable. If it is not provided, an
empty array is created.
append(val)

Append new element val to the end of array, growing it.
extend(iterable)

Append new elements as contained in iterable to the end of array, growing it.
__getitem__(index)

Indexed read of the array, called as a[index] (where a is an array). Returns a value if index is an int
and an array if index is a slice. Negative indices count from the end and IndexError is thrown if the
index is out of range.
Note: __getitem__ cannot be called directly (a.__getitem__(index) fails) and is not present in
__dict__, however a[index] does work.

__setitem__(index, value)
Indexedwrite into the array, called asa[index] = value (wherea is anarray). value is a single value
if index is an int and an array if index is a slice. Negative indices count from the end and IndexError
is thrown if the index is out of range.
Note: __setitem__ cannot be called directly (a.__setitem__(index, value) fails) and is not
present in __dict__, however a[index] = value does work.

__len__()
Returns the number of items in the array, called as len(a) (where a is an array).
Note: __len__ cannot be called directly (a.__len__() fails) and the method is not present in
__dict__, however len(a) does work.

__add__(other)
Return a new array that is the concatenation of the array with other, called as a + other (where a and
other are both arrays).
Note: __add__ cannot be called directly (a.__add__(other) fails) and is not present in __dict__,
however a + other does work.

__iadd__(other)
Concatenates the array with other in-place, called as a += other (where a and other are both arrays).
Equivalent to extend(other).
Note: __iadd__ cannot be called directly (a.__iadd__(other) fails) and is not present in
__dict__, however a += other does work.

__repr__()
Returns the string representation of the array, called as str(a) or repr(a)` (where a is an array).
Returns the string "array(<type>, [<elements>])", where <type> is the type code letter for
the array and <elements> is a comma seperated list of the elements of the array.

2 Chapter 1. MicroPython libraries

https://docs.python.org/3.5/library/array.html#module-array

MicroPython Documentation, Release v1.20.0

Note: __repr__ cannot be called directly (a.__repr__() fails) and is not present in __dict__,
however str(a) and repr(a) both work.

1.1.2 binascii – binary/ASCII conversions

This module implements a subset of the corresponding CPython module, as described below. For more information, refer
to the original CPython documentation: binascii.
This module implements conversions between binary data and various encodings of it in ASCII form (in both directions).

Functions

binascii.hexlify(data[, sep])
Convert the bytes in the data object to a hexadecimal representation. Returns a bytes object.
If the additional argument sep is supplied it is used as a separator between hexadecimal values.

binascii.unhexlify(data)
Convert hexadecimal data to binary representation. Returns bytes string. (i.e. inverse of hexlify)

binascii.a2b_base64(data)
Decode base64-encoded data, ignoring invalid characters in the input. Conforms to RFC 2045 s.6.8. Returns a
bytes object.

binascii.b2a_base64(data, *, newline=True)
Encode binary data in base64 format, as in RFC 3548. Returns the encoded data followed by a newline character
if newline is true, as a bytes object.

1.1.3 builtins – builtin functions and exceptions

All builtin functions and exceptions are described here. They are also available via builtins module.

Functions and types

abs()

all()

any()

bin()

class bool

class bytearray

class bytes
See CPython documentation: bytes.

callable()

chr()

classmethod()

compile()

class complex

1.1. Python standard libraries and micro-libraries 3

https://docs.python.org/3.5/library/binascii.html#module-binascii
https://tools.ietf.org/html/rfc2045#section-6.8
https://tools.ietf.org/html/rfc3548.html
https://docs.python.org/3.5/library/functions.html#bytes

MicroPython Documentation, Release v1.20.0

delattr(obj, name)
The argument name should be a string, and this function deletes the named attribute from the object given by obj.

class dict

dir()

divmod()

enumerate()

eval()

exec()

filter()

class float

class frozenset

getattr()

globals()

hasattr()

hash()

hex()

id()

input()

class int

classmethod from_bytes(bytes, byteorder)
In MicroPython, byteorder parameter must be positional (this is compatible with CPython).

to_bytes(size, byteorder)
In MicroPython, byteorder parameter must be positional (this is compatible with CPython).

isinstance()

issubclass()

iter()

len()

class list

locals()

map()

max()

class memoryview

min()

next()

class object

oct()

4 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

open()

ord()

pow()

print()

property()

range()

repr()

reversed()

round()

class set

setattr()

class slice
The slice builtin is the type that slice objects have.

sorted()

staticmethod()

class str

sum()

super()

class tuple

type()

zip()

Exceptions

exception AssertionError

exception AttributeError

exception Exception

exception ImportError

exception IndexError

exception KeyboardInterrupt

exception KeyError

exception MemoryError

exception NameError

exception NotImplementedError

exception OSError

exception RuntimeError

exception StopIteration

1.1. Python standard libraries and micro-libraries 5

MicroPython Documentation, Release v1.20.0

exception SyntaxError

exception SystemExit
See CPython documentation: SystemExit.

exception TypeError
See CPython documentation: TypeError.

exception ValueError

exception ZeroDivisionError

1.1.4 cmath – mathematical functions for complex numbers

This module implements a subset of the corresponding CPython module, as described below. For more information, refer
to the original CPython documentation: cmath.
The cmath module provides some basic mathematical functions for working with complex numbers.
Availability: not available on WiPy and ESP8266. Floating point support required for this module.

Functions

cmath.cos(z)
Return the cosine of z.

cmath.exp(z)
Return the exponential of z.

cmath.log(z)
Return the natural logarithm of z. The branch cut is along the negative real axis.

cmath.log10(z)
Return the base-10 logarithm of z. The branch cut is along the negative real axis.

cmath.phase(z)
Returns the phase of the number z, in the range (-pi, +pi].

cmath.polar(z)
Returns, as a tuple, the polar form of z.

cmath.rect(r, phi)
Returns the complex number with modulus r and phase phi.

cmath.sin(z)
Return the sine of z.

cmath.sqrt(z)
Return the square-root of z.

6 Chapter 1. MicroPython libraries

https://docs.python.org/3.5/library/exceptions.html#SystemExit
https://docs.python.org/3.5/library/exceptions.html#TypeError
https://docs.python.org/3.5/library/cmath.html#module-cmath

MicroPython Documentation, Release v1.20.0

Constants

cmath.e
base of the natural logarithm

cmath.pi
the ratio of a circle’s circumference to its diameter

1.1.5 collections – collection and container types

This module implements a subset of the corresponding CPython module, as described below. For more information, refer
to the original CPython documentation: collections.
This module implements advanced collection and container types to hold/accumulate various objects.

Classes

class collections.deque(iterable, maxlen[, flags])
Deques (double-ended queues) are a list-like container that support O(1) appends and pops from either side of the
deque. New deques are created using the following arguments:

• iterable must be the empty tuple, and the new deque is created empty.
• maxlenmust be specified and the deque will be bounded to this maximum length. Once the deque is full, any
new items added will discard items from the opposite end.

• The optional flags can be 1 to check for overflow when adding items.
As well as supporting bool and len, deque objects have the following methods:
append(x)

Add x to the right side of the deque. Raises IndexError if overflow checking is enabled and there is no more
room left.

popleft()
Remove and return an item from the left side of the deque. Raises IndexError if no items are present.

collections.namedtuple(name, fields)
This is factory function to create a new namedtuple type with a specific name and set of fields. A namedtuple is a
subclass of tuple which allows to access its fields not just by numeric index, but also with an attribute access syntax
using symbolic field names. Fields is a sequence of strings specifying field names. For compatibility with CPython
it can also be a a string with space-separated field named (but this is less efficient). Example of use:

from collections import namedtuple

MyTuple = namedtuple("MyTuple", ("id", "name"))
t1 = MyTuple(1, "foo")
t2 = MyTuple(2, "bar")
print(t1.name)
assert t2.name == t2[1]

class collections.OrderedDict(...)
dict type subclass which remembers and preserves the order of keys added. When ordered dict is iterated over,
keys/items are returned in the order they were added:

1.1. Python standard libraries and micro-libraries 7

https://docs.python.org/3.5/library/collections.html#module-collections

MicroPython Documentation, Release v1.20.0

from collections import OrderedDict

To make benefit of ordered keys, OrderedDict should be initialized
from sequence of (key, value) pairs.
d = OrderedDict([("z", 1), ("a", 2)])
More items can be added as usual
d["w"] = 5
d["b"] = 3
for k, v in d.items():

print(k, v)

Output:

z 1
a 2
w 5
b 3

1.1.6 errno – system error codes

This module implements a subset of the corresponding CPython module, as described below. For more information, refer
to the original CPython documentation: errno.
This module provides access to symbolic error codes for OSError exception. A particular inventory of codes depends
on MicroPython port.

Constants

EEXIST, EAGAIN, etc.
Error codes, based on ANSI C/POSIX standard. All error codes start with “E”. As mentioned above, inventory of
the codes depends on MicroPython port. Errors are usually accessible as exc.errno where exc is an instance
of OSError. Usage example:

try:
os.mkdir("my_dir")

except OSError as exc:
if exc.errno == errno.EEXIST:

print("Directory already exists")

errno.errorcode
Dictionary mapping numeric error codes to strings with symbolic error code (see above):

>>> print(errno.errorcode[errno.EEXIST])
EEXIST

8 Chapter 1. MicroPython libraries

https://docs.python.org/3.5/library/errno.html#module-errno

MicroPython Documentation, Release v1.20.0

1.1.7 gc – control the garbage collector

This module implements a subset of the corresponding CPython module, as described below. For more information, refer
to the original CPython documentation: gc.

Functions

gc.enable()
Enable automatic garbage collection.

gc.disable()
Disable automatic garbage collection. Heap memory can still be allocated, and garbage collection can still be
initiated manually using gc.collect().

gc.collect()
Run a garbage collection.

gc.mem_alloc()
Return the number of bytes of heap RAM that are allocated.

Difference to CPython
This function is MicroPython extension.

gc.mem_free()
Return the number of bytes of available heap RAM, or -1 if this amount is not known.

Difference to CPython
This function is MicroPython extension.

gc.threshold([amount])
Set or query the additional GC allocation threshold. Normally, a collection is triggered only when a new allocation
cannot be satisfied, i.e. on an out-of-memory (OOM) condition. If this function is called, in addition to OOM,
a collection will be triggered each time after amount bytes have been allocated (in total, since the previous time
such an amount of bytes have been allocated). amount is usually specified as less than the full heap size, with
the intention to trigger a collection earlier than when the heap becomes exhausted, and in the hope that an early
collection will prevent excessive memory fragmentation. This is a heuristic measure, the effect of which will vary
from application to application, as well as the optimal value of the amount parameter.
Calling the function without argument will return the current value of the threshold. A value of -1 means a disabled
allocation threshold.

Difference to CPython
This function is a MicroPython extension. CPython has a similar function - set_threshold(), but due to
different GC implementations, its signature and semantics are different.

1.1. Python standard libraries and micro-libraries 9

https://docs.python.org/3.5/library/gc.html#module-gc

MicroPython Documentation, Release v1.20.0

1.1.8 hashlib – hashing algorithms

This module implements a subset of the corresponding CPython module, as described below. For more information, refer
to the original CPython documentation: hashlib.
This module implements binary data hashing algorithms. The exact inventory of available algorithms depends on a board.
Among the algorithms which may be implemented:

• SHA256 - The current generation, modern hashing algorithm (of SHA2 series). It is suitable for cryptographically-
secure purposes. Included in the MicroPython core and any board is recommended to provide this, unless it has
particular code size constraints.

• SHA1 - A previous generation algorithm. Not recommended for new usages, but SHA1 is a part of number of
Internet standards and existing applications, so boards targeting network connectivity and interoperability will try
to provide this.

• MD5 -A legacy algorithm, not considered cryptographically secure. Only selected boards, targeting interoperability
with legacy applications, will offer this.

Constructors

class hashlib.sha256([data])
Create an SHA256 hasher object and optionally feed data into it.

class hashlib.sha1([data])
Create an SHA1 hasher object and optionally feed data into it.

class hashlib.md5([data])
Create an MD5 hasher object and optionally feed data into it.

Methods

hash.update(data)
Feed more binary data into hash.

hash.digest()
Return hash for all data passed through hash, as a bytes object. After this method is called, more data cannot be
fed into the hash any longer.

hash.hexdigest()
This method is NOT implemented. Use binascii.hexlify(hash.digest()) to achieve a similar effect.

1.1.9 heapq – heap queue algorithm

This module implements a subset of the corresponding CPython module, as described below. For more information, refer
to the original CPython documentation: heapq.
This module implements the min heap queue algorithm.
A heap queue is essentially a list that has its elements stored in such a way that the first item of the list is always the
smallest.

10 Chapter 1. MicroPython libraries

https://docs.python.org/3.5/library/hashlib.html#module-hashlib
https://docs.python.org/3.5/library/heapq.html#module-heapq
https://en.wikipedia.org/wiki/Heap_%28data_structure%29

MicroPython Documentation, Release v1.20.0

Functions

heapq.heappush(heap, item)
Push the item onto the heap.

heapq.heappop(heap)
Pop the first item from the heap, and return it. Raise IndexError if heap is empty.
The returned item will be the smallest item in the heap.

heapq.heapify(x)
Convert the list x into a heap. This is an in-place operation.

1.1.10 io – input/output streams

This module implements a subset of the corresponding CPython module, as described below. For more information, refer
to the original CPython documentation: io.
This module contains additional types of stream (file-like) objects and helper functions.

Conceptual hierarchy

Difference to CPython
Conceptual hierarchy of stream base classes is simplified in MicroPython, as described in this section.

(Abstract) base stream classes, which serve as a foundation for behaviour of all the concrete classes, adhere to few di-
chotomies (pair-wise classifications) in CPython. In MicroPython, they are somewhat simplified and made implicit to
achieve higher efficiencies and save resources.
An important dichotomy in CPython is unbuffered vs buffered streams. In MicroPython, all streams are currently un-
buffered. This is because all modern OSes, and even many RTOSes and filesystem drivers already perform buffering on
their side. Adding another layer of buffering is counter- productive (an issue known as “bufferbloat”) and takes precious
memory. Note that there still cases where buffering may be useful, so we may introduce optional buffering support at a
later time.
But in CPython, another important dichotomy is tied with “bufferedness” - it’s whether a stream may incur short
read/writes or not. A short read is when a user asks e.g. 10 bytes from a stream, but gets less, similarly for writes.
In CPython, unbuffered streams are automatically short operation susceptible, while buffered are guarantee against them.
The no short read/writes is an important trait, as it allows to develop more concise and efficient programs - something
which is highly desirable for MicroPython. So, while MicroPython doesn’t support buffered streams, it still provides
for no-short-operations streams. Whether there will be short operations or not depends on each particular class’ needs,
but developers are strongly advised to favour no-short-operations behaviour for the reasons stated above. For example,
MicroPython sockets are guaranteed to avoid short read/writes. Actually, at this time, there is no example of a short-
operations stream class in the core, and one would be a port-specific class, where such a need is governed by hardware
peculiarities.
The no-short-operations behaviour gets tricky in case of non-blocking streams, blocking vs non-blocking behaviour being
another CPython dichotomy, fully supported by MicroPython. Non-blocking streams never wait for data either to arrive
or be written - they read/write whatever possible, or signal lack of data (or ability to write data). Clearly, this conflicts with
“no-short-operations” policy, and indeed, a case of non-blocking buffered (and this no-short-ops) streams is convoluted
in CPython - in some places, such combination is prohibited, in some it’s undefined or just not documented, in some
cases it raises verbose exceptions. The matter is much simpler in MicroPython: non-blocking stream are important for
efficient asynchronous operations, so this property prevails on the “no-short-ops” one. So, while blocking streams will
avoid short reads/writes whenever possible (the only case to get a short read is if end of file is reached, or in case of error

1.1. Python standard libraries and micro-libraries 11

https://docs.python.org/3.5/library/io.html#module-io

MicroPython Documentation, Release v1.20.0

(but errors don’t return short data, but raise exceptions)), non-blocking streams may produce short data to avoid blocking
the operation.
The final dichotomy is binary vs text streams. MicroPython of course supports these, but while in CPython text streams
are inherently buffered, they aren’t in MicroPython. (Indeed, that’s one of the cases for which we may introduce buffering
support.)
Note that for efficiency, MicroPython doesn’t provide abstract base classes corresponding to the hierarchy above, and it’s
not possible to implement, or subclass, a stream class in pure Python.

Functions

io.open(name, mode='r', **kwargs)
Open a file. Builtin open() function is aliased to this function. All ports (which provide access to file system) are
required to support mode parameter, but support for other arguments vary by port.

Classes

class io.FileIO(...)
This is type of a file open in binary mode, e.g. using open(name, "rb"). You should not instantiate this class
directly.

class io.TextIOWrapper(...)
This is type of a file open in text mode, e.g. using open(name, "rt"). You should not instantiate this class
directly.

class io.StringIO([string])
class io.BytesIO([string])

In-memory file-like objects for input/output. StringIO is used for text-mode I/O (similar to a normal file opened
with “t”modifier). BytesIO is used for binary-mode I/O (similar to a normal file openedwith “b”modifier). Initial
contents of file-like objects can be specified with string parameter (should be normal string for StringIO or bytes
object for BytesIO). All the usual file methods like read(), write(), seek(), flush(), close() are
available on these objects, and additionally, a following method:
getvalue()

Get the current contents of the underlying buffer which holds data.
class io.StringIO(alloc_size)

class io.BytesIO(alloc_size)
Create an empty StringIO/BytesIO object, preallocated to hold up to alloc_size number of bytes. That means
that writing that amount of bytes won’t lead to reallocation of the buffer, and thus won’t hit out-of-memory situation
or lead to memory fragmentation. These constructors are a MicroPython extension and are recommended for usage
only in special cases and in system-level libraries, not for end-user applications.

Difference to CPython
These constructors are a MicroPython extension.

12 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

1.1.11 json – JSON encoding and decoding

This module implements a subset of the corresponding CPython module, as described below. For more information, refer
to the original CPython documentation: json.
This modules allows to convert between Python objects and the JSON data format.

Functions

json.dump(obj, stream, separators=None)
Serialise obj to a JSON string, writing it to the given stream.
If specified, separators should be an (item_separator, key_separator) tuple. The default is (',
', ': '). To get the most compact JSON representation, you should specify (',', ':') to eliminate
whitespace.

json.dumps(obj, separators=None)
Return obj represented as a JSON string.
The arguments have the same meaning as in dump.

json.load(stream)
Parse the given stream, interpreting it as a JSON string and deserialising the data to a Python object. The resulting
object is returned.
Parsing continues until end-of-file is encountered. A ValueError is raised if the data in stream is not correctly
formed.

json.loads(str)
Parse the JSON str and return an object. Raises ValueError if the string is not correctly formed.

1.1.12 math – mathematical functions

This module implements a subset of the corresponding CPython module, as described below. For more information, refer
to the original CPython documentation: math.
The math module provides some basic mathematical functions for working with floating-point numbers.
Note: On the pyboard, floating-point numbers have 32-bit precision.
Availability: not available on WiPy. Floating point support required for this module.

Functions

math.acos(x)
Return the inverse cosine of x.

math.acosh(x)
Return the inverse hyperbolic cosine of x.

math.asin(x)
Return the inverse sine of x.

math.asinh(x)
Return the inverse hyperbolic sine of x.

math.atan(x)
Return the inverse tangent of x.

1.1. Python standard libraries and micro-libraries 13

https://docs.python.org/3.5/library/json.html#module-json
https://docs.python.org/3.5/library/math.html#module-math

MicroPython Documentation, Release v1.20.0

math.atan2(y, x)
Return the principal value of the inverse tangent of y/x.

math.atanh(x)
Return the inverse hyperbolic tangent of x.

math.ceil(x)
Return an integer, being x rounded towards positive infinity.

math.copysign(x, y)
Return x with the sign of y.

math.cos(x)
Return the cosine of x.

math.cosh(x)
Return the hyperbolic cosine of x.

math.degrees(x)
Return radians x converted to degrees.

math.erf(x)
Return the error function of x.

math.erfc(x)
Return the complementary error function of x.

math.exp(x)
Return the exponential of x.

math.expm1(x)
Return exp(x) - 1.

math.fabs(x)
Return the absolute value of x.

math.floor(x)
Return an integer, being x rounded towards negative infinity.

math.fmod(x, y)
Return the remainder of x/y.

math.frexp(x)
Decomposes a floating-point number into its mantissa and exponent. The returned value is the tuple (m, e) such
that x == m * 2**e exactly. If x == 0 then the function returns (0.0, 0), otherwise the relation 0.5
<= abs(m) < 1 holds.

math.gamma(x)
Return the gamma function of x.

math.isfinite(x)
Return True if x is finite.

math.isinf(x)
Return True if x is infinite.

math.isnan(x)
Return True if x is not-a-number

math.ldexp(x, exp)
Return x * (2**exp).

math.lgamma(x)
Return the natural logarithm of the gamma function of x.

14 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

math.log(x)
Return the natural logarithm of x.

math.log10(x)
Return the base-10 logarithm of x.

math.log2(x)
Return the base-2 logarithm of x.

math.modf(x)
Return a tuple of two floats, being the fractional and integral parts of x. Both return values have the same sign as
x.

math.pow(x, y)
Returns x to the power of y.

math.radians(x)
Return degrees x converted to radians.

math.sin(x)
Return the sine of x.

math.sinh(x)
Return the hyperbolic sine of x.

math.sqrt(x)
Return the square root of x.

math.tan(x)
Return the tangent of x.

math.tanh(x)
Return the hyperbolic tangent of x.

math.trunc(x)
Return an integer, being x rounded towards 0.

Constants

math.e
base of the natural logarithm

math.pi
the ratio of a circle’s circumference to its diameter

1.1.13 os – basic “operating system” services

This module implements a subset of the corresponding CPython module, as described below. For more information, refer
to the original CPython documentation: os.
The os module contains functions for filesystem access and mounting, terminal redirection and duplication, and the
uname and urandom functions.

1.1. Python standard libraries and micro-libraries 15

https://docs.python.org/3.5/library/os.html#module-os

MicroPython Documentation, Release v1.20.0

General functions

os.uname()
Return a tuple (possibly a named tuple) containing information about the underlying machine and/or its operating
system. The tuple has five fields in the following order, each of them being a string:

• sysname – the name of the underlying system
• nodename – the network name (can be the same as sysname)
• release – the version of the underlying system
• version – the MicroPython version and build date
• machine – an identifier for the underlying hardware (eg board, CPU)

os.urandom(n)
Return a bytes object with n random bytes. Whenever possible, it is generated by the hardware random number
generator.

Filesystem access

os.chdir(path)
Change current directory.

os.getcwd()
Get the current directory.

os.ilistdir([dir])
This function returns an iterator which then yields tuples corresponding to the entries in the directory that it is
listing. With no argument it lists the current directory, otherwise it lists the directory given by dir.
The tuples have the form (name, type, inode[, size]):

• name is a string (or bytes if dir is a bytes object) and is the name of the entry;
• type is an integer that specifies the type of the entry, with 0x4000 for directories and 0x8000 for regular files;
• inode is an integer corresponding to the inode of the file, and may be 0 for filesystems that don’t have such a
notion.

• Some platforms may return a 4-tuple that includes the entry’s size. For file entries, size is an integer repre-
senting the size of the file or -1 if unknown. Its meaning is currently undefined for directory entries.

os.listdir([dir])
With no argument, list the current directory. Otherwise list the given directory.

os.mkdir(path)
Create a new directory.

os.remove(path)
Remove a file.

os.rmdir(path)
Remove a directory.

os.rename(old_path, new_path)
Rename a file.

os.stat(path)
Get the status of a file or directory.

16 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

os.statvfs(path)
Get the status of a fileystem.
Returns a tuple with the filesystem information in the following order:

• f_bsize – file system block size
• f_frsize – fragment size
• f_blocks – size of fs in f_frsize units
• f_bfree – number of free blocks
• f_bavail – number of free blocks for unprivileged users
• f_files – number of inodes
• f_ffree – number of free inodes
• f_favail – number of free inodes for unprivileged users
• f_flag – mount flags
• f_namemax – maximum filename length

Parameters related to inodes: f_files, f_ffree, f_avail and the f_flags parameter may return 0 as
they can be unavailable in a port-specific implementation.

os.sync()
Sync all filesystems.

Terminal redirection and duplication

os.dupterm(stream_object, index=0, /)
Duplicate or switch the MicroPython terminal (the REPL) on the given stream-like object. The stream_object
argument must be a native stream object, or derive from io.IOBase and implement the readinto() and
write()methods. The stream should be in non-blocking mode and readinto() should return None if there
is no data available for reading.
After calling this function all terminal output is repeated on this stream, and any input that is available on the stream
is passed on to the terminal input.
The index parameter should be a non-negative integer and specifies which duplication slot is set. A given port
may implement more than one slot (slot 0 will always be available) and in that case terminal input and output is
duplicated on all the slots that are set.
If None is passed as the stream_object then duplication is cancelled on the slot given by index.
The function returns the previous stream-like object in the given slot.

Filesystem mounting

Some ports provide a Virtual Filesystem (VFS) and the ability to mount multiple “real” filesystems within this VFS.
Filesystem objects can be mounted at either the root of the VFS, or at a subdirectory that lives in the root. This allows
dynamic and flexible configuration of the filesystem that is seen by Python programs. Ports that have this functionality
provide the mount() and umount() functions, and possibly various filesystem implementations represented by VFS
classes.
os.mount(fsobj, mount_point, *, readonly)

Mount the filesystem object fsobj at the location in the VFS given by the mount_point string. fsobj can be a a VFS
object that has a mount()method, or a block device. If it’s a block device then the filesystem type is automatically

1.1. Python standard libraries and micro-libraries 17

MicroPython Documentation, Release v1.20.0

detected (an exception is raised if no filesystem was recognised). mount_point may be '/' to mount fsobj at the
root, or '/<name>' to mount it at a subdirectory under the root.
If readonly is True then the filesystem is mounted read-only.
During the mount process the method mount() is called on the filesystem object.
Will raise OSError(EPERM) if mount_point is already mounted.

os.umount(mount_point)
Unmount a filesystem. mount_point can be a string naming the mount location, or a previously-mounted filesystem
object. During the unmount process the method umount() is called on the filesystem object.
Will raise OSError(EINVAL) if mount_point is not found.

class os.VfsFat(block_dev)
Create a filesystem object that uses the FAT filesystem format. Storage of the FAT filesystem is provided by
block_dev. Objects created by this constructor can be mounted using mount().
static mkfs(block_dev)

Build a FAT filesystem on block_dev.
class os.VfsLfs1(block_dev, readsize=32, progsize=32, lookahead=32)

Create a filesystem object that uses the littlefs v1 filesystem format. Storage of the littlefs filesystem is provided by
block_dev, which must support the extended interface. Objects created by this constructor can be mounted using
mount().
SeeWorking with filesystems for more information.
static mkfs(block_dev, readsize=32, progsize=32, lookahead=32)

Build a Lfs1 filesystem on block_dev.

Note: There are reports of littlefs v1 failing in certain situations, for details see littlefs issue 347.

class os.VfsLfs2(block_dev, readsize=32, progsize=32, lookahead=32, mtime=True)
Create a filesystem object that uses the littlefs v2 filesystem format. Storage of the littlefs filesystem is provided by
block_dev, which must support the extended interface. Objects created by this constructor can be mounted using
mount().
The mtime argument enables modification timestamps for files, stored using littlefs attributes. This option can be
disabled or enabled differently each mount time and timestamps will only be added or updated if mtime is enabled,
otherwise the timestamps will remain untouched. Littlefs v2 filesystems without timestamps will work without
reformatting and timestamps will be added transparently to existing files once they are opened for writing. When
mtime is enabled os.stat on files without timestamps will return 0 for the timestamp.
SeeWorking with filesystems for more information.
static mkfs(block_dev, readsize=32, progsize=32, lookahead=32)

Build a Lfs2 filesystem on block_dev.

Note: There are reports of littlefs v2 failing in certain situations, for details see littlefs issue 295.

18 Chapter 1. MicroPython libraries

https://github.com/ARMmbed/littlefs/tree/v1
https://github.com/ARMmbed/littlefs/issues/347
https://github.com/ARMmbed/littlefs
https://github.com/ARMmbed/littlefs/issues/295

MicroPython Documentation, Release v1.20.0

Block devices

A block device is an object which implements the block protocol. This enables a device to support MicroPython filesys-
tems. The physical hardware is represented by a user defined class. The AbstractBlockDev class is a template
for the design of such a class: MicroPython does not actually provide that class, but an actual block device class must
implement the methods described below.
A concrete implementation of this class will usually allow access to the memory-like functionality of a piece of hardware
(like flash memory). A block device can be formatted to any supported filesystem and mounted using os methods.
See Working with filesystems for example implementations of block devices using the two variants of the block protocol
described below.

Simple and extended interface

There are two compatible signatures for the readblocks and writeblocksmethods (see below), in order to support
a variety of use cases. A given block device may implement one form or the other, or both at the same time. The second
form (with the offset parameter) is referred to as the “extended interface”.
Some filesystems (such as littlefs) that require more control over write operations, for example writing to sub-block regions
without erasing, may require that the block device supports the extended interface.
class os.AbstractBlockDev(...)

Construct a block device object. The parameters to the constructor are dependent on the specific block device.
readblocks(block_num, buf)
readblocks(block_num, buf, offset)

The first form reads aligned, multiples of blocks. Starting at the block given by the index block_num, read
blocks from the device into buf (an array of bytes). The number of blocks to read is given by the length of
buf, which will be a multiple of the block size.
The second form allows reading at arbitrary locations within a block, and arbitrary lengths. Starting at block
index block_num, and byte offset within that block of offset, read bytes from the device into buf (an array of
bytes). The number of bytes to read is given by the length of buf.

writeblocks(block_num, buf)
writeblocks(block_num, buf, offset)

The first form writes aligned, multiples of blocks, and requires that the blocks that are written to be first erased
(if necessary) by this method. Starting at the block given by the index block_num, write blocks from buf (an
array of bytes) to the device. The number of blocks to write is given by the length of buf, which will be a
multiple of the block size.
The second form allows writing at arbitrary locations within a block, and arbitrary lengths. Only the bytes
being written should be changed, and the caller of this method must ensure that the relevant blocks are erased
via a prior ioctl call. Starting at block index block_num, and byte offset within that block of offset, write
bytes from buf (an array of bytes) to the device. The number of bytes to write is given by the length of buf.
Note that implementations must never implicitly erase blocks if the offset argument is specified, even if it is
zero.

ioctl(op, arg)

Control the block device and query its parameters. The operation to perform is given by op which
is one of the following integers:
• 1 – initialise the device (arg is unused)
• 2 – shutdown the device (arg is unused)

1.1. Python standard libraries and micro-libraries 19

MicroPython Documentation, Release v1.20.0

• 3 – sync the device (arg is unused)
• 4 – get a count of the number of blocks, should return an integer (arg is unused)
• 5 – get the number of bytes in a block, should return an integer, or None in which case the
default value of 512 is used (arg is unused)

• 6 – erase a block, arg is the block number to erase
As a minimum ioctl(4, ...) must be intercepted; for littlefs ioctl(6, ...) must also be inter-
cepted. The need for others is hardware dependent.
Prior to any call to writeblocks(block, ...) littlefs issues ioctl(6, block). This enables
a device driver to erase the block prior to a write if the hardware requires it. Alternatively a driver might
intercept ioctl(6, block) and return 0 (success). In this case the driver assumes responsibility for
detecting the need for erasure.
Unless otherwise stated ioctl(op, arg) can return None. Consequently an implementation can ig-
nore unused values of op. Where op is intercepted, the return value for operations 4 and 5 are as detailed
above. Other operations should return 0 on success and non-zero for failure, with the value returned being an
OSError errno code.

1.1.14 random – generate random numbers

This module implements a pseudo-random number generator (PRNG).
This module implements a subset of the corresponding CPython module, as described below. For more information, refer
to the original CPython documentation: random .

Note: The following notation is used for intervals:
• () are open interval brackets and do not include their endpoints. For example, (0, 1) means greater than 0 and less
than 1. In set notation: (0, 1) = {x | 0 < x < 1}.

• [] are closed interval brackets which include all their limit points. For example, [0, 1] means greater than or equal
to 0 and less than or equal to 1. In set notation: [0, 1] = {x | 0 <= x <= 1}.

Note: The randrange(), randint() and choice() functions are only available if the MI-
CROPY_PY_URANDOM_EXTRA_FUNCS configuration option is enabled.

Functions for integers

random.getrandbits(n)
Return an integer with n random bits (0 <= n <= 32).

random.randint(a, b)
Return a random integer in the range [a, b].

random.randrange(stop)
random.randrange(start, stop)
random.randrange(start, stop[, step])

The first form returns a random integer from the range [0, stop). The second form returns a random integer from
the range [start, stop). The third form returns a random integer from the range [start, stop) in steps of step. For
instance, calling randrange(1, 10, 2) will return odd numbers between 1 and 9 inclusive.

20 Chapter 1. MicroPython libraries

https://docs.python.org/3.5/library/random.html#module-random

MicroPython Documentation, Release v1.20.0

Functions for floats

random.random()
Return a random floating point number in the range [0.0, 1.0).

random.uniform(a, b)
Return a random floating point number N such that a <= N <= b for a <= b, and b <= N <= a for b < a.

Other Functions

random.seed(n=None, /)
Initialise the random number generator module with the seed n which should be an integer. When no argument
(or None) is passed in it will (if supported by the port) initialise the PRNG with a true random number (usually a
hardware generated random number).
The None case only works if MICROPY_PY_URANDOM_SEED_INIT_FUNC is enabled by the port, otherwise
it raises ValueError.

random.choice(sequence)
Chooses and returns one item at random from sequence (tuple, list or any object that supports the subscript opera-
tion).

1.1.15 re – simple regular expressions

This module implements a subset of the corresponding CPython module, as described below. For more information, refer
to the original CPython documentation: re.
This module implements regular expression operations. Regular expression syntax supported is a subset of CPython re
module (and actually is a subset of POSIX extended regular expressions).
Supported operators and special sequences are:
. Match any character.
[...] Match set of characters. Individual characters and ranges are supported, including negated sets (e.g. [^a-c]).
^ Match the start of the string.
$ Match the end of the string.
? Match zero or one of the previous sub-pattern.
* Match zero or more of the previous sub-pattern.
+ Match one or more of the previous sub-pattern.
?? Non-greedy version of ?, match zero or one, with the preference for zero.
*? Non-greedy version of *, match zero or more, with the preference for the shortest match.
+? Non-greedy version of +, match one or more, with the preference for the shortest match.
| Match either the left-hand side or the right-hand side sub-patterns of this operator.
(...) Grouping. Each group is capturing (a substring it captures can be accessed with match.group() method).
\d Matches digit. Equivalent to [0-9].
\D Matches non-digit. Equivalent to [^0-9].
\s Matches whitespace. Equivalent to [\t-\r].
\S Matches non-whitespace. Equivalent to [^ \t-\r].

1.1. Python standard libraries and micro-libraries 21

https://docs.python.org/3.5/library/re.html#module-re

MicroPython Documentation, Release v1.20.0

\w Matches “word characters” (ASCII only). Equivalent to [A-Za-z0-9_].
\W Matches non “word characters” (ASCII only). Equivalent to [^A-Za-z0-9_].
\ Escape character. Any other character following the backslash, except for those listed above, is taken literally. For

example, * is equivalent to literal * (not treated as the * operator). Note that \r, \n, etc. are not handled
specially, and will be equivalent to literal letters r, n, etc. Due to this, it’s not recommended to use raw Python
strings (r"") for regular expressions. For example, r"\r\n" when used as the regular expression is equivalent
to "rn". To match CR character followed by LF, use "\r\n".

NOT SUPPORTED:
• counted repetitions ({m,n})
• named groups ((?P<name>...))
• non-capturing groups ((?:...))
• more advanced assertions (\b, \B)
• special character escapes like \r, \n - use Python’s own escaping instead
• etc.

Example:

import re

As re doesn't support escapes itself, use of r"" strings is not
recommended.
regex = re.compile("[\r\n]")

regex.split("line1\rline2\nline3\r\n")

Result:
['line1', 'line2', 'line3', '', '']

Functions

re.compile(regex_str[, flags])
Compile regular expression, return regex object.

re.match(regex_str, string)
Compile regex_str and match against string. Match always happens from starting position in a string.

re.search(regex_str, string)
Compile regex_str and search it in a string. Unlike match, this will search string for first position which matches
regex (which still may be 0 if regex is anchored).

re.sub(regex_str, replace, string, count=0, flags=0, /)
Compile regex_str and search for it in string, replacing all matches with replace, and returning the new string.
replace can be a string or a function. If it is a string then escape sequences of the form \<number> and \
g<number> can be used to expand to the corresponding group (or an empty string for unmatched groups). If
replace is a function then it must take a single argument (the match) and should return a replacement string.
If count is specified and non-zero then substitution will stop after this many substitutions are made. The flags
argument is ignored.
Note: availability of this function depends on MicroPython port.

22 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

re.DEBUG
Flag value, display debug information about compiled expression. (Availability depends on MicroPython port.)

Regex objects

Compiled regular expression. Instances of this class are created using re.compile().
regex.match(string)
regex.search(string)
regex.sub(replace, string, count=0, flags=0, /)

Similar to the module-level functions match(), search() and sub(). Using methods is (much) more efficient
if the same regex is applied to multiple strings.

regex.split(string, max_split=- 1, /)
Split a string using regex. If max_split is given, it specifies maximum number of splits to perform. Returns list of
strings (there may be up to max_split+1 elements if it’s specified).

Match objects

Match objects as returned by match() and search() methods, and passed to the replacement function in sub().
match.group(index)

Return matching (sub)string. index is 0 for entire match, 1 and above for each capturing group. Only numeric
groups are supported.

match.groups()
Return a tuple containing all the substrings of the groups of the match.
Note: availability of this method depends on MicroPython port.

match.start([index])
match.end([index])

Return the index in the original string of the start or end of the substring group that was matched. index defaults to
the entire group, otherwise it will select a group.
Note: availability of these methods depends on MicroPython port.

match.span([index])
Returns the 2-tuple (match.start(index), match.end(index)).
Note: availability of this method depends on MicroPython port.

1.1.16 select – wait for events on a set of streams

This module implements a subset of the corresponding CPython module, as described below. For more information, refer
to the original CPython documentation: select.
This module provides functions to efficiently wait for events on multiple streams (select streams which are ready for
operations).

1.1. Python standard libraries and micro-libraries 23

https://docs.python.org/3.5/library/select.html#module-select

MicroPython Documentation, Release v1.20.0

Functions

select.poll()
Create an instance of the Poll class.

select.select(rlist, wlist, xlist[, timeout])
Wait for activity on a set of objects.
This function is provided by some MicroPython ports for compatibility and is not efficient. Usage of Poll is
recommended instead.

class Poll

Methods

poll.register(obj[, eventmask])
Register stream obj for polling. eventmask is logical OR of:

• select.POLLIN - data available for reading
• select.POLLOUT - more data can be written

Note that flags like select.POLLHUP and select.POLLERR are not valid as input eventmask (these are
unsolicited events which will be returned from poll() regardless of whether they are asked for). This semantics
is per POSIX.
eventmask defaults to select.POLLIN | select.POLLOUT.
It is OK to call this function multiple times for the same obj. Successive calls will update obj’s eventmask to the
value of eventmask (i.e. will behave as modify()).

poll.unregister(obj)
Unregister obj from polling.

poll.modify(obj, eventmask)
Modify the eventmask for obj. If obj is not registered, OSError is raised with error of ENOENT.

poll.poll(timeout=- 1, /)
Wait for at least one of the registered objects to become ready or have an exceptional condition, with optional
timeout in milliseconds (if timeout arg is not specified or -1, there is no timeout).
Returns list of (obj, event, …) tuples. There may be other elements in tuple, depending on a platform and
version, so don’t assume that its size is 2. The event element specifies which events happened with a stream
and is a combination of select.POLL* constants described above. Note that flags select.POLLHUP and
select.POLLERR can be returned at any time (even if were not asked for), and must be acted on accordingly
(the corresponding stream unregistered from poll and likely closed), because otherwise all further invocations of
poll() may return immediately with these flags set for this stream again.
In case of timeout, an empty list is returned.

Difference to CPython
Tuples returned may contain more than 2 elements as described above.

poll.ipoll(timeout=- 1, flags=0, /)
Like poll.poll(), but instead returns an iterator which yields a callee-owned tuple. This function
provides an efficient, allocation-free way to poll on streams.

24 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

If flags is 1, one-shot behaviour for events is employed: streams for which events happened will have their event
masks automatically reset (equivalent to poll.modify(obj, 0)), so new events for such a stream won’t be
processed until newmask is set with poll.modify(). This behaviour is useful for asynchronous I/O schedulers.

Difference to CPython
This function is a MicroPython extension.

1.1.17 socket – socket module

This module implements a subset of the corresponding CPython module, as described below. For more information, refer
to the original CPython documentation: socket.
This module provides access to the BSD socket interface.

Difference to CPython
For efficiency and consistency, socket objects in MicroPython implement a stream (file-like) interface directly. In
CPython, you need to convert a socket to a file-like object using makefile() method. This method is still supported
by MicroPython (but is a no-op), so where compatibility with CPython matters, be sure to use it.

Socket address format(s)

The native socket address format of the socket module is an opaque data type returned by getaddrinfo function,
which must be used to resolve textual address (including numeric addresses):

sockaddr = socket.getaddrinfo('www.micropython.org', 80)[0][-1]
You must use getaddrinfo() even for numeric addresses
sockaddr = socket.getaddrinfo('127.0.0.1', 80)[0][-1]
Now you can use that address
sock.connect(sockaddr)

Using getaddrinfo is the most efficient (both in terms of memory and processing power) and portable way to work
with addresses.
However, socket module (note the difference with native MicroPython socket module described here) provides
CPython-compatible way to specify addresses using tuples, as described below. Note that depending on a MicroPython
port, socket module can be builtin or need to be installed from micropython-lib (as in the case of MicroPython
Unix port), and some ports still accept only numeric addresses in the tuple format, and require to use getaddrinfo
function to resolve domain names.
Summing up:

• Always use getaddrinfo when writing portable applications.
• Tuple addresses described below can be used as a shortcut for quick hacks and interactive use, if your port supports
them.

Tuple address format for socket module:
• IPv4: (ipv4_address, port), where ipv4_address is a string with dot-notation numeric IPv4 address, e.g. "8.8.
8.8", and port is and integer port number in the range 1-65535. Note the domain names are not accepted as
ipv4_address, they should be resolved first using socket.getaddrinfo().

1.1. Python standard libraries and micro-libraries 25

https://docs.python.org/3.5/library/socket.html#module-socket

MicroPython Documentation, Release v1.20.0

• IPv6: (ipv6_address, port, flowinfo, scopeid), where ipv6_address is a string with colon-notation numeric IPv6
address, e.g. "2001:db8::1", and port is an integer port number in the range 1-65535. flowinfo must be
0. scopeid is the interface scope identifier for link-local addresses. Note the domain names are not accepted
as ipv6_address, they should be resolved first using socket.getaddrinfo(). Availability of IPv6 support
depends on a MicroPython port.

Functions

socket.getaddrinfo(host, port, af=0, type=0, proto=0, flags=0, /)
Translate the host/port argument into a sequence of 5-tuples that contain all the necessary arguments for creat-
ing a socket connected to that service. Arguments af, type, and proto (which have the same meaning as for the
socket() function) can be used to filter which kind of addresses are returned. If a parameter is not specified or
zero, all combinations of addresses can be returned (requiring filtering on the user side).
The resulting list of 5-tuples has the following structure:

(family, type, proto, canonname, sockaddr)

The following example shows how to connect to a given url:

s = socket.socket()
This assumes that if "type" is not specified, an address for
SOCK_STREAM will be returned, which may be not true
s.connect(socket.getaddrinfo('www.micropython.org', 80)[0][-1])

Recommended use of filtering params:

s = socket.socket()
Guaranteed to return an address which can be connect'ed to for
stream operation.
s.connect(socket.getaddrinfo('www.micropython.org', 80, 0, SOCK_STREAM)[0][-1])

Difference to CPython
CPython raises a socket.gaierror exception (OSError subclass) in case of error in this function. Mi-
croPython doesn’t have socket.gaierror and raises OSError directly. Note that error numbers of getad-
drinfo() form a separate namespace and may not match error numbers from the errnomodule. To distinguish
getaddrinfo() errors, they are represented by negative numbers, whereas standard system errors are positive
numbers (error numbers are accessible using e.args[0] property from an exception object). The use of negative
values is a provisional detail which may change in the future.

socket.inet_ntop(af, bin_addr)
Convert a binary network address bin_addr of the given address family af to a textual representation:

>>> socket.inet_ntop(socket.AF_INET, b"\x7f\0\0\1")
'127.0.0.1'

socket.inet_pton(af, txt_addr)
Convert a textual network address txt_addr of the given address family af to a binary representation:

>>> socket.inet_pton(socket.AF_INET, "1.2.3.4")
b'\x01\x02\x03\x04'

26 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

Constants

socket.AF_INET
socket.AF_INET6

Address family types. Availability depends on a particular MicroPython port.
socket.SOCK_STREAM
socket.SOCK_DGRAM

Socket types.
socket.IPPROTO_UDP
socket.IPPROTO_TCP

IP protocol numbers. Availability depends on a particular MicroPython port. Note that you don’t need to spec-
ify these in a call to socket.socket(), because SOCK_STREAM socket type automatically selects IP-
PROTO_TCP, and SOCK_DGRAM - IPPROTO_UDP. Thus, the only real use of these constants is as an argument
to setsockopt().

socket.SOL_*
Socket option levels (an argument to setsockopt()). The exact inventory depends on a MicroPython port.

socket.SO_*
Socket options (an argument to setsockopt()). The exact inventory depends on a MicroPython port.

Constants specific to WiPy:
socket.IPPROTO_SEC

Special protocol value to create SSL-compatible socket.

class socket

class socket.socket(af=AF_INET, type=SOCK_STREAM, proto=IPPROTO_TCP, /)
Create a new socket using the given address family, socket type and protocol number. Note that specifying proto in
most cases is not required (and not recommended, as some MicroPython ports may omit IPPROTO_* constants).
Instead, type argument will select needed protocol automatically:

Create STREAM TCP socket
socket(AF_INET, SOCK_STREAM)
Create DGRAM UDP socket
socket(AF_INET, SOCK_DGRAM)

Methods

socket.close()
Mark the socket closed and release all resources. Once that happens, all future operations on the socket object will
fail. The remote end will receive EOF indication if supported by protocol.
Sockets are automatically closed when they are garbage-collected, but it is recommended to close() them ex-
plicitly as soon you finished working with them.

socket.bind(address)
Bind the socket to address. The socket must not already be bound.

socket.listen([backlog])
Enable a server to accept connections. If backlog is specified, it must be at least 0 (if it’s lower, it will be set to 0);
and specifies the number of unaccepted connections that the system will allow before refusing new connections. If
not specified, a default reasonable value is chosen.

1.1. Python standard libraries and micro-libraries 27

MicroPython Documentation, Release v1.20.0

socket.accept()
Accept a connection. The socket must be bound to an address and listening for connections. The return value is
a pair (conn, address) where conn is a new socket object usable to send and receive data on the connection, and
address is the address bound to the socket on the other end of the connection.

socket.connect(address)
Connect to a remote socket at address.

socket.send(bytes)
Send data to the socket. The socket must be connected to a remote socket. Returns number of bytes sent, which
may be smaller than the length of data (“short write”).

socket.sendall(bytes)
Send all data to the socket. The socket must be connected to a remote socket. Unlike send(), this method will
try to send all of data, by sending data chunk by chunk consecutively.
The behaviour of this method on non-blocking sockets is undefined. Due to this, onMicroPython, it’s recommended
to use write()method instead, which has the same “no short writes” policy for blocking sockets, and will return
number of bytes sent on non-blocking sockets.

socket.recv(bufsize)
Receive data from the socket. The return value is a bytes object representing the data received. The maximum
amount of data to be received at once is specified by bufsize.

socket.sendto(bytes, address)
Send data to the socket. The socket should not be connected to a remote socket, since the destination socket is
specified by address.

socket.recvfrom(bufsize)
Receive data from the socket. The return value is a pair (bytes, address) where bytes is a bytes object representing
the data received and address is the address of the socket sending the data.

socket.setsockopt(level, optname, value)
Set the value of the given socket option. The needed symbolic constants are defined in the socket module (SO_*
etc.). The value can be an integer or a bytes-like object representing a buffer.

socket.settimeout(value)
Note: Not every port supports this method, see below.
Set a timeout on blocking socket operations. The value argument can be a nonnegative floating point number
expressing seconds, or None. If a non-zero value is given, subsequent socket operations will raise an OSError
exception if the timeout period value has elapsed before the operation has completed. If zero is given, the socket
is put in non-blocking mode. If None is given, the socket is put in blocking mode.
Not everyMicroPython port supports this method. A more portable and generic solution is to use select.poll
object. This allows to wait on multiple objects at the same time (and not just on sockets, but on generic stream
objects which support polling). Example:

Instead of:
s.settimeout(1.0) # time in seconds
s.read(10) # may timeout

Use:
poller = select.poll()
poller.register(s, select.POLLIN)
res = poller.poll(1000) # time in milliseconds
if not res:

s is still not ready for input, i.e. operation timed out

28 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

Difference to CPython
CPython raises a socket.timeout exception in case of timeout, which is an OSError subclass. MicroPython
raises an OSError directly instead. If you use except OSError: to catch the exception, your code will work
both in MicroPython and CPython.

socket.setblocking(flag)
Set blocking or non-blocking mode of the socket: if flag is false, the socket is set to non-blocking, else to blocking
mode.
This method is a shorthand for certain settimeout() calls:

• sock.setblocking(True) is equivalent to sock.settimeout(None)
• sock.setblocking(False) is equivalent to sock.settimeout(0)

socket.makefile(mode='rb', buffering=0, /)
Return a file object associated with the socket. The exact returned type depends on the arguments given to make-
file(). The support is limited to binary modes only (‘rb’, ‘wb’, and ‘rwb’). CPython’s arguments: encoding, errors
and newline are not supported.

Difference to CPython
As MicroPython doesn’t support buffered streams, values of buffering parameter is ignored and treated as if it was
0 (unbuffered).

Difference to CPython
Closing the file object returned by makefile() WILL close the original socket as well.

socket.read([size])
Read up to size bytes from the socket. Return a bytes object. If size is not given, it reads all data available from the
socket until EOF; as such the method will not return until the socket is closed. This function tries to read as much
data as requested (no “short reads”). This may be not possible with non-blocking socket though, and then less data
will be returned.

socket.readinto(buf[, nbytes])
Read bytes into the buf. If nbytes is specified then read at most that many bytes. Otherwise, read at most len(buf)
bytes. Just as read(), this method follows “no short reads” policy.
Return value: number of bytes read and stored into buf.

socket.readline()
Read a line, ending in a newline character.
Return value: the line read.

socket.write(buf)
Write the buffer of bytes to the socket. This function will try to write all data to a socket (no “short writes”). This
may be not possible with a non-blocking socket though, and returned value will be less than the length of buf.
Return value: number of bytes written.

exception socket.error
MicroPython does NOT have this exception.

1.1. Python standard libraries and micro-libraries 29

MicroPython Documentation, Release v1.20.0

Difference to CPython
CPython used to have a socket.error exception which is now deprecated, and is an alias of OSError. In
MicroPython, use OSError directly.

1.1.18 ssl – SSL/TLS module

This module implements a subset of the corresponding CPython module, as described below. For more information, refer
to the original CPython documentation: ssl.
This module provides access to Transport Layer Security (previously and widely known as “Secure Sockets Layer”) en-
cryption and peer authentication facilities for network sockets, both client-side and server-side.

Functions

ssl.wrap_socket(sock, server_side=False, keyfile=None, certfile=None, cert_reqs=CERT_NONE, cadata=None,
server_hostname=None, do_handshake=True)

Takes a stream sock (usually socket.socket instance of SOCK_STREAM type), and returns an instance of
ssl.SSLSocket, which wraps the underlying stream in an SSL context. Returned object has the usual stream
interface methods like read(), write(), etc. A server-side SSL socket should be created from a normal socket
returned from accept() on a non-SSL listening server socket.

• do_handshake determines whether the handshake is done as part of the wrap_socket or whether it is
deferred to be done as part of the initial reads or writes (there is no do_handshakemethod as in CPython).
For blocking sockets doing the handshake immediately is standard. For non-blocking sockets (i.e. when
the sock passed into wrap_socket is in non-blocking mode) the handshake should generally be deferred
because otherwise wrap_socket blocks until it completes. Note that in AXTLS the handshake can be
deferred until the first read or write but it then blocks until completion.

• cert_reqs determines whether the peer (server or client) must present a valid certificate. Note that for mbedtls
based ports, ssl.CERT_NONE and ssl.CERT_OPTIONAL will not validate any certificate, only ssl.
CERT_REQUIRED will.

• cadata is a bytes object containing the CA certificate chain (in DER format) that will validate the peer’s
certificate. Currently only a single DER-encoded certificate is supported.

• server_hostname is for use as a client, and sets the hostname to check against the received server certificate.
It also sets the name for Server Name Indication (SNI), allowing the server to present the proper certificate.

Depending on the underlying module implementation in a particular MicroPython port, some or all keyword argu-
ments above may be not supported.

Warning: Some implementations of ssl module do NOT validate server certificates, which makes an SSL con-
nection established prone to man-in-the-middle attacks.
CPython’s wrap_socket returns an SSLSocket object which has methods typical for sockets, such as send,
recv, etc. MicroPython’s wrap_socket returns an object more similar to CPython’s SSLObject which does
not have these socket methods.

30 Chapter 1. MicroPython libraries

https://docs.python.org/3.5/library/ssl.html#module-ssl

MicroPython Documentation, Release v1.20.0

Exceptions

ssl.SSLError
This exception does NOT exist. Instead its base class, OSError, is used.

Constants

ssl.CERT_NONE
ssl.CERT_OPTIONAL
ssl.CERT_REQUIRED

Supported values for cert_reqs parameter.

1.1.19 struct – pack and unpack primitive data types

This module implements a subset of the corresponding CPython module, as described below. For more information, refer
to the original CPython documentation: struct.
The following byte orders are supported:

Character Byte order Size Alignment
@ native native native
< little-endian standard none
> big-endian standard none
! network (= big-endian) standard none

The following data types are supported:

Format C Type Python type Standard size
b signed char integer 1
B unsigned char integer 1
h short integer 2
H unsigned short integer 2
i int integer (1) 4
I unsigned int integer (1) 4
l long integer (1) 4
L unsigned long integer (1) 4
q long long integer (1) 8
Q unsigned long long integer (1) 8
f float float (2) 4
d double float (2) 8
s char[] bytes
P void * integer

(1) Requires long support when used with values larger than 30 bits.
(2) Requires floating point support.

Difference to CPython
Whitespace is not supported in format strings.

1.1. Python standard libraries and micro-libraries 31

https://docs.python.org/3.5/library/struct.html#module-struct

MicroPython Documentation, Release v1.20.0

Functions

struct.calcsize(fmt)
Return the number of bytes needed to store the given fmt.

struct.pack(fmt, v1, v2, ...)
Pack the values v1, v2, … according to the format string fmt. The return value is a bytes object encoding the values.

struct.pack_into(fmt, buffer, offset, v1, v2, ...)
Pack the values v1, v2, … according to the format string fmt into a buffer starting at offset. offset may be negative
to count from the end of buffer.

struct.unpack(fmt, data)
Unpack from the data according to the format string fmt. The return value is a tuple of the unpacked values.

struct.unpack_from(fmt, data, offset=0, /)
Unpack from the data starting at offset according to the format string fmt. offset may be negative to count from the
end of data. The return value is a tuple of the unpacked values.

1.1.20 sys – system specific functions

This module implements a subset of the corresponding CPython module, as described below. For more information, refer
to the original CPython documentation: sys.

Functions

sys.exit(retval=0, /)
Terminate current program with a given exit code. Underlyingly, this function raise as SystemExit exception.
If an argument is given, its value given as an argument to SystemExit.

sys.atexit(func)
Register func to be called upon termination. func must be a callable that takes no arguments, or None to disable
the call. The atexit function will return the previous value set by this function, which is initially None.

Difference to CPython
This function is a MicroPython extension intended to provide similar functionality to the atexit module in
CPython.

sys.print_exception(exc, file=sys.stdout, /)
Print exception with a traceback to a file-like object file (or sys.stdout by default).

Difference to CPython
This is simplified version of a function which appears in the traceback module in CPython. Unlike
traceback.print_exception(), this function takes just exception value instead of exception type, ex-
ception value, and traceback object; file argument should be positional; further arguments are not supported.
CPython-compatible traceback module can be found in micropython-lib.

sys.settrace(tracefunc)
Enable tracing of bytecode execution. For details see the CPython documentaion.
This function requires a custom MicroPython build as it is typically not present in pre-built firmware (due to it
affecting performance). The relevant configuration option is MICROPY_PY_SYS_SETTRACE.

32 Chapter 1. MicroPython libraries

https://docs.python.org/3.5/library/sys.html#module-sys
https://docs.python.org/3.5/library/atexit.html#module-atexit
https://docs.python.org/3/library/sys.html#sys.settrace

MicroPython Documentation, Release v1.20.0

Constants

sys.argv
A mutable list of arguments the current program was started with.

sys.byteorder
The byte order of the system ("little" or "big").

sys.implementation
Object with information about the current Python implementation. For MicroPython, it has following attributes:

• name - string “micropython”
• version - tuple (major, minor, micro), e.g. (1, 7, 0)
• _machine - string describing the underlying machine
• _mpy - supported mpy file-format version (optional attribute)

This object is the recommended way to distinguish MicroPython from other Python implementations (note that it
still may not exist in the very minimal ports).

Difference to CPython
CPython mandates more attributes for this object, but the actual useful bare minimum is implemented in MicroPy-
thon.

sys.maxsize
Maximum value which a native integer type can hold on the current platform, or maximum value representable by
MicroPython integer type, if it’s smaller than platform max value (that is the case for MicroPython ports without
long int support).
This attribute is useful for detecting “bitness” of a platform (32-bit vs 64-bit, etc.). It’s recommended to not compare
this attribute to some value directly, but instead count number of bits in it:

bits = 0
v = sys.maxsize
while v:

bits += 1
v >>= 1

if bits > 32:
64-bit (or more) platform
...

else:
32-bit (or less) platform
Note that on 32-bit platform, value of bits may be less than 32
(e.g. 31) due to peculiarities described above, so use "> 16",
"> 32", "> 64" style of comparisons.

sys.modules
Dictionary of loaded modules. On some ports, it may not include builtin modules.

sys.path
A mutable list of directories to search for imported modules.

Difference to CPython
On MicroPython, an entry with the value ".frozen" will indicate that import should search frozen modules at
that point in the search. If no frozen module is found then search will not look for a directory called .frozen,

1.1. Python standard libraries and micro-libraries 33

MicroPython Documentation, Release v1.20.0

instead it will continue with the next entry in sys.path.

sys.platform
The platform that MicroPython is running on. For OS/RTOS ports, this is usually an identifier of the OS, e.g.
"linux". For baremetal ports it is an identifier of a board, e.g. "pyboard" for the original MicroPython
reference board. It thus can be used to distinguish one board from another. If you need to check whether your
program runs on MicroPython (vs other Python implementation), use sys.implementation instead.

sys.ps1
sys.ps2

Mutable attributes holding strings, which are used for the REPL prompt. The defaults give the standard Python
prompt of >>> and

sys.stderr
Standard error stream.

sys.stdin
Standard input stream.

sys.stdout
Standard output stream.

sys.tracebacklimit
A mutable attribute holding an integer value which is the maximum number of traceback entries to store in an
exception. Set to 0 to disable adding tracebacks. Defaults to 1000.
Note: this is not available on all ports.

sys.version
Python language version that this implementation conforms to, as a string.

sys.version_info
Python language version that this implementation conforms to, as a tuple of ints.

Difference to CPython
Only the first three version numbers (major, minor, micro) are supported and they can be referenced
only by index, not by name.

1.1.21 time – time related functions

This module implements a subset of the corresponding CPython module, as described below. For more information, refer
to the original CPython documentation: time.
The time module provides functions for getting the current time and date, measuring time intervals, and for delays.
TimeEpoch: Unix port uses standard for POSIX systems epoch of 1970-01-01 00:00:00UTC.However, some embedded
ports use epoch of 2000-01-01 00:00:00 UTC. Epoch year may be determined with gmtime(0)[0].
Maintaining actual calendar date/time: This requires a Real Time Clock (RTC). On systems with underlying OS
(including some RTOS), an RTC may be implicit. Setting and maintaining actual calendar time is responsibility of
OS/RTOS and is done outside of MicroPython, it just uses OS API to query date/time. On baremetal ports however
system time depends on machine.RTC() object. The current calendar time may be set using machine.RTC().
datetime(tuple) function, and maintained by following means:

• By a backup battery (which may be an additional, optional component for a particular board).
• Using networked time protocol (requires setup by a port/user).

34 Chapter 1. MicroPython libraries

https://docs.python.org/3.5/library/time.html#module-time

MicroPython Documentation, Release v1.20.0

• Set manually by a user on each power-up (many boards then maintain RTC time across hard resets, though some
may require setting it again in such case).

If actual calendar time is not maintained with a system/MicroPython RTC, functions below which require reference to
current absolute time may behave not as expected.

Functions

time.gmtime([secs])
time.localtime([secs])

Convert the time secs expressed in seconds since the Epoch (see above) into an 8-tuple which contains: (year,
month, mday, hour, minute, second, weekday, yearday) If secs is not provided or None,
then the current time from the RTC is used.
The gmtime() function returns a date-time tuple in UTC, and localtime() returns a date-time tuple in local
time.
The format of the entries in the 8-tuple are:

• year includes the century (for example 2014).
• month is 1-12
• mday is 1-31
• hour is 0-23
• minute is 0-59
• second is 0-59
• weekday is 0-6 for Mon-Sun
• yearday is 1-366

time.mktime()
This is inverse function of localtime. It’s argument is a full 8-tuple which expresses a time as per localtime. It
returns an integer which is the number of seconds since Jan 1, 2000.

time.sleep(seconds)
Sleep for the given number of seconds. Some boards may accept seconds as a floating-point number to sleep for a
fractional number of seconds. Note that other boards may not accept a floating-point argument, for compatibility
with them use sleep_ms() and sleep_us() functions.

time.sleep_ms(ms)
Delay for given number of milliseconds, should be positive or 0.
This function will delay for at least the given number of milliseconds, but may take longer than that if other pro-
cessing must take place, for example interrupt handlers or other threads. Passing in 0 for ms will still allow this
other processing to occur. Use sleep_us() for more precise delays.

time.sleep_us(us)
Delay for given number of microseconds, should be positive or 0.
This function attempts to provide an accurate delay of at least usmicroseconds, but it may take longer if the system
has other higher priority processing to perform.

time.ticks_ms()
Returns an increasing millisecond counter with an arbitrary reference point, that wraps around after some value.
The wrap-around value is not explicitly exposed, but we will refer to it as TICKS_MAX to simplify discussion.
Period of the values is TICKS_PERIOD = TICKS_MAX + 1. TICKS_PERIOD is guaranteed to be a power of two,
but otherwise may differ from port to port. The same period value is used for all of ticks_ms(), ticks_us(),

1.1. Python standard libraries and micro-libraries 35

MicroPython Documentation, Release v1.20.0

ticks_cpu() functions (for simplicity). Thus, these functions will return a value in range [0 .. TICKS_MAX],
inclusive, total TICKS_PERIOD values. Note that only non-negative values are used. For the most part, you should
treat values returned by these functions as opaque. The only operations available for them are ticks_diff()
and ticks_add() functions described below.
Note: Performing standard mathematical operations (+, -) or relational operators (<, <=, >, >=) directly on these
value will lead to invalid result. Performing mathematical operations and then passing their results as arguments to
ticks_diff() or ticks_add() will also lead to invalid results from the latter functions.

time.ticks_us()
Just like ticks_ms() above, but in microseconds.

time.ticks_cpu()
Similar to ticks_ms() and ticks_us(), but with the highest possible resolution in the system. This is usually
CPU clocks, and that’s why the function is named that way. But it doesn’t have to be a CPU clock, some other timing
source available in a system (e.g. high-resolution timer) can be used instead. The exact timing unit (resolution)
of this function is not specified on time module level, but documentation for a specific port may provide more
specific information. This function is intended for very fine benchmarking or very tight real-time loops. Avoid
using it in portable code.
Availability: Not every port implements this function.

time.ticks_add(ticks, delta)
Offset ticks value by a given number, which can be either positive or negative. Given a ticks value, this function
allows to calculate ticks value delta ticks before or after it, following modular-arithmetic definition of tick values
(see ticks_ms() above). ticks parameter must be a direct result of call to ticks_ms(), ticks_us(), or
ticks_cpu() functions (or from previous call to ticks_add()). However, delta can be an arbitrary integer
number or numeric expression. ticks_add() is useful for calculating deadlines for events/tasks. (Note: you
must use ticks_diff() function to work with deadlines.)
Examples:

Find out what ticks value there was 100ms ago
print(ticks_add(time.ticks_ms(), -100))

Calculate deadline for operation and test for it
deadline = ticks_add(time.ticks_ms(), 200)
while ticks_diff(deadline, time.ticks_ms()) > 0:

do_a_little_of_something()

Find out TICKS_MAX used by this port
print(ticks_add(0, -1))

time.ticks_diff(ticks1, ticks2)
Measure ticks difference between values returned from ticks_ms(), ticks_us(), or ticks_cpu() func-
tions, as a signed value which may wrap around.
The argument order is the same as for subtraction operator, ticks_diff(ticks1, ticks2) has the same
meaning as ticks1 - ticks2. However, values returned by ticks_ms(), etc. functions may wrap around,
so directly using subtraction on them will produce incorrect result. That is why ticks_diff() is needed,
it implements modular (or more specifically, ring) arithmetics to produce correct result even for wrap-around
values (as long as they not too distant inbetween, see below). The function returns signed value in the range [-
TICKS_PERIOD/2 .. TICKS_PERIOD/2-1] (that’s a typical range definition for two’s-complement signed binary
integers). If the result is negative, it means that ticks1 occurred earlier in time than ticks2. Otherwise, it means
that ticks1 occurred after ticks2. This holds only if ticks1 and ticks2 are apart from each other for no more than
TICKS_PERIOD/2-1 ticks. If that does not hold, incorrect result will be returned. Specifically, if two tick values
are apart for TICKS_PERIOD/2-1 ticks, that value will be returned by the function. However, if TICKS_PERIOD/2
of real-time ticks has passed between them, the function will return -TICKS_PERIOD/2 instead, i.e. result value

36 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

will wrap around to the negative range of possible values.
Informal rationale of the constraints above: Suppose you are locked in a room with no means to monitor passing
of time except a standard 12-notch clock. Then if you look at dial-plate now, and don’t look again for another 13
hours (e.g., if you fall for a long sleep), then once you finally look again, it may seem to you that only 1 hour has
passed. To avoid this mistake, just look at the clock regularly. Your application should do the same. “Too long
sleep” metaphor also maps directly to application behaviour: don’t let your application run any single task for too
long. Run tasks in steps, and do time-keeping inbetween.
ticks_diff() is designed to accommodate various usage patterns, among them:

• Polling with timeout. In this case, the order of events is known, and you will deal only with positive results
of ticks_diff():

Wait for GPIO pin to be asserted, but at most 500us
start = time.ticks_us()
while pin.value() == 0:

if time.ticks_diff(time.ticks_us(), start) > 500:
raise TimeoutError

• Scheduling events. In this case, ticks_diff() result may be negative if an event is overdue:

This code snippet is not optimized
now = time.ticks_ms()
scheduled_time = task.scheduled_time()
if ticks_diff(scheduled_time, now) > 0:

print("Too early, let's nap")
sleep_ms(ticks_diff(scheduled_time, now))
task.run()

elif ticks_diff(scheduled_time, now) == 0:
print("Right at time!")
task.run()

elif ticks_diff(scheduled_time, now) < 0:
print("Oops, running late, tell task to run faster!")
task.run(run_faster=true)

Note: Do not pass time() values to ticks_diff(), you should use normal mathematical operations on them.
But note that time() may (and will) also overflow. This is known as https://en.wikipedia.org/wiki/Year_2038_
problem .

time.time()
Returns the number of seconds, as an integer, since the Epoch, assuming that underlying RTC is set and maintained
as described above. If an RTC is not set, this function returns number of seconds since a port-specific reference
point in time (for embedded boards without a battery-backed RTC, usually since power up or reset). If you want to
develop portable MicroPython application, you should not rely on this function to provide higher than second pre-
cision. If you need higher precision, absolute timestamps, use time_ns(). If relative times are acceptable then
use the ticks_ms() and ticks_us() functions. If you need calendar time, gmtime() or localtime()
without an argument is a better choice.

Difference to CPython
In CPython, this function returns number of seconds since Unix epoch, 1970-01-01 00:00 UTC, as a floating-point,
usually havingmicrosecond precision. WithMicroPython, onlyUnix port uses the same Epoch, and if floating-point
precision allows, returns sub-second precision. Embedded hardware usually doesn’t have floating-point precision
to represent both long time ranges and subsecond precision, so they use integer value with second precision. Some
embedded hardware also lacks battery-powered RTC, so returns number of seconds since last power-up or from
other relative, hardware-specific point (e.g. reset).

1.1. Python standard libraries and micro-libraries 37

https://en.wikipedia.org/wiki/Year_2038_problem
https://en.wikipedia.org/wiki/Year_2038_problem

MicroPython Documentation, Release v1.20.0

time.time_ns()
Similar to time() but returns nanoseconds since the Epoch, as an integer (usually a big integer, so will allocate
on the heap).

1.1.22 uasyncio— asynchronous I/O scheduler

This module implements a subset of the corresponding CPython module, as described below. For more information, refer
to the original CPython documentation: asyncio
Example:

import uasyncio

async def blink(led, period_ms):
while True:

led.on()
await uasyncio.sleep_ms(5)
led.off()
await uasyncio.sleep_ms(period_ms)

async def main(led1, led2):
uasyncio.create_task(blink(led1, 700))
uasyncio.create_task(blink(led2, 400))
await uasyncio.sleep_ms(10_000)

Running on a pyboard
from pyb import LED
uasyncio.run(main(LED(1), LED(2)))

Running on a generic board
from machine import Pin
uasyncio.run(main(Pin(1), Pin(2)))

Core functions

uasyncio.create_task(coro)
Create a new task from the given coroutine and schedule it to run.
Returns the corresponding Task object.

uasyncio.current_task()
Return the Task object associated with the currently running task.

uasyncio.run(coro)
Create a new task from the given coroutine and run it until it completes.
Returns the value returned by coro.

uasyncio.sleep(t)
Sleep for t seconds (can be a float).
This is a coroutine.

uasyncio.sleep_ms(t)
Sleep for t milliseconds.
This is a coroutine, and a MicroPython extension.

38 Chapter 1. MicroPython libraries

https://docs.python.org/3.8/library/asyncio.html

MicroPython Documentation, Release v1.20.0

Additional functions

uasyncio.wait_for(awaitable, timeout)
Wait for the awaitable to complete, but cancel it if it takes longer than timeout seconds. If awaitable is not a task
then a task will be created from it.
If a timeout occurs, it cancels the task and raises uasyncio.TimeoutError: this should be trapped by the
caller. The task receives uasyncio.CancelledError which may be ignored or trapped using try...
except or try...finally to run cleanup code.
Returns the return value of awaitable.
This is a coroutine.

uasyncio.wait_for_ms(awaitable, timeout)
Similar to wait_for but timeout is an integer in milliseconds.
This is a coroutine, and a MicroPython extension.

uasyncio.gather(*awaitables, return_exceptions=False)
Run all awaitables concurrently. Any awaitables that are not tasks are promoted to tasks.
Returns a list of return values of all awaitables.
This is a coroutine.

class Task

class uasyncio.Task
This object wraps a coroutine into a running task. Tasks can be waited on using await task, which will wait
for the task to complete and return the return value of the task.
Tasks should not be created directly, rather use create_task to create them.

Task.cancel()
Cancel the task by injectinguasyncio.CancelledError into it. The taskmay ignore this exception. Cleanup
code may be run by trapping it, or via try ... finally.

class Event

class uasyncio.Event
Create a new event which can be used to synchronise tasks. Events start in the cleared state.

Event.is_set()
Returns True if the event is set, False otherwise.

Event.set()
Set the event. Any tasks waiting on the event will be scheduled to run.
Note: This must be called from within a task. It is not safe to call this from an IRQ, scheduler callback, or other
thread. See ThreadSafeFlag.

Event.clear()
Clear the event.

Event.wait()
Wait for the event to be set. If the event is already set then it returns immediately.
This is a coroutine.

1.1. Python standard libraries and micro-libraries 39

MicroPython Documentation, Release v1.20.0

class ThreadSafeFlag

class uasyncio.ThreadSafeFlag
Create a new flag which can be used to synchronise a task with code running outside the uasyncio loop, such as
other threads, IRQs, or scheduler callbacks. Flags start in the cleared state. The class does not currently work under
the Unix build of MicroPython.

ThreadSafeFlag.set()
Set the flag. If there is a task waiting on the flag, it will be scheduled to run.

ThreadSafeFlag.clear()
Clear the flag. This may be used to ensure that a possibly previously-set flag is clear before waiting for it.

ThreadSafeFlag.wait()
Wait for the flag to be set. If the flag is already set then it returns immediately. The flag is automatically reset upon
return from wait.
A flag may only be waited on by a single task at a time.
This is a coroutine.

class Lock

class uasyncio.Lock
Create a new lock which can be used to coordinate tasks. Locks start in the unlocked state.
In addition to the methods below, locks can be used in an async with statement.

Lock.locked()
Returns True if the lock is locked, otherwise False.

Lock.acquire()
Wait for the lock to be in the unlocked state and then lock it in an atomic way. Only one task can acquire the lock
at any one time.
This is a coroutine.

Lock.release()
Release the lock. If any tasks are waiting on the lock then the next one in the queue is scheduled to run and the
lock remains locked. Otherwise, no tasks are waiting an the lock becomes unlocked.

TCP stream connections

uasyncio.open_connection(host, port)
Open a TCP connection to the given host and port. The host address will be resolved using socket.
getaddrinfo, which is currently a blocking call.
Returns a pair of streams: a reader and a writer stream. Will raise a socket-specific OSError if the host could
not be resolved or if the connection could not be made.
This is a coroutine.

uasyncio.start_server(callback, host, port, backlog=5)
Start a TCP server on the given host and port. The callback will be called with incoming, accepted connections,
and be passed 2 arguments: reader and writer streams for the connection.
Returns a Server object.
This is a coroutine.

40 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

class uasyncio.Stream
This represents a TCP stream connection. To minimise code this class implements both a reader and a writer, and
both StreamReader and StreamWriter alias to this class.

Stream.get_extra_info(v)
Get extra information about the stream, given by v. The valid values for v are: peername.

Stream.close()
Close the stream.

Stream.wait_closed()
Wait for the stream to close.
This is a coroutine.

Stream.read(n=- 1)
Read up to n bytes and return them. If n is not provided or -1 then read all bytes until EOF. The returned value
will be an empty bytes object if EOF is encountered before any bytes are read.
This is a coroutine.

Stream.readinto(buf)
Read up to n bytes into buf with n being equal to the length of buf.
Return the number of bytes read into buf.
This is a coroutine, and a MicroPython extension.

Stream.readexactly(n)
Read exactly n bytes and return them as a bytes object.
Raises an EOFError exception if the stream ends before reading n bytes.
This is a coroutine.

Stream.readline()
Read a line and return it.
This is a coroutine.

Stream.write(buf)
Accumulated buf to the output buffer. The data is only flushedwhenStream.drain is called. It is recommended
to call Stream.drain immediately after calling this function.

Stream.drain()
Drain (write) all buffered output data out to the stream.
This is a coroutine.

class uasyncio.Server
This represents the server class returned from start_server. It can be used in an async with statement to
close the server upon exit.

Server.close()
Close the server.

Server.wait_closed()
Wait for the server to close.
This is a coroutine.

1.1. Python standard libraries and micro-libraries 41

MicroPython Documentation, Release v1.20.0

Event Loop

uasyncio.get_event_loop()
Return the event loop used to schedule and run tasks. See Loop.

uasyncio.new_event_loop()
Reset the event loop and return it.
Note: since MicroPython only has a single event loop this function just resets the loop’s state, it does not create a
new one.

class uasyncio.Loop
This represents the object which schedules and runs tasks. It cannot be created, use get_event_loop instead.

Loop.create_task(coro)
Create a task from the given coro and return the new Task object.

Loop.run_forever()
Run the event loop until stop() is called.

Loop.run_until_complete(awaitable)
Run the given awaitable until it completes. If awaitable is not a task then it will be promoted to one.

Loop.stop()
Stop the event loop.

Loop.close()
Close the event loop.

Loop.set_exception_handler(handler)
Set the exception handler to call when a Task raises an exception that is not caught. The handler should accept two
arguments: (loop, context).

Loop.get_exception_handler()
Get the current exception handler. Returns the handler, or None if no custom handler is set.

Loop.default_exception_handler(context)
The default exception handler that is called.

Loop.call_exception_handler(context)
Call the current exception handler. The argument context is passed through and is a dictionary containing keys:
'message', 'exception', 'future'.

1.1.23 zlib – zlib decompression

This module implements a subset of the corresponding CPython module, as described below. For more information, refer
to the original CPython documentation: zlib.
This module allows to decompress binary data compressed with DEFLATE algorithm (commonly used in zlib library and
gzip archiver). Compression is not yet implemented.

42 Chapter 1. MicroPython libraries

https://docs.python.org/3.5/library/zlib.html#module-zlib
https://en.wikipedia.org/wiki/DEFLATE

MicroPython Documentation, Release v1.20.0

Functions

zlib.decompress(data, wbits=0, bufsize=0, /)
Return decompressed data as bytes. wbits is DEFLATE dictionary window size used during compression (8-15,
the dictionary size is power of 2 of that value). Additionally, if value is positive, data is assumed to be zlib stream
(with zlib header). Otherwise, if it’s negative, it’s assumed to be raw DEFLATE stream. bufsize parameter is for
compatibility with CPython and is ignored.

class zlib.DecompIO(stream, wbits=0, /)
Create a stream wrapper which allows transparent decompression of compressed data in another stream. This
allows to process compressed streams with data larger than available heap size. In addition to values described in
decompress(), wbits may take values 24..31 (16 + 8..15), meaning that input stream has gzip header.

Difference to CPython
This class isMicroPython extension. It’s included on provisional basis andmay be changed considerably or removed
in later versions.

1.1.24 _thread – multithreading support

This module implements a subset of the corresponding CPython module, as described below. For more information, refer
to the original CPython documentation: _thread.
This module implements multithreading support.
This module is highly experimental and its API is not yet fully settled and not yet described in this documentation.

1.2 MicroPython-specific libraries

Functionality specific to the MicroPython implementation is available in the following libraries.

1.2.1 bluetooth— low-level Bluetooth

This module provides an interface to a Bluetooth controller on a board. Currently this supports Bluetooth Low Energy
(BLE) in Central, Peripheral, Broadcaster, andObserver roles, as well as GATTServer andClient and L2CAP connection-
oriented-channels. A device may operate in multiple roles concurrently. Pairing (and bonding) is supported on some ports.
This API is intended to match the low-level Bluetooth protocol and provide building-blocks for higher-level abstractions
such as specific device types.

Note: For most applications, we recommend using the higher-level aioble library.

Note: This module is still under development and its classes, functions, methods and constants are subject to change.

1.2. MicroPython-specific libraries 43

https://docs.python.org/3.5/library/_thread.html#module-_thread
https://github.com/micropython/micropython-lib/tree/master/micropython/bluetooth/aioble

MicroPython Documentation, Release v1.20.0

class BLE

Constructor

class bluetooth.BLE
Returns the singleton BLE object.

Configuration

BLE.active([active], /)
Optionally changes the active state of the BLE radio, and returns the current state.
The radio must be made active before using any other methods on this class.

BLE.config('param', /)
BLE.config(*, param=value, ...)

Get or set configuration values of the BLE interface. To get a value the parameter name should be quoted as a string,
and just one parameter is queried at a time. To set values use the keyword syntax, and one ore more parameter can
be set at a time.
Currently supported values are:

• 'mac': The current address in use, depending on the current address mode. This returns a tuple of
(addr_type, addr).
See gatts_write for details about address type.
This may only be queried while the interface is currently active.

• 'addr_mode': Sets the address mode. Values can be:
– 0x00 - PUBLIC - Use the controller’s public address.
– 0x01 - RANDOM - Use a generated static address.
– 0x02 - RPA - Use resolvable private addresses.
– 0x03 - NRPA - Use non-resolvable private addresses.

By default the interface mode will use a PUBLIC address if available, otherwise it will use a RANDOM
address.

• 'gap_name': Get/set the GAP device name used by service 0x1800, characteristic 0x2a00. This can be
set at any time and changed multiple times.

• 'rxbuf': Get/set the size in bytes of the internal buffer used to store incoming events. This buffer is global
to the entire BLE driver and so handles incoming data for all events, including all characteristics. Increasing
this allows better handling of bursty incoming data (for example scan results) and the ability to receive larger
characteristic values.

• 'mtu': Get/set the MTU that will be used during a ATT MTU exchange. The resulting MTU will be the
minimum of this and the remote device’s MTU. ATT MTU exchange will not happen automatically (unless
the remote device initiates it), and must be manually initiated with gattc_exchange_mtu. Use the
_IRQ_MTU_EXCHANGED event to discover the MTU for a given connection.

• 'bond': Sets whether bonding will be enabled during pairing. When enabled, pairing requests will set the
“bond” flag and the keys will be stored by both devices.

• 'mitm': Sets whether MITM-protection is required for pairing.

44 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

• 'io': Sets the I/O capabilities of this device.
Available options are:

_IO_CAPABILITY_DISPLAY_ONLY = const(0)
_IO_CAPABILITY_DISPLAY_YESNO = const(1)
_IO_CAPABILITY_KEYBOARD_ONLY = const(2)
_IO_CAPABILITY_NO_INPUT_OUTPUT = const(3)
_IO_CAPABILITY_KEYBOARD_DISPLAY = const(4)

• 'le_secure': Sets whether “LE Secure” pairing is required. Default is false (i.e. allow “Legacy Pairing”).

Event Handling

BLE.irq(handler, /)
Registers a callback for events from the BLE stack. The handler takes two arguments, event (which will be one
of the codes below) and data (which is an event-specific tuple of values).
Note: As an optimisation to prevent unnecessary allocations, the addr, adv_data, char_data, no-
tify_data, and uuid entries in the tuples are read-only memoryview instances pointing to bluetooth’s
internal ringbuffer, and are only valid during the invocation of the IRQ handler function. If your program needs to
save one of these values to access after the IRQ handler has returned (e.g. by saving it in a class instance or global
variable), then it needs to take a copy of the data, either by using bytes() or bluetooth.UUID(), like this:

connected_addr = bytes(addr) # equivalently: adv_data, char_data, or notify_data
matched_uuid = bluetooth.UUID(uuid)

For example, the IRQ handler for a scan result might inspect the adv_data to decide if it’s the correct device,
and only then copy the address data to be used elsewhere in the program. And to print data from within the IRQ
handler, print(bytes(addr)) will be needed.
An event handler showing all possible events:

def bt_irq(event, data):
if event == _IRQ_CENTRAL_CONNECT:

A central has connected to this peripheral.
conn_handle, addr_type, addr = data

elif event == _IRQ_CENTRAL_DISCONNECT:
A central has disconnected from this peripheral.
conn_handle, addr_type, addr = data

elif event == _IRQ_GATTS_WRITE:
A client has written to this characteristic or descriptor.
conn_handle, attr_handle = data

elif event == _IRQ_GATTS_READ_REQUEST:
A client has issued a read. Note: this is only supported on STM32.
Return a non-zero integer to deny the read (see below), or zero (or␣

↪→None)
to accept the read.
conn_handle, attr_handle = data

elif event == _IRQ_SCAN_RESULT:
A single scan result.
addr_type, addr, adv_type, rssi, adv_data = data

elif event == _IRQ_SCAN_DONE:
Scan duration finished or manually stopped.
pass

elif event == _IRQ_PERIPHERAL_CONNECT:
A successful gap_connect().

(continues on next page)

1.2. MicroPython-specific libraries 45

MicroPython Documentation, Release v1.20.0

(continued from previous page)
conn_handle, addr_type, addr = data

elif event == _IRQ_PERIPHERAL_DISCONNECT:
Connected peripheral has disconnected.
conn_handle, addr_type, addr = data

elif event == _IRQ_GATTC_SERVICE_RESULT:
Called for each service found by gattc_discover_services().
conn_handle, start_handle, end_handle, uuid = data

elif event == _IRQ_GATTC_SERVICE_DONE:
Called once service discovery is complete.
Note: Status will be zero on success, implementation-specific value␣

↪→otherwise.
conn_handle, status = data

elif event == _IRQ_GATTC_CHARACTERISTIC_RESULT:
Called for each characteristic found by gattc_discover_services().
conn_handle, end_handle, value_handle, properties, uuid = data

elif event == _IRQ_GATTC_CHARACTERISTIC_DONE:
Called once service discovery is complete.
Note: Status will be zero on success, implementation-specific value␣

↪→otherwise.
conn_handle, status = data

elif event == _IRQ_GATTC_DESCRIPTOR_RESULT:
Called for each descriptor found by gattc_discover_descriptors().
conn_handle, dsc_handle, uuid = data

elif event == _IRQ_GATTC_DESCRIPTOR_DONE:
Called once service discovery is complete.
Note: Status will be zero on success, implementation-specific value␣

↪→otherwise.
conn_handle, status = data

elif event == _IRQ_GATTC_READ_RESULT:
A gattc_read() has completed.
conn_handle, value_handle, char_data = data

elif event == _IRQ_GATTC_READ_DONE:
A gattc_read() has completed.
Note: Status will be zero on success, implementation-specific value␣

↪→otherwise.
conn_handle, value_handle, status = data

elif event == _IRQ_GATTC_WRITE_DONE:
A gattc_write() has completed.
Note: Status will be zero on success, implementation-specific value␣

↪→otherwise.
conn_handle, value_handle, status = data

elif event == _IRQ_GATTC_NOTIFY:
A server has sent a notify request.
conn_handle, value_handle, notify_data = data

elif event == _IRQ_GATTC_INDICATE:
A server has sent an indicate request.
conn_handle, value_handle, notify_data = data

elif event == _IRQ_GATTS_INDICATE_DONE:
A client has acknowledged the indication.
Note: Status will be zero on successful acknowledgment, implementation-

↪→specific value otherwise.
conn_handle, value_handle, status = data

elif event == _IRQ_MTU_EXCHANGED:
ATT MTU exchange complete (either initiated by us or the remote device).
conn_handle, mtu = data

elif event == _IRQ_L2CAP_ACCEPT:
A new channel has been accepted.

(continues on next page)

46 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

(continued from previous page)
Return a non-zero integer to reject the connection, or zero (or None)␣

↪→to accept.
conn_handle, cid, psm, our_mtu, peer_mtu = data

elif event == _IRQ_L2CAP_CONNECT:
A new channel is now connected (either as a result of connecting or␣

↪→accepting).
conn_handle, cid, psm, our_mtu, peer_mtu = data

elif event == _IRQ_L2CAP_DISCONNECT:
Existing channel has disconnected (status is zero), or a connection␣

↪→attempt failed (non-zero status).
conn_handle, cid, psm, status = data

elif event == _IRQ_L2CAP_RECV:
New data is available on the channel. Use l2cap_recvinto to read.
conn_handle, cid = data

elif event == _IRQ_L2CAP_SEND_READY:
A previous l2cap_send that returned False has now completed and the␣

↪→channel is ready to send again.
If status is non-zero, then the transmit buffer overflowed and the␣

↪→application should re-send the data.
conn_handle, cid, status = data

elif event == _IRQ_CONNECTION_UPDATE:
The remote device has updated connection parameters.
conn_handle, conn_interval, conn_latency, supervision_timeout, status =␣

↪→data
elif event == _IRQ_ENCRYPTION_UPDATE:

The encryption state has changed (likely as a result of pairing or␣
↪→bonding).

conn_handle, encrypted, authenticated, bonded, key_size = data
elif event == _IRQ_GET_SECRET:

Return a stored secret.
If key is None, return the index'th value of this sec_type.
Otherwise return the corresponding value for this sec_type and key.
sec_type, index, key = data
return value

elif event == _IRQ_SET_SECRET:
Save a secret to the store for this sec_type and key.
sec_type, key, value = data
return True

elif event == _IRQ_PASSKEY_ACTION:
Respond to a passkey request during pairing.
See gap_passkey() for details.
action will be an action that is compatible with the configured "io"␣

↪→config.
passkey will be non-zero if action is "numeric comparison".
conn_handle, action, passkey = data

The event codes are:

from micropython import const
_IRQ_CENTRAL_CONNECT = const(1)
_IRQ_CENTRAL_DISCONNECT = const(2)
_IRQ_GATTS_WRITE = const(3)
_IRQ_GATTS_READ_REQUEST = const(4)
_IRQ_SCAN_RESULT = const(5)
_IRQ_SCAN_DONE = const(6)
_IRQ_PERIPHERAL_CONNECT = const(7)
_IRQ_PERIPHERAL_DISCONNECT = const(8)

(continues on next page)

1.2. MicroPython-specific libraries 47

MicroPython Documentation, Release v1.20.0

(continued from previous page)
_IRQ_GATTC_SERVICE_RESULT = const(9)
_IRQ_GATTC_SERVICE_DONE = const(10)
_IRQ_GATTC_CHARACTERISTIC_RESULT = const(11)
_IRQ_GATTC_CHARACTERISTIC_DONE = const(12)
_IRQ_GATTC_DESCRIPTOR_RESULT = const(13)
_IRQ_GATTC_DESCRIPTOR_DONE = const(14)
_IRQ_GATTC_READ_RESULT = const(15)
_IRQ_GATTC_READ_DONE = const(16)
_IRQ_GATTC_WRITE_DONE = const(17)
_IRQ_GATTC_NOTIFY = const(18)
_IRQ_GATTC_INDICATE = const(19)
_IRQ_GATTS_INDICATE_DONE = const(20)
_IRQ_MTU_EXCHANGED = const(21)
_IRQ_L2CAP_ACCEPT = const(22)
_IRQ_L2CAP_CONNECT = const(23)
_IRQ_L2CAP_DISCONNECT = const(24)
_IRQ_L2CAP_RECV = const(25)
_IRQ_L2CAP_SEND_READY = const(26)
_IRQ_CONNECTION_UPDATE = const(27)
_IRQ_ENCRYPTION_UPDATE = const(28)
_IRQ_GET_SECRET = const(29)
_IRQ_SET_SECRET = const(30)

For the _IRQ_GATTS_READ_REQUEST event, the available return codes are:

_GATTS_NO_ERROR = const(0x00)
_GATTS_ERROR_READ_NOT_PERMITTED = const(0x02)
_GATTS_ERROR_WRITE_NOT_PERMITTED = const(0x03)
_GATTS_ERROR_INSUFFICIENT_AUTHENTICATION = const(0x05)
_GATTS_ERROR_INSUFFICIENT_AUTHORIZATION = const(0x08)
_GATTS_ERROR_INSUFFICIENT_ENCRYPTION = const(0x0f)

For the _IRQ_PASSKEY_ACTION event, the available actions are:

_PASSKEY_ACTION_NONE = const(0)
_PASSKEY_ACTION_INPUT = const(2)
_PASSKEY_ACTION_DISPLAY = const(3)
_PASSKEY_ACTION_NUMERIC_COMPARISON = const(4)

In order to save space in the firmware, these constants are not included on the bluetooth module. Add the ones that
you need from the list above to your program.

Broadcaster Role (Advertiser)

BLE.gap_advertise(interval_us, adv_data=None, *, resp_data=None, connectable=True)
Starts advertising at the specified interval (in microseconds). This interval will be rounded down to the nearest
625us. To stop advertising, set interval_us to None.
adv_data and resp_data can be any type that implements the buffer protocol (e.g. bytes, bytearray, str).
adv_data is included in all broadcasts, and resp_data is send in reply to an active scan.
Note: if adv_data (or resp_data) is None, then the data passed to the previous call to gap_advertise will
be re-used. This allows a broadcaster to resume advertising with just gap_advertise(interval_us). To
clear the advertising payload pass an empty bytes, i.e. b''.

48 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

Observer Role (Scanner)

BLE.gap_scan(duration_ms, interval_us=1280000, window_us=11250, active=False, /)
Run a scan operation lasting for the specified duration (in milliseconds).
To scan indefinitely, set duration_ms to 0.
To stop scanning, set duration_ms to None.
Use interval_us and window_us to optionally configure the duty cycle. The scanner will run for window_us mi-
croseconds every interval_us microseconds for a total of duration_ms milliseconds. The default interval and win-
dow are 1.28 seconds and 11.25 milliseconds respectively (background scanning).
For each scan result the _IRQ_SCAN_RESULT event will be raised, with event data (addr_type, addr,
adv_type, rssi, adv_data).
addr_type values indicate public or random addresses:

• 0x00 - PUBLIC
• 0x01 - RANDOM (either static, RPA, or NRPA, the type is encoded in the address itself)

adv_type values correspond to the Bluetooth Specification:
• 0x00 - ADV_IND - connectable and scannable undirected advertising
• 0x01 - ADV_DIRECT_IND - connectable directed advertising
• 0x02 - ADV_SCAN_IND - scannable undirected advertising
• 0x03 - ADV_NONCONN_IND - non-connectable undirected advertising
• 0x04 - SCAN_RSP - scan response

active can be set True if you want to receive scan responses in the results.
When scanning is stopped (either due to the duration finishing or when explicitly stopped), the_IRQ_SCAN_DONE
event will be raised.

Central Role

A central device can connect to peripherals that it has discovered using the observer role (see gap_scan) or with a
known address.
BLE.gap_connect(addr_type, addr, scan_duration_ms=2000, min_conn_interval_us=None,

max_conn_interval_us=None, /)
Connect to a peripheral.
See gap_scan for details about address types.
To cancel an outstanding connection attempt early, call gap_connect(None).
On success, the _IRQ_PERIPHERAL_CONNECT event will be raised. If cancelling a connection attempt, the
_IRQ_PERIPHERAL_DISCONNECT event will be raised.
The device will wait up to scan_duration_ms to receive an advertising payload from the device.
The connection interval can be configured in microseconds using either or both of min_conn_interval_us and
max_conn_interval_us. Otherwise a default interval will be chosen, typically between 30000 and 50000 microsec-
onds. A shorter interval will increase throughput, at the expense of power usage.

1.2. MicroPython-specific libraries 49

MicroPython Documentation, Release v1.20.0

Peripheral Role

A peripheral device is expected to send connectable advertisements (see gap_advertise). It will usually be acting as
a GATT server, having first registered services and characteristics using gatts_register_services.
When a central connects, the _IRQ_CENTRAL_CONNECT event will be raised.

Central & Peripheral Roles

BLE.gap_disconnect(conn_handle, /)
Disconnect the specified connection handle. This can either be a central that has connected to this device (if acting
as a peripheral) or a peripheral that was previously connected to by this device (if acting as a central).
On success, the_IRQ_PERIPHERAL_DISCONNECT or_IRQ_CENTRAL_DISCONNECT event will be raised.
Returns False if the connection handle wasn’t connected, and True otherwise.

GATT Server

A GATT server has a set of registered services. Each service may contain characteristics, which each have a value.
Characteristics can also contain descriptors, which themselves have values.
These values are stored locally, and are accessed by their “value handle” which is generated during service registration.
They can also be read from or written to by a remote client device. Additionally, a server can “notify” a characteristic to
a connected client via a connection handle.
A device in either central or peripheral roles may function as a GATT server, however in most cases it will be more
common for a peripheral device to act as the server.
Characteristics and descriptors have a default maximum size of 20 bytes. Anything written to them by a client will be
truncated to this length. However, any local write will increase the maximum size, so if you want to allow larger writes
from a client to a given characteristic, use gatts_write after registration. e.g. gatts_write(char_handle,
bytes(100)).
BLE.gatts_register_services(services_definition, /)

Configures the server with the specified services, replacing any existing services.
services_definition is a list of services, where each service is a two-element tuple containing a UUID and a list of
characteristics.
Each characteristic is a two-or-three-element tuple containing a UUID, a flags value, and optionally a list of
descriptors.
Each descriptor is a two-element tuple containing a UUID and a flags value.
The flags are a bitwise-OR combination of the flags defined below. These set both the behaviour of the characteristic
(or descriptor) as well as the security and privacy requirements.
The return value is a list (one element per service) of tuples (each element is a value handle). Characteristics and
descriptor handles are flattened into the same tuple, in the order that they are defined.
The following example registers two services (Heart Rate, and Nordic UART):

HR_UUID = bluetooth.UUID(0x180D)
HR_CHAR = (bluetooth.UUID(0x2A37), bluetooth.FLAG_READ | bluetooth.FLAG_NOTIFY,)
HR_SERVICE = (HR_UUID, (HR_CHAR,),)
UART_UUID = bluetooth.UUID('6E400001-B5A3-F393-E0A9-E50E24DCCA9E')
UART_TX = (bluetooth.UUID('6E400003-B5A3-F393-E0A9-E50E24DCCA9E'), bluetooth.FLAG_
↪→READ | bluetooth.FLAG_NOTIFY,)

(continues on next page)

50 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

(continued from previous page)
UART_RX = (bluetooth.UUID('6E400002-B5A3-F393-E0A9-E50E24DCCA9E'), bluetooth.FLAG_
↪→WRITE,)
UART_SERVICE = (UART_UUID, (UART_TX, UART_RX,),)
SERVICES = (HR_SERVICE, UART_SERVICE,)
((hr,), (tx, rx,),) = bt.gatts_register_services(SERVICES)

The three value handles (hr, tx, rx) can be used with gatts_read, gatts_write, gatts_notify, and
gatts_indicate.
Note: Advertising must be stopped before registering services.
Available flags for characteristics and descriptors are:

from micropython import const
_FLAG_BROADCAST = const(0x0001)
_FLAG_READ = const(0x0002)
_FLAG_WRITE_NO_RESPONSE = const(0x0004)
_FLAG_WRITE = const(0x0008)
_FLAG_NOTIFY = const(0x0010)
_FLAG_INDICATE = const(0x0020)
_FLAG_AUTHENTICATED_SIGNED_WRITE = const(0x0040)

_FLAG_AUX_WRITE = const(0x0100)
_FLAG_READ_ENCRYPTED = const(0x0200)
_FLAG_READ_AUTHENTICATED = const(0x0400)
_FLAG_READ_AUTHORIZED = const(0x0800)
_FLAG_WRITE_ENCRYPTED = const(0x1000)
_FLAG_WRITE_AUTHENTICATED = const(0x2000)
_FLAG_WRITE_AUTHORIZED = const(0x4000)

As for the IRQs above, any required constants should be added to your Python code.
BLE.gatts_read(value_handle, /)

Reads the local value for this handle (which has either been written by gatts_write or by a remote client).
BLE.gatts_write(value_handle, data, send_update=False, /)

Writes the local value for this handle, which can be read by a client.
If send_update is True, then any subscribed clients will be notified (or indicated, depending on what they’re
subscribed to and which operations the characteristic supports) about this write.

BLE.gatts_notify(conn_handle, value_handle, data=None, /)
Sends a notification request to a connected client.
If data is None (the default), then the current local value (as set with gatts_write) will be sent.
Otherwise, if data is not None, then that value is sent to the client as part of the notification. The local value will
not be modified.
Note: The notification will be sent regardless of the subscription status of the client to this characteristic.

BLE.gatts_indicate(conn_handle, value_handle, data=None, /)
Sends a indication request to a connected client.
If data is None (the default), then the current local value (as set with gatts_write) will be sent.
Otherwise, if data is not None, then that value is sent to the client as part of the indication. The local value will
not be modified.
On acknowledgment (or failure, e.g. timeout), the _IRQ_GATTS_INDICATE_DONE event will be raised.
Note: The indication will be sent regardless of the subscription status of the client to this characteristic.

1.2. MicroPython-specific libraries 51

MicroPython Documentation, Release v1.20.0

BLE.gatts_set_buffer(value_handle, len, append=False, /)
Sets the internal buffer size for a value in bytes. This will limit the largest possible write that can be received. The
default is 20.
Setting append to True will make all remote writes append to, rather than replace, the current value. At most
len bytes can be buffered in this way. When you use gatts_read, the value will be cleared after reading. This
feature is useful when implementing something like the Nordic UART Service.

GATT Client

A GATT client can discover and read/write characteristics on a remote GATT server.
It is more common for a central role device to act as the GATT client, however it’s also possible for a peripheral to act as
a client in order to discover information about the central that has connected to it (e.g. to read the device name from the
device information service).
BLE.gattc_discover_services(conn_handle, uuid=None, /)

Query a connected server for its services.
Optionally specify a service uuid to query for that service only.
For each service discovered, the _IRQ_GATTC_SERVICE_RESULT event will be raised, followed by
_IRQ_GATTC_SERVICE_DONE on completion.

BLE.gattc_discover_characteristics(conn_handle, start_handle, end_handle, uuid=None, /)
Query a connected server for characteristics in the specified range.
Optionally specify a characteristic uuid to query for that characteristic only.
You can use start_handle=1, end_handle=0xffff to search for a characteristic in any service.
For each characteristic discovered, the _IRQ_GATTC_CHARACTERISTIC_RESULT event will be raised, fol-
lowed by _IRQ_GATTC_CHARACTERISTIC_DONE on completion.

BLE.gattc_discover_descriptors(conn_handle, start_handle, end_handle, /)
Query a connected server for descriptors in the specified range.
For each descriptor discovered, the _IRQ_GATTC_DESCRIPTOR_RESULT event will be raised, followed by
_IRQ_GATTC_DESCRIPTOR_DONE on completion.

BLE.gattc_read(conn_handle, value_handle, /)
Issue a remote read to a connected server for the specified characteristic or descriptor handle.
When a value is available, the _IRQ_GATTC_READ_RESULT event will be raised. Additionally, the
_IRQ_GATTC_READ_DONE will be raised.

BLE.gattc_write(conn_handle, value_handle, data, mode=0, /)
Issue a remote write to a connected server for the specified characteristic or descriptor handle.
The argument mode specifies the write behaviour, with the currently supported values being:

• mode=0 (default) is a write-without-response: the write will be sent to the remote server but no confirmation
will be returned, and no event will be raised.

• mode=1 is a write-with-response: the remote server is requested to send a response/acknowledgement that
it received the data.

If a response is received from the remote server the _IRQ_GATTC_WRITE_DONE event will be raised.
BLE.gattc_exchange_mtu(conn_handle, /)

Initiate MTU exchange with a connected server, using the preferred MTU set using BLE.
config(mtu=value).

52 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

The _IRQ_MTU_EXCHANGED event will be raised when MTU exchange completes.
Note: MTU exchange is typically initiated by the central. When using the BlueKitchen stack in the central role, it
does not support a remote peripheral initiating the MTU exchange. NimBLE works for both roles.

L2CAP connection-oriented-channels

This feature allows for socket-like data exchange between two BLE devices. Once the devices are connected
via GAP, either device can listen for the other to connect on a numeric PSM (Protocol/Service Multiplexer).
Note: This is currently only supported when using the NimBLE stack on STM32 and Unix (not ESP32).
Only one L2CAP channel may be active at a given time (i.e. you cannot connect while listening).
Active L2CAP channels are identified by the connection handle that they were established on and a CID
(channel ID).
Connection-oriented channels have built-in credit-based flow control. Unlike ATT, where devices negoti-
ate a shared MTU, both the listening and connecting devices each set an independent MTU which limits
the maximum amount of outstanding data that the remote device can send before it is fully consumed in
l2cap_recvinto.

BLE.l2cap_listen(psm, mtu, /)
Start listening for incoming L2CAP channel requests on the specified psm with the local MTU set to mtu.
When a remote device initiates a connection, the _IRQ_L2CAP_ACCEPT event will be raised, which gives the
listening server a chance to reject the incoming connection (by returning a non-zero integer).
Once the connection is accepted, the _IRQ_L2CAP_CONNECT event will be raised, allowing the server to obtain
the channel id (CID) and the local and remote MTU.
Note: It is not currently possible to stop listening.

BLE.l2cap_connect(conn_handle, psm, mtu, /)
Connect to a listening peer on the specified psm with local MTU set to mtu.
On successful connection, the the _IRQ_L2CAP_CONNECT event will be raised, allowing the client to obtain the
CID and the local and remote (peer) MTU.
An unsuccessful connection will raise the _IRQ_L2CAP_DISCONNECT event with a non-zero status.

BLE.l2cap_disconnect(conn_handle, cid, /)
Disconnect an active L2CAP channel with the specified conn_handle and cid.

BLE.l2cap_send(conn_handle, cid, buf, /)
Send the specified buf (which must support the buffer protocol) on the L2CAP channel identified by conn_handle
and cid.
The specified buffer cannot be larger than the remote (peer) MTU, and no more than twice the size of the local
MTU.
This will return False if the channel is now “stalled”, which means that l2cap_send must not be called again
until the _IRQ_L2CAP_SEND_READY event is received (which will happen when the remote device grants more
credits, typically after it has received and processed the data).

BLE.l2cap_recvinto(conn_handle, cid, buf, /)
Receive data from the specified conn_handle and cid into the provided buf (which must support the buffer protocol,
e.g. bytearray or memoryview).
Returns the number of bytes read from the channel.
If buf is None, then returns the number of bytes available.

1.2. MicroPython-specific libraries 53

MicroPython Documentation, Release v1.20.0

Note: After receiving the _IRQ_L2CAP_RECV event, the application should continue calling
l2cap_recvinto until no more bytes are available in the receive buffer (typically up to the size of the
remote (peer) MTU).
Until the receive buffer is empty, the remote device will not be granted more channel credits and will be unable to
send any more data.

Pairing and bonding

Pairing allows a connection to be encrypted and authenticated via exchange of secrets (with optional MITM
protection via passkey authentication).
Bonding is the process of storing those secrets into non-volatile storage. When bonded, a device is able to re-
solve a resolvable private address (RPA) from another device based on the stored identity resolving key (IRK).
To support bonding, an application must implement the _IRQ_GET_SECRET and _IRQ_SET_SECRET
events.
Note: This is currently only supported when using the NimBLE stack on STM32 and Unix (not ESP32).

BLE.gap_pair(conn_handle, /)
Initiate pairing with the remote device.
Before calling this, ensure that theio, mitm, le_secure, andbond configuration options are set (viaconfig).
On successful pairing, the _IRQ_ENCRYPTION_UPDATE event will be raised.

BLE.gap_passkey(conn_handle, action, passkey, /)
Respond to a _IRQ_PASSKEY_ACTION event for the specified conn_handle and action.
The passkey is a numeric value and will depend on on the action (which will depend on what I/O capability has
been set):

• When the action is _PASSKEY_ACTION_INPUT, then the application should prompt the user to enter the
passkey that is shown on the remote device.

• When the action is _PASSKEY_ACTION_DISPLAY, then the application should generate a random 6-digit
passkey and show it to the user.

• When the action is _PASSKEY_ACTION_NUMERIC_COMPARISON, then the application should show the
passkey that was provided in the _IRQ_PASSKEY_ACTION event and then respond with either 0 (cancel
pairing), or 1 (accept pairing).

class UUID

Constructor

class bluetooth.UUID(value, /)
Creates a UUID instance with the specified value.
The value can be either:

• A 16-bit integer. e.g. 0x2908.
• A 128-bit UUID string. e.g. '6E400001-B5A3-F393-E0A9-E50E24DCCA9E'.

54 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

1.2.2 btree – simple BTree database

The btree module implements a simple key-value database using external storage (disk files, or in general case, a
random-access stream). Keys are stored sorted in the database, and besides efficient retrieval by a key value, a database
also supports efficient ordered range scans (retrieval of values with the keys in a given range). On the application interface
side, BTree database work as close a possible to a way standard dict type works, one notable difference is that both keys
and values must be bytes-like objects (so, if you want to store objects of other types, you need to first serialize them to
str or bytes or another type that supports the buffer protocol).
The module is based on the well-known BerkelyDB library, version 1.xx.
Example:

import btree

First, we need to open a stream which holds a database
This is usually a file, but can be in-memory database
using io.BytesIO, a raw flash partition, etc.
Oftentimes, you want to create a database file if it doesn't
exist and open if it exists. Idiom below takes care of this.
DO NOT open database with "a+b" access mode.
try:

f = open("mydb", "r+b")
except OSError:

f = open("mydb", "w+b")

Now open a database itself
db = btree.open(f)

The keys you add will be sorted internally in the database
db[b"3"] = b"three"
db[b"1"] = b"one"
db[b"2"] = b"two"

Assume that any changes are cached in memory unless
explicitly flushed (or database closed). Flush database
at the end of each "transaction".
db.flush()

Prints b'two'
print(db[b"2"])

Iterate over sorted keys in the database, starting from b"2"
until the end of the database, returning only values.
Mind that arguments passed to values() method are *key* values.
Prints:
b'two'
b'three'
for word in db.values(b"2"):

print(word)

del db[b"2"]

No longer true, prints False
print(b"2" in db)

Prints:
b"1"

(continues on next page)

1.2. MicroPython-specific libraries 55

MicroPython Documentation, Release v1.20.0

(continued from previous page)
b"3"
for key in db:

print(key)

db.close()

Don't forget to close the underlying stream!
f.close()

Functions

btree.open(stream, *, flags=0, pagesize=0, cachesize=0, minkeypage=0)
Open a database from a random-access stream (like an open file). All other parameters are optional and keyword-
only, and allow to tweak advanced parameters of the database operation (most users will not need them):

• flags - Currently unused.
• pagesize - Page size used for the nodes in BTree. Acceptable range is 512-65536. If 0, a port-specific default
will be used, optimized for port’s memory usage and/or performance.

• cachesize - Suggested memory cache size in bytes. For a board with enough memory using larger values may
improve performance. Cache policy is as follows: entire cache is not allocated at once; instead, accessing a
new page in database will allocate a memory buffer for it, until value specified by cachesize is reached. Then,
these buffers will be managed using LRU (least recently used) policy. More buffers may still be allocated if
needed (e.g., if a database contains big keys and/or values). Allocated cache buffers aren’t reclaimed.

• minkeypage - Minimum number of keys to store per page. Default value of 0 equivalent to 2.
Returns a BTree object, which implements a dictionary protocol (set of methods), and some additional methods
described below.

Methods

btree.close()
Close the database. It’s mandatory to close the database at the end of processing, as some unwritten data may be
still in the cache. Note that this does not close underlying stream with which the database was opened, it should be
closed separately (which is also mandatory to make sure that data flushed from buffer to the underlying storage).

btree.flush()
Flush any data in cache to the underlying stream.

btree.__getitem__(key)
btree.get(key, default=None, /)
btree.__setitem__(key, val)
btree.__delitem__(key)
btree.__contains__(key)

Standard dictionary methods.
btree.__iter__()

A BTree object can be iterated over directly (similar to a dictionary) to get access to all keys in order.
btree.keys([start_key[, end_key[, flags]]])
btree.values([start_key[, end_key[, flags]]])
btree.items([start_key[, end_key[, flags]]])

These methods are similar to standard dictionary methods, but also can take optional parameters to iterate over
a key sub-range, instead of the entire database. Note that for all 3 methods, start_key and end_key arguments
represent key values. For example, values() method will iterate over values corresponding to they key range
given. None values for start_keymeans “from the first key”, no end_key or its value of None means “until the end of

56 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

database”. By default, range is inclusive of start_key and exclusive of end_key, you can include end_key in iteration
by passing flags of btree.INCL. You can iterate in descending key direction by passing flags of btree.DESC.
The flags values can be ORed together.

Constants

btree.INCL
A flag for keys(), values(), items() methods to specify that scanning should be inclusive of the end key.

btree.DESC
A flag for keys(), values(), items() methods to specify that scanning should be in descending direction
of keys.

1.2.3 cryptolib – cryptographic ciphers

Classes

class cryptolib.aes

classmethod __init__(key, mode[, IV])
Initialize cipher object, suitable for encryption/decryption. Note: after initialization, cipher object can be
use only either for encryption or decryption. Running decrypt() operation after encrypt() or vice versa is not
supported.
Parameters are:
• key is an encryption/decryption key (bytes-like).
• mode is:

– 1 (or cryptolib.MODE_ECB if it exists) for Electronic Code Book (ECB).
– 2 (or cryptolib.MODE_CBC if it exists) for Cipher Block Chaining (CBC).
– 6 (or cryptolib.MODE_CTR if it exists) for Counter mode (CTR).

• IV is an initialization vector for CBC mode.
• For Counter mode, IV is the initial value for the counter.

encrypt(in_buf[, out_buf])
Encrypt in_buf. If no out_buf is given result is returned as a newly allocated bytes object. Otherwise, result
is written into mutable buffer out_buf. in_buf and out_buf can also refer to the same mutable buffer, in which
case data is encrypted in-place.

decrypt(in_buf[, out_buf])
Like encrypt(), but for decryption.

1.2. MicroPython-specific libraries 57

MicroPython Documentation, Release v1.20.0

1.2.4 framebuf— frame buffer manipulation

This module provides a general frame buffer which can be used to create bitmap images, which can then be sent to a
display.

class FrameBuffer

The FrameBuffer class provides a pixel buffer which can be drawn upon with pixels, lines, rectangles, ellipses, polygons,
text and even other FrameBuffers. It is useful when generating output for displays.
For example:

import framebuf

FrameBuffer needs 2 bytes for every RGB565 pixel
fbuf = framebuf.FrameBuffer(bytearray(100 * 10 * 2), 100, 10, framebuf.RGB565)

fbuf.fill(0)
fbuf.text('MicroPython!', 0, 0, 0xffff)
fbuf.hline(0, 9, 96, 0xffff)

Constructors

class framebuf.FrameBuffer(buffer, width, height, format, stride=width, /)
Construct a FrameBuffer object. The parameters are:

• buffer is an object with a buffer protocol which must be large enough to contain every pixel defined by the
width, height and format of the FrameBuffer.

• width is the width of the FrameBuffer in pixels
• height is the height of the FrameBuffer in pixels
• format specifies the type of pixel used in the FrameBuffer; permissible values are listed under Constants
below. These set the number of bits used to encode a color value and the layout of these bits in buffer. Where
a color value c is passed to a method, c is a small integer with an encoding that is dependent on the format of
the FrameBuffer.

• stride is the number of pixels between each horizontal line of pixels in the FrameBuffer. This defaults towidth
but may need adjustments when implementing a FrameBuffer within another larger FrameBuffer or screen.
The buffer size must accommodate an increased step size.

One must specify valid buffer, width, height, format and optionally stride. Invalid buffer size or dimensions may
lead to unexpected errors.

Drawing primitive shapes

The following methods draw shapes onto the FrameBuffer.
FrameBuffer.fill(c)

Fill the entire FrameBuffer with the specified color.
FrameBuffer.pixel(x, y[, c])

If c is not given, get the color value of the specified pixel. If c is given, set the specified pixel to the given color.
FrameBuffer.hline(x, y, w, c)

58 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

FrameBuffer.vline(x, y, h, c)
FrameBuffer.line(x1, y1, x2, y2, c)

Draw a line from a set of coordinates using the given color and a thickness of 1 pixel. The line method draws
the line up to a second set of coordinates whereas the hline and vline methods draw horizontal and vertical
lines respectively up to a given length.

FrameBuffer.rect(x, y, w, h, c[, f])
Draw a rectangle at the given location, size and color.
The optional f parameter can be set to True to fill the rectangle. Otherwise just a one pixel outline is drawn.

FrameBuffer.ellipse(x, y, xr, yr, c[, f, m])
Draw an ellipse at the given location. Radii xr and yr define the geometry; equal values cause a circle to be drawn.
The c parameter defines the color.
The optional f parameter can be set to True to fill the ellipse. Otherwise just a one pixel outline is drawn.
The optional m parameter enables drawing to be restricted to certain quadrants of the ellipse. The LS four bits
determine which quadrants are to be drawn, with bit 0 specifying Q1, b1 Q2, b2 Q3 and b3 Q4. Quadrants are
numbered counterclockwise with Q1 being top right.

FrameBuffer.poly(x, y, coords, c[, f])
Given a list of coordinates, draw an arbitrary (convex or concave) closed polygon at the given x, y location using
the given color.
The coords must be specified as a array of integers, e.g. array('h', [x0, y0, x1, y1, ... xn,
yn]).
The optional f parameter can be set to True to fill the polygon. Otherwise just a one pixel outline is drawn.

Drawing text

FrameBuffer.text(s, x, y[, c])
Write text to the FrameBuffer using the the coordinates as the upper-left corner of the text. The color of the text
can be defined by the optional argument but is otherwise a default value of 1. All characters have dimensions of
8x8 pixels and there is currently no way to change the font.

Other methods

FrameBuffer.scroll(xstep, ystep)
Shift the contents of the FrameBuffer by the given vector. This may leave a footprint of the previous colors in the
FrameBuffer.

FrameBuffer.blit(fbuf, x, y, key=- 1, palette=None)
Draw another FrameBuffer on top of the current one at the given coordinates. If key is specified then it should be a
color integer and the corresponding color will be considered transparent: all pixels with that color value will not be
drawn. (If the palette is specified then the key is compared to the value from palette, not to the value directly from
fbuf.)
The palette argument enables blitting between FrameBuffers with differing formats. Typical usage is to render a
monochrome or grayscale glyph/icon to a color display. The palette is a FrameBuffer instance whose format is that
of the current FrameBuffer. The palette height is one pixel and its pixel width is the number of colors in the source
FrameBuffer. The palette for an N-bit source needs 2**N pixels; the palette for a monochrome source would have
2 pixels representing background and foreground colors. The application assigns a color to each pixel in the palette.
The color of the current pixel will be that of that palette pixel whose x position is the color of the corresponding
source pixel.

1.2. MicroPython-specific libraries 59

MicroPython Documentation, Release v1.20.0

Constants

framebuf.MONO_VLSB
Monochrome (1-bit) color format This defines a mapping where the bits in a byte are vertically mapped with bit 0
being nearest the top of the screen. Consequently each byte occupies 8 vertical pixels. Subsequent bytes appear at
successive horizontal locations until the rightmost edge is reached. Further bytes are rendered at locations starting
at the leftmost edge, 8 pixels lower.

framebuf.MONO_HLSB
Monochrome (1-bit) color format This defines a mapping where the bits in a byte are horizontally mapped. Each
byte occupies 8 horizontal pixels with bit 7 being the leftmost. Subsequent bytes appear at successive horizontal
locations until the rightmost edge is reached. Further bytes are rendered on the next row, one pixel lower.

framebuf.MONO_HMSB
Monochrome (1-bit) color format This defines a mapping where the bits in a byte are horizontally mapped. Each
byte occupies 8 horizontal pixels with bit 0 being the leftmost. Subsequent bytes appear at successive horizontal
locations until the rightmost edge is reached. Further bytes are rendered on the next row, one pixel lower.

framebuf.RGB565
Red Green Blue (16-bit, 5+6+5) color format

framebuf.GS2_HMSB
Grayscale (2-bit) color format

framebuf.GS4_HMSB
Grayscale (4-bit) color format

framebuf.GS8
Grayscale (8-bit) color format

1.2.5 machine— functions related to the hardware

The machine module contains specific functions related to the hardware on a particular board. Most functions in this
module allow to achieve direct and unrestricted access to and control of hardware blocks on a system (like CPU, timers,
buses, etc.). Used incorrectly, this can lead to malfunction, lockups, crashes of your board, and in extreme cases, hardware
damage.
A note of callbacks used by functions and class methods of machinemodule: all these callbacks should be considered as
executing in an interrupt context. This is true for both physical devices with IDs >= 0 and “virtual” devices with negative
IDs like -1 (these “virtual” devices are still thin shims on top of real hardware and real hardware interrupts). SeeWriting
interrupt handlers.

Memory access

The module exposes three objects used for raw memory access.
machine.mem8

Read/write 8 bits of memory.
machine.mem16

Read/write 16 bits of memory.
machine.mem32

Read/write 32 bits of memory.
Use subscript notation [...] to index these objects with the address of interest. Note that the address is the byte address,
regardless of the size of memory being accessed.

60 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

Example use (registers are specific to an stm32 microcontroller):

import machine
from micropython import const

GPIOA = const(0x48000000)
GPIO_BSRR = const(0x18)
GPIO_IDR = const(0x10)

set PA2 high
machine.mem32[GPIOA + GPIO_BSRR] = 1 << 2

read PA3
value = (machine.mem32[GPIOA + GPIO_IDR] >> 3) & 1

Reset related functions

machine.reset()
Resets the device in a manner similar to pushing the external RESET button.

machine.soft_reset()
Performs a soft reset of the interpreter, deleting all Python objects and resetting the Python heap. It tries to retain
the method by which the user is connected to the MicroPython REPL (eg serial, USB, Wifi).

machine.reset_cause()
Get the reset cause. See constants for the possible return values.

machine.bootloader([value])
Reset the device and enter its bootloader. This is typically used to put the device into a state where it can be
programmed with new firmware.
Some ports support passing in an optional value argument which can control which bootloader to enter, what to
pass to it, or other things.

Interrupt related functions

The following functions allow control over interrupts. Some systems require interrupts to operate correctly so disabling
them for long periods may compromise core functionality, for example watchdog timers may trigger unexpectedly. In-
terrupts should only be disabled for a minimum amount of time and then re-enabled to their previous state. For example:

import machine

Disable interrupts
state = machine.disable_irq()

Do a small amount of time-critical work here

Enable interrupts
machine.enable_irq(state)

machine.disable_irq()
Disable interrupt requests. Returns the previous IRQ state which should be considered an opaque value. This
return value should be passed to the enable_irq() function to restore interrupts to their original state, before
disable_irq() was called.

1.2. MicroPython-specific libraries 61

MicroPython Documentation, Release v1.20.0

machine.enable_irq(state)
Re-enable interrupt requests. The state parameter should be the value that was returned from the most recent call
to the disable_irq() function.

Power related functions

machine.freq([hz])
Returns the CPU frequency in hertz.
On some ports this can also be used to set the CPU frequency by passing in hz.

machine.idle()
Gates the clock to the CPU, useful to reduce power consumption at any time during short or long periods. Periph-
erals continue working and execution resumes as soon as any interrupt is triggered (on many ports this includes
system timer interrupt occurring at regular intervals on the order of millisecond).

machine.sleep()

Note: This function is deprecated, use lightsleep() instead with no arguments.

machine.lightsleep([time_ms])
machine.deepsleep([time_ms])

Stops execution in an attempt to enter a low power state.
If time_ms is specified then this will be the maximum time in milliseconds that the sleep will last for. Otherwise
the sleep can last indefinitely.
With or without a timeout, execution may resume at any time if there are events that require processing. Such
events, or wake sources, should be configured before sleeping, like Pin change or RTC timeout.
The precise behaviour and power-saving capabilities of lightsleep and deepsleep is highly dependent on the under-
lying hardware, but the general properties are:

• A lightsleep has full RAM and state retention. Upon wake execution is resumed from the point where the
sleep was requested, with all subsystems operational.

• A deepsleep may not retain RAM or any other state of the system (for example peripherals or network in-
terfaces). Upon wake execution is resumed from the main script, similar to a hard or power-on reset. The
reset_cause() function will return machine.DEEPSLEEP and this can be used to distinguish a deep-
sleep wake from other resets.

machine.wake_reason()
Get the wake reason. See constants for the possible return values.
Availability: ESP32, WiPy.

62 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

Miscellaneous functions

machine.unique_id()
Returns a byte string with a unique identifier of a board/SoC. It will vary from a board/SoC instance to another, if
underlying hardware allows. Length varies by hardware (so use substring of a full value if you expect a short ID).
In some MicroPython ports, ID corresponds to the network MAC address.

machine.time_pulse_us(pin, pulse_level, timeout_us=1000000, /)
Time a pulse on the given pin, and return the duration of the pulse in microseconds. The pulse_level argument
should be 0 to time a low pulse or 1 to time a high pulse.
If the current input value of the pin is different to pulse_level, the function first (*) waits until the pin input becomes
equal to pulse_level, then (**) times the duration that the pin is equal to pulse_level. If the pin is already equal to
pulse_level then timing starts straight away.
The function will return -2 if there was timeout waiting for condition marked (*) above, and -1 if there was timeout
during the main measurement, marked (**) above. The timeout is the same for both cases and given by timeout_us
(which is in microseconds).

machine.bitstream(pin, encoding, timing, data, /)
Transmits data by bit-banging the specified pin. The encoding argument specifies how the bits are encoded, and
timing is an encoding-specific timing specification.
The supported encodings are:

• 0 for “high low” pulse duration modulation. This will transmit 0 and 1 bits as timed pulses, starting with
the most significant bit. The timing must be a four-tuple of nanoseconds in the format (high_time_0,
low_time_0, high_time_1, low_time_1). For example, (400, 850, 800, 450) is the
timing specification for WS2812 RGB LEDs at 800kHz.

The accuracy of the timing varies between ports. On Cortex M0 at 48MHz, it is at best +/- 120ns, however on
faster MCUs (ESP8266, ESP32, STM32, Pyboard), it will be closer to +/-30ns.

Note: For controlling WS2812 / NeoPixel strips, see the neopixel module for a higher-level API.

machine.rng()
Return a 24-bit software generated random number.
Availability: WiPy.

Constants

machine.IDLE
machine.SLEEP
machine.DEEPSLEEP

IRQ wake values.
machine.PWRON_RESET
machine.HARD_RESET
machine.WDT_RESET
machine.DEEPSLEEP_RESET
machine.SOFT_RESET

Reset causes.
machine.WLAN_WAKE
machine.PIN_WAKE

1.2. MicroPython-specific libraries 63

MicroPython Documentation, Release v1.20.0

machine.RTC_WAKE
Wake-up reasons.

Classes

class Pin – control I/O pins

A pin object is used to control I/O pins (also known as GPIO - general-purpose input/output). Pin objects are commonly
associated with a physical pin that can drive an output voltage and read input voltages. The pin class has methods to set
the mode of the pin (IN, OUT, etc) and methods to get and set the digital logic level. For analog control of a pin, see the
ADC class.
A pin object is constructed by using an identifier which unambiguously specifies a certain I/O pin. The allowed forms of
the identifier and the physical pin that the identifier maps to are port-specific. Possibilities for the identifier are an integer,
a string or a tuple with port and pin number.
Usage Model:

from machine import Pin

create an output pin on pin #0
p0 = Pin(0, Pin.OUT)

set the value low then high
p0.value(0)
p0.value(1)

create an input pin on pin #2, with a pull up resistor
p2 = Pin(2, Pin.IN, Pin.PULL_UP)

read and print the pin value
print(p2.value())

reconfigure pin #0 in input mode with a pull down resistor
p0.init(p0.IN, p0.PULL_DOWN)

configure an irq callback
p0.irq(lambda p:print(p))

Constructors

class machine.Pin(id, mode=- 1, pull=- 1, *, value=None, drive=0, alt=- 1)
Access the pin peripheral (GPIO pin) associated with the given id. If additional arguments are given in the
constructor then they are used to initialise the pin. Any settings that are not specified will remain in their previous
state.
The arguments are:

• id is mandatory and can be an arbitrary object. Among possible value types are: int (an internal Pin identi-
fier), str (a Pin name), and tuple (pair of [port, pin]).

• mode specifies the pin mode, which can be one of:
– Pin.IN - Pin is configured for input. If viewed as an output the pin is in high-impedance state.
– Pin.OUT - Pin is configured for (normal) output.

64 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

– Pin.OPEN_DRAIN - Pin is configured for open-drain output. Open-drain output works in the following
way: if the output value is set to 0 the pin is active at a low level; if the output value is 1 the pin is in a
high-impedance state. Not all ports implement this mode, or some might only on certain pins.

– Pin.ALT - Pin is configured to perform an alternative function, which is port specific. For a pin con-
figured in such a way any other Pin methods (except Pin.init()) are not applicable (calling them
will lead to undefined, or a hardware-specific, result). Not all ports implement this mode.

– Pin.ALT_OPEN_DRAIN - The Same as Pin.ALT, but the pin is configured as open-drain. Not all
ports implement this mode.

– Pin.ANALOG - Pin is configured for analog input, see the ADC class.
• pull specifies if the pin has a (weak) pull resistor attached, and can be one of:

– None - No pull up or down resistor.
– Pin.PULL_UP - Pull up resistor enabled.
– Pin.PULL_DOWN - Pull down resistor enabled.

• value is valid only for Pin.OUT and Pin.OPEN_DRAIN modes and specifies initial output pin value if
given, otherwise the state of the pin peripheral remains unchanged.

• drive specifies the output power of the pin and can be one of: Pin.DRIVE_0, Pin.DRIVE_1, etc., in-
creasing in drive strength. The actual current driving capabilities are port dependent. Not all ports implement
this argument.

• alt specifies an alternate function for the pin and the values it can take are port dependent. This argument is
valid only for Pin.ALT and Pin.ALT_OPEN_DRAIN modes. It may be used when a pin supports more
than one alternate function. If only one pin alternate function is supported the this argument is not required.
Not all ports implement this argument.

As specified above, the Pin class allows to set an alternate function for a particular pin, but it does not specify any
further operations on such a pin. Pins configured in alternate-function mode are usually not used as GPIO but are
instead driven by other hardware peripherals. The only operation supported on such a pin is re-initialising, by calling
the constructor or Pin.init() method. If a pin that is configured in alternate-function mode is re-initialised
with Pin.IN, Pin.OUT, or Pin.OPEN_DRAIN, the alternate function will be removed from the pin.

Methods

Pin.init(mode=- 1, pull=- 1, *, value=None, drive=0, alt=- 1)
Re-initialise the pin using the given parameters. Only those arguments that are specified will be set. The rest of
the pin peripheral state will remain unchanged. See the constructor documentation for details of the arguments.
Returns None.

Pin.value([x])
This method allows to set and get the value of the pin, depending on whether the argument x is supplied or not.
If the argument is omitted then this method gets the digital logic level of the pin, returning 0 or 1 corresponding to
low and high voltage signals respectively. The behaviour of this method depends on the mode of the pin:

• Pin.IN - The method returns the actual input value currently present on the pin.
• Pin.OUT - The behaviour and return value of the method is undefined.
• Pin.OPEN_DRAIN - If the pin is in state ‘0’ then the behaviour and return value of the method is undefined.
Otherwise, if the pin is in state ‘1’, the method returns the actual input value currently present on the pin.

1.2. MicroPython-specific libraries 65

MicroPython Documentation, Release v1.20.0

If the argument is supplied then this method sets the digital logic level of the pin. The argument x can be anything
that converts to a boolean. If it converts to True, the pin is set to state ‘1’, otherwise it is set to state ‘0’. The
behaviour of this method depends on the mode of the pin:

• Pin.IN - The value is stored in the output buffer for the pin. The pin state does not change, it remains in the
high-impedance state. The stored value will become active on the pin as soon as it is changed to Pin.OUT
or Pin.OPEN_DRAIN mode.

• Pin.OUT - The output buffer is set to the given value immediately.
• Pin.OPEN_DRAIN - If the value is ‘0’ the pin is set to a low voltage state. Otherwise the pin is set to
high-impedance state.

When setting the value this method returns None.
Pin.__call__([x])

Pin objects are callable. The call method provides a (fast) shortcut to set and get the value of the pin. It is equivalent
to Pin.value([x]). See Pin.value() for more details.

Pin.on()
Set pin to “1” output level.

Pin.off()
Set pin to “0” output level.

Pin.irq(handler=None, trigger=Pin.IRQ_FALLING | Pin.IRQ_RISING, *, priority=1, wake=None, hard=False)
Configure an interrupt handler to be called when the trigger source of the pin is active. If the pin mode is Pin.IN
then the trigger source is the external value on the pin. If the pin mode is Pin.OUT then the trigger source is the
output buffer of the pin. Otherwise, if the pin mode is Pin.OPEN_DRAIN then the trigger source is the output
buffer for state ‘0’ and the external pin value for state ‘1’.
The arguments are:

• handler is an optional function to be called when the interrupt triggers. The handler must take exactly one
argument which is the Pin instance.

• trigger configures the event which can generate an interrupt. Possible values are:
– Pin.IRQ_FALLING interrupt on falling edge.
– Pin.IRQ_RISING interrupt on rising edge.
– Pin.IRQ_LOW_LEVEL interrupt on low level.
– Pin.IRQ_HIGH_LEVEL interrupt on high level.

These values can be OR’ed together to trigger on multiple events.
• priority sets the priority level of the interrupt. The values it can take are port-specific, but higher values
always represent higher priorities.

• wake selects the power mode in which this interrupt can wake up the system. It can be machine.IDLE,
machine.SLEEP or machine.DEEPSLEEP. These values can also be OR’ed together to make a pin
generate interrupts in more than one power mode.

• hard if true a hardware interrupt is used. This reduces the delay between the pin change and the handler
being called. Hard interrupt handlers may not allocate memory; see Writing interrupt handlers. Not all ports
support this argument.

This method returns a callback object.
The following methods are not part of the core Pin API and only implemented on certain ports.
Pin.low()

Set pin to “0” output level.

66 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

Availability: nrf, rp2, stm32 ports.
Pin.high()

Set pin to “1” output level.
Availability: nrf, rp2, stm32 ports.

Pin.mode([mode])
Get or set the pin mode. See the constructor documentation for details of the mode argument.
Availability: cc3200, stm32 ports.

Pin.pull([pull])
Get or set the pin pull state. See the constructor documentation for details of the pull argument.
Availability: cc3200, stm32 ports.

Pin.drive([drive])
Get or set the pin drive strength. See the constructor documentation for details of the drive argument.
Availability: cc3200 port.

Constants

The following constants are used to configure the pin objects. Note that not all constants are available on all ports.
Pin.IN
Pin.OUT
Pin.OPEN_DRAIN
Pin.ALT
Pin.ALT_OPEN_DRAIN
Pin.ANALOG

Selects the pin mode.
Pin.PULL_UP
Pin.PULL_DOWN
Pin.PULL_HOLD

Selects whether there is a pull up/down resistor. Use the value None for no pull.
Pin.DRIVE_0
Pin.DRIVE_1
Pin.DRIVE_2

Selects the pin drive strength. A port may define additional drive constants with increasing number corresponding
to increasing drive strength.

Pin.IRQ_FALLING
Pin.IRQ_RISING
Pin.IRQ_LOW_LEVEL
Pin.IRQ_HIGH_LEVEL

Selects the IRQ trigger type.

1.2. MicroPython-specific libraries 67

MicroPython Documentation, Release v1.20.0

class Signal – control and sense external I/O devices

The Signal class is a simple extension of the Pin class. Unlike Pin, which can be only in “absolute” 0 and 1 states, a
Signal can be in “asserted” (on) or “deasserted” (off) states, while being inverted (active-low) or not. In other words, it
adds logical inversion support to Pin functionality. While this may seem a simple addition, it is exactly what is needed
to support wide array of simple digital devices in a way portable across different boards, which is one of the major
MicroPython goals. Regardless of whether different users have an active-high or active-low LED, a normally open or
normally closed relay - you can develop a single, nicely looking application which works with each of them, and capture
hardware configuration differences in few lines in the config file of your app.
Example:

from machine import Pin, Signal

Suppose you have an active-high LED on pin 0
led1_pin = Pin(0, Pin.OUT)
... and active-low LED on pin 1
led2_pin = Pin(1, Pin.OUT)

Now to light up both of them using Pin class, you'll need to set
them to different values
led1_pin.value(1)
led2_pin.value(0)

Signal class allows to abstract away active-high/active-low
difference
led1 = Signal(led1_pin, invert=False)
led2 = Signal(led2_pin, invert=True)

Now lighting up them looks the same
led1.value(1)
led2.value(1)

Even better:
led1.on()
led2.on()

Following is the guide when Signal vs Pin should be used:
• Use Signal: If you want to control a simple on/off (including software PWM!) devices like LEDs, multi-segment
indicators, relays, buzzers, or read simple binary sensors, like normally open or normally closed buttons, pulled high
or low, Reed switches, moisture/flame detectors, etc. etc. Summing up, if you have a real physical device/sensor
requiring GPIO access, you likely should use a Signal.

• Use Pin: If you implement a higher-level protocol or bus to communicate with more complex devices.
The split between Pin and Signal come from the use cases above and the architecture of MicroPython: Pin offers the
lowest overhead, which may be important when bit-banging protocols. But Signal adds additional flexibility on top of
Pin, at the cost of minor overhead (much smaller than if you implemented active-high vs active-low device differences in
Python manually!). Also, Pin is a low-level object which needs to be implemented for each support board, while Signal
is a high-level object which comes for free once Pin is implemented.
If in doubt, give the Signal a try! Once again, it is offered to save developers from the need to handle unexciting differences
like active-low vs active-high signals, and allow other users to share and enjoy your application, instead of being frustrated
by the fact that it doesn’t work for them simply because their LEDs or relays are wired in a slightly different way.

68 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

Constructors

class machine.Signal(pin_obj, invert=False)
class machine.Signal(pin_arguments..., *, invert=False)

Create a Signal object. There’re two ways to create it:
• By wrapping existing Pin object - universal method which works for any board.
• By passing required Pin parameters directly to Signal constructor, skipping the need to create intermediate
Pin object. Available on many, but not all boards.

The arguments are:
• pin_obj is existing Pin object.
• pin_arguments are the same arguments as can be passed to Pin constructor.
• invert - if True, the signal will be inverted (active low).

Methods

Signal.value([x])
This method allows to set and get the value of the signal, depending on whether the argument x is supplied or not.
If the argument is omitted then this method gets the signal level, 1 meaning signal is asserted (active) and 0 - signal
inactive.
If the argument is supplied then this method sets the signal level. The argument x can be anything that converts to
a boolean. If it converts to True, the signal is active, otherwise it is inactive.
Correspondence between signal being active and actual logic level on the underlying pin depends on whether signal
is inverted (active-low) or not. For non-inverted signal, active status corresponds to logical 1, inactive - to logical
0. For inverted/active-low signal, active status corresponds to logical 0, while inactive - to logical 1.

Signal.on()
Activate signal.

Signal.off()
Deactivate signal.

class ADC – analog to digital conversion

The ADC class provides an interface to analog-to-digital convertors, and represents a single endpoint that can sample a
continuous voltage and convert it to a discretised value.
For extra control over ADC sampling see machine.ADCBlock.
Example usage:

from machine import ADC

adc = ADC(pin) # create an ADC object acting on a pin
val = adc.read_u16() # read a raw analog value in the range 0-65535
val = adc.read_uv() # read an analog value in microvolts

1.2. MicroPython-specific libraries 69

MicroPython Documentation, Release v1.20.0

Constructors

class machine.ADC(id, *, sample_ns, atten)
Access the ADC associated with a source identified by id. This id may be an integer (usually specifying a channel
number), a Pin object, or other value supported by the underlying machine.
If additional keyword-arguments are given then they will configure various aspects of the ADC. If not given, these
settings will take previous or default values. The settings are:

• sample_ns is the sampling time in nanoseconds.
• atten specifies the input attenuation.

Methods

ADC.init(*, sample_ns, atten)
Apply the given settings to the ADC. Only those arguments that are specified will be changed. See the ADC
constructor above for what the arguments are.

ADC.block()
Return the ADCBlock instance associated with this ADC object.
This method only exists if the port supports the ADCBlock class.

ADC.read_u16()
Take an analog reading and return an integer in the range 0-65535. The return value represents the raw reading
taken by the ADC, scaled such that the minimum value is 0 and the maximum value is 65535.

ADC.read_uv()
Take an analog reading and return an integer value with units of microvolts. It is up to the particular port whether
or not this value is calibrated, and how calibration is done.

class ADCBlock – control ADC peripherals

The ADCBlock class provides access to an ADC peripheral which has a number of channels that can be used to sample
analog values. It allows finer control over configuration of machine.ADC objects, which do the actual sampling.
This class is not always available.
Example usage:

from machine import ADCBlock

block = ADCBlock(id, bits=12) # create an ADCBlock with 12-bit resolution
adc = block.connect(4, pin) # connect channel 4 to the given pin
val = adc.read_uv() # read an analog value

70 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

Constructors

class machine.ADCBlock(id, *, bits)
Access the ADC peripheral identified by id, which may be an integer or string.
The bits argument, if given, sets the resolution in bits of the conversion process. If not specified then the previous
or default resolution is used.

Methods

ADCBlock.init(*, bits)
Configure the ADC peripheral. bits will set the resolution of the conversion process.

ADCBlock.connect(channel)
ADCBlock.connect(source)
ADCBlock.connect(channel, source)

Connect up a channel on the ADC peripheral so it is ready for sampling, and return an ADC object that represents
that connection.
The channel argument must be an integer, and sourcemust be an object (for example a Pin) which can be connected
up for sampling.
If only channel is given then it is configured for sampling.
If only source is given then that object is connected to a default channel ready for sampling.
If both channel and source are given then they are connected together and made ready for sampling.

class PWM – pulse width modulation

This class provides pulse width modulation output.
Example usage:

from machine import PWM

pwm = PWM(pin) # create a PWM object on a pin
pwm.duty_u16(32768) # set duty to 50%

reinitialise with a period of 200us, duty of 5us
pwm.init(freq=5000, duty_ns=5000)

pwm.duty_ns(3000) # set pulse width to 3us

pwm.deinit()

1.2. MicroPython-specific libraries 71

MicroPython Documentation, Release v1.20.0

Constructors

class machine.PWM(dest, *, freq, duty_u16, duty_ns)
Construct and return a new PWM object using the following parameters:

• dest is the entity on which the PWM is output, which is usually a machine.Pin object, but a port may allow
other values, like integers.

• freq should be an integer which sets the frequency in Hz for the PWM cycle.
• duty_u16 sets the duty cycle as a ratio duty_u16 / 65535.
• duty_ns sets the pulse width in nanoseconds.

Setting freq may affect other PWM objects if the objects share the same underlying PWM generator (this is hard-
ware specific). Only one of duty_u16 and duty_ns should be specified at a time.

Methods

PWM.init(*, freq, duty_u16, duty_ns)
Modify settings for the PWM object. See the above constructor for details about the parameters.

PWM.deinit()
Disable the PWM output.

PWM.freq([value])
Get or set the current frequency of the PWM output.
With no arguments the frequency in Hz is returned.
With a single value argument the frequency is set to that value in Hz. The method may raise a ValueError if
the frequency is outside the valid range.

PWM.duty_u16([value])
Get or set the current duty cycle of the PWM output, as an unsigned 16-bit value in the range 0 to 65535 inclusive.
With no arguments the duty cycle is returned.
With a single value argument the duty cycle is set to that value, measured as the ratio value / 65535.

PWM.duty_ns([value])
Get or set the current pulse width of the PWM output, as a value in nanoseconds.
With no arguments the pulse width in nanoseconds is returned.
With a single value argument the pulse width is set to that value.

Specific PWM class implementations

The following concrete class(es) implement enhancements to the PWM class.
pyb.Timer for PyBoard

72 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

Limitations of PWM

• Not all frequencies can be generated with absolute accuracy due to the discrete nature of the computing hardware.
Typically the PWM frequency is obtained by dividing some integer base frequency by an integer divider. For
example, if the base frequency is 80MHz and the required PWM frequency is 300kHz the divider must be a non-
integer number 80000000 / 300000 = 266.67. After rounding the divider is set to 267 and the PWM frequency
will be 80000000 / 267 = 299625.5 Hz, not 300kHz. If the divider is set to 266 then the PWM frequency will be
80000000 / 266 = 300751.9 Hz, but again not 300kHz.
Some ports like the RP2040 one use a fractional divider, which allow a finer granularity of the frequency at higher
frequencies by switching the PWM pulse duration between two adjacent values, such that the resulting average
frequency is more close to the intended one, at the cost of spectral purity.

• The duty cycle has the same discrete nature and its absolute accuracy is not achievable. Onmost hardware platforms
the duty will be applied at the next frequency period. Therefore, you should wait more than “1/frequency” before
measuring the duty.

• The frequency and the duty cycle resolution are usually interdependent. The higher the PWM frequency the lower
the duty resolution which is available, and vice versa. For example, a 300kHz PWM frequency can have a duty
cycle resolution of 8 bit, not 16-bit as may be expected. In this case, the lowest 8 bits of duty_u16 are insignificant.
So:

pwm=PWM(Pin(13), freq=300_000, duty_u16=2**16//2)

and:

pwm=PWM(Pin(13), freq=300_000, duty_u16=2**16//2 + 255)

will generate PWM with the same 50% duty cycle.

class UART – duplex serial communication bus

UART implements the standard UART/USART duplex serial communications protocol. At the physical level it consists
of 2 lines: RX and TX. The unit of communication is a character (not to be confused with a string character) which can
be 8 or 9 bits wide.
UART objects can be created and initialised using:

from machine import UART

uart = UART(1, 9600) # init with given baudrate
uart.init(9600, bits=8, parity=None, stop=1) # init with given parameters

Supported parameters differ on a board:
Pyboard: Bits can be 7, 8 or 9. Stop can be 1 or 2. With parity=None, only 8 and 9 bits are supported. With parity
enabled, only 7 and 8 bits are supported.
WiPy/CC3200: Bits can be 5, 6, 7, 8. Stop can be 1 or 2.
A UART object acts like a stream object and reading and writing is done using the standard stream methods:

uart.read(10) # read 10 characters, returns a bytes object
uart.read() # read all available characters
uart.readline() # read a line
uart.readinto(buf) # read and store into the given buffer
uart.write('abc') # write the 3 characters

1.2. MicroPython-specific libraries 73

MicroPython Documentation, Release v1.20.0

Constructors

class machine.UART(id, ...)
Construct a UART object of the given id.

Methods

UART.init(baudrate=9600, bits=8, parity=None, stop=1, *, ...)
Initialise the UART bus with the given parameters:

• baudrate is the clock rate.
• bits is the number of bits per character, 7, 8 or 9.
• parity is the parity, None, 0 (even) or 1 (odd).
• stop is the number of stop bits, 1 or 2.

Additional keyword-only parameters that may be supported by a port are:
• tx specifies the TX pin to use.
• rx specifies the RX pin to use.
• rts specifies the RTS (output) pin to use for hardware receive flow control.
• cts specifies the CTS (input) pin to use for hardware transmit flow control.
• txbuf specifies the length in characters of the TX buffer.
• rxbuf specifies the length in characters of the RX buffer.
• timeout specifies the time to wait for the first character (in ms).
• timeout_char specifies the time to wait between characters (in ms).
• invert specifies which lines to invert.

– 0 will not invert lines (idle state of both lines is logic high).
– UART.INV_TX will invert TX line (idle state of TX line now logic low).
– UART.INV_RX will invert RX line (idle state of RX line now logic low).
– UART.INV_TX | UART.INV_RX will invert both lines (idle state at logic low).

• flow specifies which hardware flow control signals to use. The value is a bitmask.
– 0 will ignore hardware flow control signals.
– UART.RTS will enable receive flow control by using the RTS output pin to signal if the receive FIFO
has sufficient space to accept more data.

– UART.CTS will enable transmit flow control by pausing transmission when the CTS input pin signals
that the receiver is running low on buffer space.

– UART.RTS | UART.CTS will enable both, for full hardware flow control.
On the WiPy only the following keyword-only parameter is supported:

• pins is a 4 or 2 item list indicating the TX, RX, RTS and CTS pins (in that order). Any of the pins can be
None if one wants the UART to operate with limited functionality. If the RTS pin is given the the RX pin
must be given as well. The same applies to CTS. When no pins are given, then the default set of TX and RX
pins is taken, and hardware flow control will be disabled. If pins is None, no pin assignment will be made.

74 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

Note: It is possible to call init() multiple times on the same object in order to reconfigure UART on the fly.
That allows using single UART peripheral to serve different devices attached to different GPIO pins. Only one
device can be served at a time in that case. Also do not call deinit() as it will prevent calling init() again.

UART.deinit()
Turn off the UART bus.

Note: You will not be able to call init() on the object after deinit(). A new instance needs to be created
in that case.

UART.any()
Returns an integer counting the number of characters that can be read without blocking. It will return 0 if there
are no characters available and a positive number if there are characters. The method may return 1 even if there is
more than one character available for reading.
For more sophisticated querying of available characters use select.poll:

poll = select.poll()
poll.register(uart, select.POLLIN)
poll.poll(timeout)

UART.read([nbytes])
Read characters. If nbytes is specified then read at most that many bytes, otherwise read as much data as possible.
It may return sooner if a timeout is reached. The timeout is configurable in the constructor.
Return value: a bytes object containing the bytes read in. Returns None on timeout.

UART.readinto(buf[, nbytes])
Read bytes into the buf. If nbytes is specified then read at most that many bytes. Otherwise, read at most
len(buf) bytes. It may return sooner if a timeout is reached. The timeout is configurable in the constructor.
Return value: number of bytes read and stored into buf or None on timeout.

UART.readline()
Read a line, ending in a newline character. It may return sooner if a timeout is reached. The timeout is configurable
in the constructor.
Return value: the line read or None on timeout.

UART.write(buf)
Write the buffer of bytes to the bus.
Return value: number of bytes written or None on timeout.

UART.sendbreak()
Send a break condition on the bus. This drives the bus low for a duration longer than required for a normal
transmission of a character.

UART.irq(trigger, priority=1, handler=None, wake=machine.IDLE)
Create a callback to be triggered when data is received on the UART.

• trigger can only be UART.RX_ANY
• priority level of the interrupt. Can take values in the range 1-7. Higher values represent higher priorities.
• handler an optional function to be called when new characters arrive.
• wake can only be machine.IDLE.

1.2. MicroPython-specific libraries 75

MicroPython Documentation, Release v1.20.0

Note: The handler will be called whenever any of the following two conditions are met:
• 8 new characters have been received.
• At least 1 new character is waiting in the Rx buffer and the Rx line has been silent for the duration of 1
complete frame.

This means that when the handler function is called there will be between 1 to 8 characters waiting.

Returns an irq object.
Availability: WiPy.

UART.flush()
Waits until all data has been sent. In case of a timeout, an exception is raised. The timeout duration depends on
the tx buffer size and the baud rate. Unless flow control is enabled, a timeout should not occur.

Note: For the rp2, esp8266 and nrf ports the call returns while the last byte is sent. If required, a one character
wait time has to be added in the calling script.

Availability: rp2, esp32, esp8266, mimxrt, cc3200, stm32, nrf ports, renesas-ra
UART.txdone()

Tells whether all data has been sent or no data transfer is happening. In this case, it returns True. If a data
transmission is ongoing it returns False.

Note: For the rp2, esp8266 and nrf ports the call may return True even if the last byte of a transfer is still being
sent. If required, a one character wait time has to be added in the calling script.

Availability: rp2, esp32, esp8266, mimxrt, cc3200, stm32, nrf ports, renesas-ra

Constants

UART.RX_ANY
IRQ trigger sources
Availability: WiPy.

class SPI – a Serial Peripheral Interface bus protocol (controller side)

SPI is a synchronous serial protocol that is driven by a controller. At the physical level, a bus consists of 3 lines: SCK,
MOSI, MISO. Multiple devices can share the same bus. Each device should have a separate, 4th signal, CS (Chip Select),
to select a particular device on a bus with which communication takes place. Management of a CS signal should happen
in user code (via machine.Pin class).
Both hardware and software SPI implementations exist via themachine.SPI and machine.SoftSPI classes. Hardware
SPI uses underlying hardware support of the system to perform the reads/writes and is usually efficient and fast but may
have restrictions on which pins can be used. Software SPI is implemented by bit-banging and can be used on any pin but
is not as efficient. These classes have the same methods available and differ primarily in the way they are constructed.
Example usage:

76 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

from machine import SPI, Pin

spi = SPI(0, baudrate=400000) # Create SPI peripheral 0 at frequency of␣
↪→400kHz.

Depending on the use case, extra parameters␣
↪→may be required

to select the bus characteristics and/or␣
↪→pins to use.
cs = Pin(4, mode=Pin.OUT, value=1) # Create chip-select on pin 4.

try:
cs(0) # Select peripheral.
spi.write(b"12345678") # Write 8 bytes, and don't care about␣

↪→received data.
finally:

cs(1) # Deselect peripheral.

try:
cs(0) # Select peripheral.
rxdata = spi.read(8, 0x42) # Read 8 bytes while writing 0x42 for each␣

↪→byte.
finally:

cs(1) # Deselect peripheral.

rxdata = bytearray(8)
try:

cs(0) # Select peripheral.
spi.readinto(rxdata, 0x42) # Read 8 bytes inplace while writing 0x42 for␣

↪→each byte.
finally:

cs(1) # Deselect peripheral.

txdata = b"12345678"
rxdata = bytearray(len(txdata))
try:

cs(0) # Select peripheral.
spi.write_readinto(txdata, rxdata) # Simultaneously write and read bytes.

finally:
cs(1) # Deselect peripheral.

Constructors

class machine.SPI(id, ...)
Construct an SPI object on the given bus, id. Values of id depend on a particular port and its hardware. Values 0,
1, etc. are commonly used to select hardware SPI block #0, #1, etc.
With no additional parameters, the SPI object is created but not initialised (it has the settings from the last ini-
tialisation of the bus, if any). If extra arguments are given, the bus is initialised. See init for parameters of
initialisation.

class machine.SoftSPI(baudrate=500000, *, polarity=0, phase=0, bits=8, firstbit=MSB, sck=None,
mosi=None, miso=None)

Construct a new software SPI object. Additional parameters must be given, usually at least sck, mosi and miso, and
these are used to initialise the bus. See SPI.init for a description of the parameters.

1.2. MicroPython-specific libraries 77

MicroPython Documentation, Release v1.20.0

Methods

SPI.init(baudrate=1000000, *, polarity=0, phase=0, bits=8, firstbit=SPI.MSB, sck=None, mosi=None, miso=None,
pins=(SCK, MOSI, MISO))

Initialise the SPI bus with the given parameters:
• baudrate is the SCK clock rate.
• polarity can be 0 or 1, and is the level the idle clock line sits at.
• phase can be 0 or 1 to sample data on the first or second clock edge respectively.
• bits is the width in bits of each transfer. Only 8 is guaranteed to be supported by all hardware.
• firstbit can be SPI.MSB or SPI.LSB.
• sck, mosi, miso are pins (machine.Pin) objects to use for bus signals. For most hardware SPI blocks (as
selected by id parameter to the constructor), pins are fixed and cannot be changed. In some cases, hardware
blocks allow 2-3 alternative pin sets for a hardware SPI block. Arbitrary pin assignments are possible only
for a bitbanging SPI driver (id = -1).

• pins - WiPy port doesn’t sck, mosi, miso arguments, and instead allows to specify them as a tuple of
pins parameter.

In the case of hardware SPI the actual clock frequency may be lower than the requested baudrate. This is dependant
on the platform hardware. The actual rate may be determined by printing the SPI object.

SPI.deinit()
Turn off the SPI bus.

SPI.read(nbytes, write=0x00)
Read a number of bytes specified by nbytes while continuously writing the single byte given by write. Returns
a bytes object with the data that was read.

SPI.readinto(buf, write=0x00)
Read into the buffer specified by buf while continuously writing the single byte given by write. Returns None.
Note: on WiPy this function returns the number of bytes read.

SPI.write(buf)
Write the bytes contained in buf. Returns None.
Note: on WiPy this function returns the number of bytes written.

SPI.write_readinto(write_buf, read_buf)
Write the bytes from write_buf while reading into read_buf. The buffers can be the same or different, but
both buffers must have the same length. Returns None.
Note: on WiPy this function returns the number of bytes written.

Constants

SPI.CONTROLLER
for initialising the SPI bus to controller; this is only used for the WiPy

SPI.MSB
SoftSPI.MSB

set the first bit to be the most significant bit
SPI.LSB
SoftSPI.LSB

set the first bit to be the least significant bit

78 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

class I2C – a two-wire serial protocol

I2C is a two-wire protocol for communicating between devices. At the physical level it consists of 2 wires: SCL and
SDA, the clock and data lines respectively.
I2C objects are created attached to a specific bus. They can be initialised when created, or initialised later on.
Printing the I2C object gives you information about its configuration.
Both hardware and software I2C implementations exist via themachine.I2C andmachine.SoftI2C classes. Hardware
I2C uses underlying hardware support of the system to perform the reads/writes and is usually efficient and fast but may
have restrictions on which pins can be used. Software I2C is implemented by bit-banging and can be used on any pin but
is not as efficient. These classes have the same methods available and differ primarily in the way they are constructed.

Note: The I2C bus requires pull-up circuitry on both SDA and SCL for it’s operation. Usually these are resistors in
the range of 1 - 10 kOhm, connected from each SDA/SCL to Vcc. Without these, the behaviour is undefined and may
range from blocking, unexpected watchdog reset to just wrong values. Often, this pull-up circuitry is built-in already to
the MCU board or sensor breakout boards, but there is no rule for that. So please check in case of trouble. See also this
excellent learning guide by Adafruit about I2C wiring.

Example usage:

from machine import I2C

i2c = I2C(freq=400000) # create I2C peripheral at frequency of 400kHz
depending on the port, extra parameters may be␣

↪→required
to select the peripheral and/or pins to use

i2c.scan() # scan for peripherals, returning a list of 7-bit␣
↪→addresses

i2c.writeto(42, b'123') # write 3 bytes to peripheral with 7-bit address 42
i2c.readfrom(42, 4) # read 4 bytes from peripheral with 7-bit address 42

i2c.readfrom_mem(42, 8, 3) # read 3 bytes from memory of peripheral 42,
starting at memory-address 8 in the peripheral

i2c.writeto_mem(42, 2, b'\x10') # write 1 byte to memory of peripheral 42
starting at address 2 in the peripheral

Constructors

class machine.I2C(id, *, scl, sda, freq=400000, timeout=50000)
Construct and return a new I2C object using the following parameters:

• id identifies a particular I2C peripheral. Allowed values for depend on the particular port/board
• scl should be a pin object specifying the pin to use for SCL.
• sda should be a pin object specifying the pin to use for SDA.
• freq should be an integer which sets the maximum frequency for SCL.
• timeout is the maximum time in microseconds to allow for I2C transactions. This parameter is not allowed
on some ports.

1.2. MicroPython-specific libraries 79

https://learn.adafruit.com/working-with-i2c-devices/pull-up-resistors

MicroPython Documentation, Release v1.20.0

Note that some ports/boards will have default values of scl and sda that can be changed in this constructor. Others
will have fixed values of scl and sda that cannot be changed.

class machine.SoftI2C(scl, sda, *, freq=400000, timeout=50000)
Construct a new software I2C object. The parameters are:

• scl should be a pin object specifying the pin to use for SCL.
• sda should be a pin object specifying the pin to use for SDA.
• freq should be an integer which sets the maximum frequency for SCL.
• timeout is the maximum time in microseconds to wait for clock stretching (SCL held low by another device
on the bus), after which an OSError(ETIMEDOUT) exception is raised.

General Methods

I2C.init(scl, sda, *, freq=400000)
Initialise the I2C bus with the given arguments:

• scl is a pin object for the SCL line
• sda is a pin object for the SDA line
• freq is the SCL clock rate

In the case of hardware I2C the actual clock frequency may be lower than the requested frequency. This
is dependant on the platform hardware. The actual rate may be determined by printing the I2C object.

I2C.deinit()
Turn off the I2C bus.
Availability: WiPy.

I2C.scan()
Scan all I2C addresses between 0x08 and 0x77 inclusive and return a list of those that respond. A device responds
if it pulls the SDA line low after its address (including a write bit) is sent on the bus.

Primitive I2C operations

The following methods implement the primitive I2C controller bus operations and can be combined to make any I2C
transaction. They are provided if you need more control over the bus, otherwise the standard methods (see below) can be
used.
These methods are only available on the machine.SoftI2C class.
I2C.start()

Generate a START condition on the bus (SDA transitions to low while SCL is high).
I2C.stop()

Generate a STOP condition on the bus (SDA transitions to high while SCL is high).
I2C.readinto(buf, nack=True, /)

Reads bytes from the bus and stores them into buf. The number of bytes read is the length of buf. An ACK will be
sent on the bus after receiving all but the last byte. After the last byte is received, if nack is true then a NACK will
be sent, otherwise an ACK will be sent (and in this case the peripheral assumes more bytes are going to be read in
a later call).

80 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

I2C.write(buf)
Write the bytes from buf to the bus. Checks that an ACK is received after each byte and stops transmitting the
remaining bytes if a NACK is received. The function returns the number of ACKs that were received.

Standard bus operations

The following methods implement the standard I2C controller read and write operations that target a given peripheral
device.
I2C.readfrom(addr, nbytes, stop=True, /)

Read nbytes from the peripheral specified by addr. If stop is true then a STOP condition is generated at the end of
the transfer. Returns a bytes object with the data read.

I2C.readfrom_into(addr, buf, stop=True, /)
Read into buf from the peripheral specified by addr. The number of bytes read will be the length of buf. If stop is
true then a STOP condition is generated at the end of the transfer.
The method returns None.

I2C.writeto(addr, buf, stop=True, /)
Write the bytes from buf to the peripheral specified by addr. If a NACK is received following the write of a byte
from buf then the remaining bytes are not sent. If stop is true then a STOP condition is generated at the end of the
transfer, even if a NACK is received. The function returns the number of ACKs that were received.

I2C.writevto(addr, vector, stop=True, /)
Write the bytes contained in vector to the peripheral specified by addr. vector should be a tuple or list of objects with
the buffer protocol. The addr is sent once and then the bytes from each object in vector are written out sequentially.
The objects in vector may be zero bytes in length in which case they don’t contribute to the output.
If a NACK is received following the write of a byte from one of the objects in vector then the remaining bytes, and
any remaining objects, are not sent. If stop is true then a STOP condition is generated at the end of the transfer,
even if a NACK is received. The function returns the number of ACKs that were received.

Memory operations

Some I2C devices act as a memory device (or set of registers) that can be read from and written to. In this case there
are two addresses associated with an I2C transaction: the peripheral address and the memory address. The following
methods are convenience functions to communicate with such devices.
I2C.readfrom_mem(addr, memaddr, nbytes, *, addrsize=8)

Read nbytes from the peripheral specified by addr starting from the memory address specified by memaddr. The
argument addrsize specifies the address size in bits. Returns a bytes object with the data read.

I2C.readfrom_mem_into(addr, memaddr, buf, *, addrsize=8)
Read into buf from the peripheral specified by addr starting from the memory address specified by memaddr. The
number of bytes read is the length of buf. The argument addrsize specifies the address size in bits (on ESP8266
this argument is not recognised and the address size is always 8 bits).
The method returns None.

I2C.writeto_mem(addr, memaddr, buf, *, addrsize=8)
Write buf to the peripheral specified by addr starting from the memory address specified by memaddr. The argu-
ment addrsize specifies the address size in bits (on ESP8266 this argument is not recognised and the address size
is always 8 bits).
The method returns None.

1.2. MicroPython-specific libraries 81

MicroPython Documentation, Release v1.20.0

class I2S – Inter-IC Sound bus protocol

I2S is a synchronous serial protocol used to connect digital audio devices. At the physical level, a bus consists of 3 lines:
SCK, WS, SD. The I2S class supports controller operation. Peripheral operation is not supported.
The I2S class is currently available as a Technical Preview. During the preview period, feedback from users is encouraged.
Based on this feedback, the I2S class API and implementation may be changed.
I2S objects can be created and initialized using:

from machine import I2S
from machine import Pin

ESP32
sck_pin = Pin(14) # Serial clock output
ws_pin = Pin(13) # Word clock output
sd_pin = Pin(12) # Serial data output

or

PyBoards
sck_pin = Pin("Y6") # Serial clock output
ws_pin = Pin("Y5") # Word clock output
sd_pin = Pin("Y8") # Serial data output

audio_out = I2S(2,
sck=sck_pin, ws=ws_pin, sd=sd_pin,
mode=I2S.TX,
bits=16,
format=I2S.MONO,
rate=44100,
ibuf=20000)

audio_in = I2S(2,
sck=sck_pin, ws=ws_pin, sd=sd_pin,
mode=I2S.RX,
bits=32,
format=I2S.STEREO,
rate=22050,
ibuf=20000)

3 modes of operation are supported:
• blocking
• non-blocking
• uasyncio

blocking:

num_written = audio_out.write(buf) # blocks until buf emptied

num_read = audio_in.readinto(buf) # blocks until buf filled

non-blocking:

audio_out.irq(i2s_callback) # i2s_callback is called when buf is emptied
num_written = audio_out.write(buf) # returns immediately

(continues on next page)

82 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

(continued from previous page)

audio_in.irq(i2s_callback) # i2s_callback is called when buf is filled
num_read = audio_in.readinto(buf) # returns immediately

uasyncio:

swriter = uasyncio.StreamWriter(audio_out)
swriter.write(buf)
await swriter.drain()

sreader = uasyncio.StreamReader(audio_in)
num_read = await sreader.readinto(buf)

Some codec devices like the WM8960 or SGTL5000 require separate initialization before they can operate with the I2S
class. For these, separate drivers are supplied, which also offer methods for controlling volume, audio processing and
other things. For these drivers see:

• WM8960 – Driver for the WM8960 codec

Constructor

class machine.I2S(id, *, sck, ws, sd, mck=None, mode, bits, format, rate, ibuf)
Construct an I2S object of the given id:

• id identifies a particular I2S bus; it is board and port specific
Keyword-only parameters that are supported on all ports:

• sck is a pin object for the serial clock line
• ws is a pin object for the word select line
• sd is a pin object for the serial data line
• mck is a pin object for the master clock line; master clock frequency is sampling rate * 256
• mode specifies receive or transmit
• bits specifies sample size (bits), 16 or 32
• format specifies channel format, STEREO or MONO
• rate specifies audio sampling rate (Hz); this is the frequency of the ws signal
• ibuf specifies internal buffer length (bytes)

For all ports, DMA runs continuously in the background and allows user applications to perform other operations
while sample data is transfered between the internal buffer and the I2S peripheral unit. Increasing the size of the
internal buffer has the potential to increase the time that user applications can perform non-I2S operations before
underflow (e.g. write method) or overflow (e.g. readinto method).

1.2. MicroPython-specific libraries 83

MicroPython Documentation, Release v1.20.0

Methods

I2S.init(sck, ...)
see Constructor for argument descriptions

I2S.deinit()
Deinitialize the I2S bus

I2S.readinto(buf)
Read audio samples into the buffer specified by buf. buf must support the buffer protocol, such as bytearray or
array. “buf” byte ordering is little-endian. For Stereo format, left channel sample precedes right channel sample.
For Mono format, the left channel sample data is used. Returns number of bytes read

I2S.write(buf)
Write audio samples contained in buf. buf must support the buffer protocol, such as bytearray or array. “buf”
byte ordering is little-endian. For Stereo format, left channel sample precedes right channel sample. For Mono
format, the sample data is written to both the right and left channels. Returns number of bytes written

I2S.irq(handler)
Set a callback. handler is called when buf is emptied (writemethod) or becomes full (readintomethod).
Setting a callback changes the write and readinto methods to non-blocking operation. handler is called
in the context of the MicroPython scheduler.

static I2S.shift(*, buf, bits, shift)
bitwise shift of all samples contained in buf. bits specifies sample size in bits. shift specifies the number of
bits to shift each sample. Positive for left shift, negative for right shift. Typically used for volume control. Each bit
shift changes sample volume by 6dB.

Constants

I2S.RX
for initialising the I2S bus mode to receive

I2S.TX
for initialising the I2S bus mode to transmit

I2S.STEREO
for initialising the I2S bus format to stereo

I2S.MONO
for initialising the I2S bus format to mono

class RTC – real time clock

The RTC is an independent clock that keeps track of the date and time.
Example usage:

rtc = machine.RTC()
rtc.datetime((2020, 1, 21, 2, 10, 32, 36, 0))
print(rtc.datetime())

84 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

Constructors

class machine.RTC(id=0, ...)
Create an RTC object. See init for parameters of initialization.

Methods

RTC.datetime([datetimetuple])
Get or set the date and time of the RTC.
With no arguments, this method returns an 8-tuple with the current date and time. With 1 argument (being an
8-tuple) it sets the date and time.
The 8-tuple has the following format:

(year, month, day, weekday, hours, minutes, seconds, subseconds)
The meaning of the subseconds field is hardware dependent.

RTC.init(datetime)
Initialise the RTC. Datetime is a tuple of the form:

(year, month, day[, hour[, minute[, second[, microsecond[, tz-
info]]]]])

RTC.now()
Get get the current datetime tuple.

RTC.deinit()
Resets the RTC to the time of January 1, 2015 and starts running it again.

RTC.alarm(id, time, *, repeat=False)
Set the RTC alarm. Time might be either a millisecond value to program the alarm to current time + time_in_ms
in the future, or a datetimetuple. If the time passed is in milliseconds, repeat can be set to True to make the alarm
periodic.

RTC.alarm_left(alarm_id=0)
Get the number of milliseconds left before the alarm expires.

RTC.cancel(alarm_id=0)
Cancel a running alarm.

RTC.irq(*, trigger, handler=None, wake=machine.IDLE)
Create an irq object triggered by a real time clock alarm.

• trigger must be RTC.ALARM0
• handler is the function to be called when the callback is triggered.
• wake specifies the sleep mode from where this interrupt can wake up the system.

1.2. MicroPython-specific libraries 85

MicroPython Documentation, Release v1.20.0

Constants

RTC.ALARM0
irq trigger source

class Timer – control hardware timers

Hardware timers deal with timing of periods and events. Timers are perhaps the most flexible and heterogeneous kind of
hardware in MCUs and SoCs, differently greatly from a model to a model. MicroPython’s Timer class defines a baseline
operation of executing a callback with a given period (or once after some delay), and allow specific boards to define more
non-standard behaviour (which thus won’t be portable to other boards).
See discussion of important constraints on Timer callbacks.

Note: Memory can’t be allocated inside irq handlers (an interrupt) and so exceptions raised within a handler don’t
give much information. See micropython.alloc_emergency_exception_buf() for how to get around this
limitation.

If you are using a WiPy board please refer to machine.TimerWiPy instead of this class.

Constructors

class machine.Timer(id, /, ...)
Construct a new timer object of the given id. id of -1 constructs a virtual timer (if supported by a board). id
shall not be passed as a keyword argument.
See init for parameters of initialisation.

Methods

Timer.init(*, mode=Timer.PERIODIC, freq=- 1, period=- 1, callback=None)
Initialise the timer. Example:

def mycallback(t):
pass

periodic at 1kHz
tim.init(mode=Timer.PERIODIC, freq=1000, callback=mycallback)

periodic with 100ms period
tim.init(period=100, callback=mycallback)

one shot firing after 1000ms
tim.init(mode=Timer.ONE_SHOT, period=1000, callback=mycallback)

Keyword arguments:
• mode can be one of:

– Timer.ONE_SHOT - The timer runs once until the configured period of the channel expires.
– Timer.PERIODIC - The timer runs periodically at the configured frequency of the channel.

86 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

• freq - The timer frequency, in units of Hz. The upper bound of the frequency is dependent on the port.
When both the freq and period arguments are given, freq has a higher priority and period is ignored.

• period - The timer period, in milliseconds.
• callback - The callable to call upon expiration of the timer period. The callback must take one argument,
which is passed the Timer object. The callback argument shall be specified. Otherwise an exception will
occurr upon timer expiration: TypeError: 'NoneType' object isn't callable

Timer.deinit()
Deinitialises the timer. Stops the timer, and disables the timer peripheral.

Constants

Timer.ONE_SHOT
Timer.PERIODIC

Timer operating mode.

class WDT – watchdog timer

TheWDT is used to restart the system when the application crashes and ends up into a non recoverable state. Once started
it cannot be stopped or reconfigured in any way. After enabling, the application must “feed” the watchdog periodically to
prevent it from expiring and resetting the system.
Example usage:

from machine import WDT
wdt = WDT(timeout=2000) # enable it with a timeout of 2s
wdt.feed()

Availability of this class: pyboard, WiPy, esp8266, esp32, rp2040, mimxrt.

Constructors

class machine.WDT(id=0, timeout=5000)
Create a WDT object and start it. The timeout must be given in milliseconds. Once it is running the timeout cannot
be changed and the WDT cannot be stopped either.
Notes: On the esp32 the minimum timeout is 1 second. On the esp8266 a timeout cannot be specified, it is
determined by the underlying system. On rp2040 devices, the maximum timeout is 8388 ms.

Methods

WDT.feed()
Feed the WDT to prevent it from resetting the system. The application should place this call in a sensible place
ensuring that the WDT is only fed after verifying that everything is functioning correctly.

1.2. MicroPython-specific libraries 87

MicroPython Documentation, Release v1.20.0

class SD – secure digital memory card (cc3200 port only)

Warning: This is a non-standard class and is only available on the cc3200 port.

The SD card class allows to configure and enable the memory card module of the WiPy and automatically mount it as
/sd as part of the file system. There are several pin combinations that can be used to wire the SD card socket to the
WiPy and the pins used can be specified in the constructor. Please check the pinout and alternate functions table. for
more info regarding the pins which can be remapped to be used with a SD card.
Example usage:

from machine import SD
import os
clk cmd and dat0 pins must be passed along with
their respective alternate functions
sd = machine.SD(pins=('GP10', 'GP11', 'GP15'))
os.mount(sd, '/sd')
do normal file operations

Constructors

class machine.SD(id, ...)
Create a SD card object. See init() for parameters if initialization.

Methods

SD.init(id=0, pins=('GP10', 'GP11', 'GP15'))
Enable the SD card. In order to initialize the card, give it a 3-tuple: (clk_pin, cmd_pin, dat0_pin).

SD.deinit()
Disable the SD card.

class SDCard – secure digital memory card

SD cards are one of the most common small form factor removable storage media. SD cards come in a variety of sizes
and physical form factors. MMC cards are similar removable storage devices while eMMC devices are electrically similar
storage devices designed to be embedded into other systems. All three form share a common protocol for communication
with their host system and high-level support looks the same for them all. As such in MicroPython they are implemented
in a single class called machine.SDCard .
Both SD and MMC interfaces support being accessed with a variety of bus widths. When being accessed with a 1-bit
wide interface they can be accessed using the SPI protocol. Different MicroPython hardware platforms support different
widths and pin configurations but for most platforms there is a standard configuration for any given hardware. In general
constructing an SDCard object with without passing any parameters will initialise the interface to the default card slot
for the current hardware. The arguments listed below represent the common arguments that might need to be set in order
to use either a non-standard slot or a non-standard pin assignment. The exact subset of arguments supported will vary
from platform to platform.

88 Chapter 1. MicroPython libraries

https://raw.githubusercontent.com/wipy/wipy/master/docs/PinOUT.png

MicroPython Documentation, Release v1.20.0

class machine.SDCard(slot=1, width=1, cd=None, wp=None, sck=None, miso=None, mosi=None, cs=None,
freq=20000000)

This class provides access to SD or MMC storage cards using either a dedicated SD/MMC interface hardware or
through an SPI channel. The class implements the block protocol defined by os.AbstractBlockDev. This
allows the mounting of an SD card to be as simple as:

os.mount(machine.SDCard(), "/sd")

The constructor takes the following parameters:
• slot selects which of the available interfaces to use. Leaving this unset will select the default interface.
• width selects the bus width for the SD/MMC interface.
• cd can be used to specify a card-detect pin.
• wp can be used to specify a write-protect pin.
• sck can be used to specify an SPI clock pin.
• miso can be used to specify an SPI miso pin.
• mosi can be used to specify an SPI mosi pin.
• cs can be used to specify an SPI chip select pin.
• freq selects the SD/MMC interface frequency in Hz (only supported on the ESP32).

Implementation-specific details

Different implementations of the SDCard class on different hardware support varying subsets of the options above.

PyBoard

The standard PyBoard has just one slot. No arguments are necessary or supported.

ESP32

The ESP32 provides two channels of SD/MMC hardware and also supports access to SD Cards through either of the two
SPI ports that are generally available to the user. As a result the slot argument can take a value between 0 and 3, inclusive.
Slots 0 and 1 use the built-in SD/MMC hardware while slots 2 and 3 use the SPI ports. Slot 0 supports 1, 4 or 8-bit wide
access while slot 1 supports 1 or 4-bit access; the SPI slots only support 1-bit access.

Note: Slot 0 is used to communicate with on-board flash memory on most ESP32 modules and so will be
unavailable to the user.

Note: Most ESP32 modules that provide an SD card slot using the dedicated hardware only wire up 1 data
pin, so the default value for width is 1.

The pins used by the dedicated SD/MMC hardware are fixed. The pins used by the SPI hardware can be reassigned.

1.2. MicroPython-specific libraries 89

MicroPython Documentation, Release v1.20.0

Note: If any of the SPI signals are remapped then all of the SPI signals will pass through a GPIOmultiplexer
unit which can limit the performance of high frequency signals. Since the normal operating speed for SD
cards is 40MHz this can cause problems on some cards.

The default (and preferred) pin assignment are as follows:

Slot 0 1 2 3
Signal Pin Pin Pin Pin
sck 6 14 18 14
cmd 11 15
cs 5 15
miso 19 12
mosi 23 13
D0 7 2
D1 8 4
D2 9 12
D3 10 13
D4 16
D5 17
D6 5
D7 18

cc3200

You can set the pins used for SPI access by passing a tuple as the pins argument.
Note: The current cc3200 SD card implementation names the this class machine.SD rather than machine.SDCard
.

mimxrt

The SDCard module for the mimxrt port only supports access via dedicated SD/MMC peripheral (USDHC) in 4-bit mode
with 50MHz clock frequency exclusively. Unfortunately the MIMXRT1011 controller does not support the USDHC
peripheral. Hence this controller does not feature the machine.SDCard module.
Due to the decision to only support 4-bit mode with 50MHz clock frequency the interface has been simplified, and the
constructor signature is:
class machine.SDCard(slot=1)

The pins used for the USDHC peripheral have to be configured in mpconfigboard.h. Most of the controllers sup-
ported by the mimxrt port provide up to two USDHC peripherals. Therefore the pin configuration is performed using the
macro MICROPY_USDHCx with x being 1 or 2 respectively.
The following shows an example configuration for USDHC1:

#define MICROPY_USDHC1 \
{ \

.cmd = { GPIO_SD_B0_02_USDHC1_CMD}, \

.clk = { GPIO_SD_B0_03_USDHC1_CLK }, \

.cd_b = { GPIO_SD_B0_06_USDHC1_CD_B },\

.data0 = { GPIO_SD_B0_04_USDHC1_DATA0 },\

(continues on next page)

90 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

(continued from previous page)
.data1 = { GPIO_SD_B0_05_USDHC1_DATA1 },\
.data2 = { GPIO_SD_B0_00_USDHC1_DATA2 },\
.data3 = { GPIO_SD_B0_01_USDHC1_DATA3 },\

}

If the card detect pin is not used (cb_b pin) then the respective entry has to be filled with the following dummy value:

#define USDHC_DUMMY_PIN NULL , 0

Based on the definition of macro MICROPY_USDHC1 and/or MICROPY_USDHC2 the machine.SDCard module
either supports one or two slots. If only one of the defines is provided, calling machine.SDCard() or machine.
SDCard(1) will return an instance using the respective USDHC peripheral. When both macros are defined, calling
machine.SDCard(2) returns an instance using USDHC2.

1.2.6 micropython – access and control MicroPython internals

Functions

micropython.const(expr)
Used to declare that the expression is a constant so that the compiler can optimise it. The use of this function should
be as follows:

from micropython import const

CONST_X = const(123)
CONST_Y = const(2 * CONST_X + 1)

Constants declared this way are still accessible as global variables from outside the module they are declared in.
On the other hand, if a constant begins with an underscore then it is hidden, it is not available as a global variable,
and does not take up any memory during execution.
This const function is recognised directly by the MicroPython parser and is provided as part of the micropy-
thonmodule mainly so that scripts can be written which run under both CPython and MicroPython, by following
the above pattern.

micropython.opt_level([level])
If level is given then this function sets the optimisation level for subsequent compilation of scripts, and returns
None. Otherwise it returns the current optimisation level.
The optimisation level controls the following compilation features:

• Assertions: at level 0 assertion statements are enabled and compiled into the bytecode; at levels 1 and higher
assertions are not compiled.

• Built-in __debug__ variable: at level 0 this variable expands to True; at levels 1 and higher it expands to
False.

• Source-code line numbers: at levels 0, 1 and 2 source-code line number are stored along with the bytecode
so that exceptions can report the line number they occurred at; at levels 3 and higher line numbers are not
stored.

The default optimisation level is usually level 0.
micropython.alloc_emergency_exception_buf(size)

Allocate size bytes of RAM for the emergency exception buffer (a good size is around 100 bytes). The buffer is
used to create exceptions in cases when normal RAM allocation would fail (eg within an interrupt handler) and
therefore give useful traceback information in these situations.

1.2. MicroPython-specific libraries 91

MicroPython Documentation, Release v1.20.0

A good way to use this function is to put it at the start of your main script (eg boot.py or main.py) and then
the emergency exception buffer will be active for all the code following it.

micropython.mem_info([verbose])
Print information about currently used memory. If the verbose argument is given then extra information is printed.
The information that is printed is implementation dependent, but currently includes the amount of stack and heap
used. In verbose mode it prints out the entire heap indicating which blocks are used and which are free.

micropython.qstr_info([verbose])
Print information about currently interned strings. If the verbose argument is given then extra information is printed.
The information that is printed is implementation dependent, but currently includes the number of interned strings
and the amount of RAM they use. In verbose mode it prints out the names of all RAM-interned strings.

micropython.stack_use()
Return an integer representing the current amount of stack that is being used. The absolute value of this is not
particularly useful, rather it should be used to compute differences in stack usage at different points.

micropython.heap_lock()

micropython.heap_unlock()

micropython.heap_locked()
Lock or unlock the heap. When locked no memory allocation can occur and a MemoryError will be raised if
any heap allocation is attempted. heap_locked() returns a true value if the heap is currently locked.
These functions can be nested, ie heap_lock() can be called multiple times in a row and the lock-depth will
increase, and then heap_unlock() must be called the same number of times to make the heap available again.
Both heap_unlock() and heap_locked() return the current lock depth (after unlocking for the former) as
a non-negative integer, with 0 meaning the heap is not locked.
If the REPL becomes active with the heap locked then it will be forcefully unlocked.
Note: heap_locked() is not enabled on most ports by default, requires MI-
CROPY_PY_MICROPYTHON_HEAP_LOCKED.

micropython.kbd_intr(chr)
Set the character that will raise a KeyboardInterrupt exception. By default this is set to 3 during script
execution, corresponding to Ctrl-C. Passing -1 to this function will disable capture of Ctrl-C, and passing 3 will
restore it.
This function can be used to prevent the capturing of Ctrl-C on the incoming stream of characters that is usually
used for the REPL, in case that stream is used for other purposes.

micropython.schedule(func, arg)
Schedule the function func to be executed “very soon”. The function is passed the value arg as its single argument.
“Very soon” means that the MicroPython runtime will do its best to execute the function at the earliest possible
time, given that it is also trying to be efficient, and that the following conditions hold:

• A scheduled function will never preempt another scheduled function.
• Scheduled functions are always executed “between opcodes” which means that all fundamental Python oper-
ations (such as appending to a list) are guaranteed to be atomic.

• A given port may define “critical regions” within which scheduled functions will never be executed. Functions
may be scheduled within a critical region but they will not be executed until that region is exited. An example
of a critical region is a preempting interrupt handler (an IRQ).

A use for this function is to schedule a callback from a preempting IRQ. Such an IRQ puts restrictions on the code
that runs in the IRQ (for example the heap may be locked) and scheduling a function to call later will lift those
restrictions.

92 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

Note: If schedule() is called from a preempting IRQ, when memory allocation is not allowed and the callback
to be passed to schedule() is a bound method, passing this directly will fail. This is because creating a refer-
ence to a bound method causes memory allocation. A solution is to create a reference to the method in the class
constructor and to pass that reference to schedule(). This is discussed in detail here reference documentation
under “Creation of Python objects”.
There is a finite queue to hold the scheduled functions and schedule() will raise a RuntimeError if the
queue is full.

1.2.7 neopixel— control of WS2812 / NeoPixel LEDs

This module provides a driver for WS2818 / NeoPixel LEDs.

Note: This module is only included by default on the ESP8266, ESP32 and RP2 ports. On STM32 / Py-
board and others, you can either install the neopixel package using mip, or you can download the mod-
ule directly from <https://raw.githubusercontent.com/micropython/micropython-lib/master/micropython/drivers/led/
neopixel/neopixel.py>`_ and copy it to the filesystem.

class NeoPixel

This class stores pixel data for a WS2812 LED strip connected to a pin. The application should set pixel data and then
call NeoPixel.write() when it is ready to update the strip.
For example:

import neopixel

32 LED strip connected to X8.
p = machine.Pin.board.X8
n = neopixel.NeoPixel(p, 32)

Draw a red gradient.
for i in range(32):

n[i] = (i * 8, 0, 0)

Update the strip.
n.write()

Constructors

class neopixel.NeoPixel(pin, n, *, bpp=3, timing=1)
Construct an NeoPixel object. The parameters are:

• pin is a machine.Pin instance.
• n is the number of LEDs in the strip.
• bpp is 3 for RGB LEDs, and 4 for RGBW LEDs.
• timing is 0 for 400KHz, and 1 for 800kHz LEDs (most are 800kHz).

1.2. MicroPython-specific libraries 93

https://raw.githubusercontent.com/micropython/micropython-lib/master/micropython/drivers/led/neopixel/neopixel.py
https://raw.githubusercontent.com/micropython/micropython-lib/master/micropython/drivers/led/neopixel/neopixel.py

MicroPython Documentation, Release v1.20.0

Pixel access methods

NeoPixel.fill(pixel)
Sets the value of all pixels to the specified pixel value (i.e. an RGB/RGBW tuple).

NeoPixel.__len__()
Returns the number of LEDs in the strip.

NeoPixel.__setitem__(index, val)
Set the pixel at index to the value, which is an RGB/RGBW tuple.

NeoPixel.__getitem__(index)
Returns the pixel at index as an RGB/RGBW tuple.

Output methods

NeoPixel.write()
Writes the current pixel data to the strip.

1.2.8 network— network configuration

This module provides network drivers and routing configuration. To use this module, a MicroPython variant/build with
network capabilities must be installed. Network drivers for specific hardware are available within this module and are
used to configure hardware network interface(s). Network services provided by configured interfaces are then available
for use via the socket module.
For example:

connect/ show IP config a specific network interface
see below for examples of specific drivers
import network
import time
nic = network.Driver(...)
if not nic.isconnected():

nic.connect()
print("Waiting for connection...")
while not nic.isconnected():

time.sleep(1)
print(nic.ifconfig())

now use socket as usual
import socket
addr = socket.getaddrinfo('micropython.org', 80)[0][-1]
s = socket.socket()
s.connect(addr)
s.send(b'GET / HTTP/1.1\r\nHost: micropython.org\r\n\r\n')
data = s.recv(1000)
s.close()

94 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

Common network adapter interface

This section describes an (implied) abstract base class for all network interface classes implemented byMicroPython ports
for different hardware. This means that MicroPython does not actually provide AbstractNIC class, but any actual NIC
class, as described in the following sections, implements methods as described here.
class network.AbstractNIC(id=None, ...)
Instantiate a network interface object. Parameters are network interface dependent. If there are more than one interface
of the same type, the first parameter should be id.
AbstractNIC.active([is_active])

Activate (“up”) or deactivate (“down”) the network interface, if a boolean argument is passed. Otherwise, query
current state if no argument is provided. Most other methods require an active interface (behaviour of calling them
on inactive interface is undefined).

AbstractNIC.connect([service_id, key=None, *, ...])
Connect the interface to a network. This method is optional, and available only for interfaces which are not “always
connected”. If no parameters are given, connect to the default (or the only) service. If a single parameter is given,
it is the primary identifier of a service to connect to. It may be accompanied by a key (password) required to access
said service. There can be further arbitrary keyword-only parameters, depending on the networking medium type
and/or particular device. Parameters can be used to: a) specify alternative service identifier types; b) provide
additional connection parameters. For various medium types, there are different sets of predefined/recommended
parameters, among them:

• WiFi: bssid keyword to connect to a specific BSSID (MAC address)
AbstractNIC.disconnect()

Disconnect from network.
AbstractNIC.isconnected()

Returns True if connected to network, otherwise returns False.
AbstractNIC.scan(*, ...)

Scan for the available network services/connections. Returns a list of tuples with discovered service parameters.
For various network media, there are different variants of predefined/ recommended tuple formats, among them:

• WiFi: (ssid, bssid, channel, RSSI, security, hidden). There may be further fields, specific to a particular
device.

The function may accept additional keyword arguments to filter scan results (e.g. scan for a particular service, on
a particular channel, for services of a particular set, etc.), and to affect scan duration and other parameters. Where
possible, parameter names should match those in connect().

AbstractNIC.status([param])
Query dynamic status information of the interface. When called with no argument the return value describes the
network link status. Otherwise param should be a string naming the particular status parameter to retrieve.
The return types and values are dependent on the network medium/technology. Some of the parameters that may
be supported are:

• WiFi STA: use 'rssi' to retrieve the RSSI of the AP signal
• WiFi AP: use 'stations' to retrieve a list of all the STAs connected to the AP. The list contains tuples
of the form (MAC, RSSI).

AbstractNIC.ifconfig([(ip, subnet, gateway, dns)])
Get/set IP-level network interface parameters: IP address, subnet mask, gateway and DNS server. When called
with no arguments, this method returns a 4-tuple with the above information. To set the above values, pass a 4-tuple
with the required information. For example:

1.2. MicroPython-specific libraries 95

MicroPython Documentation, Release v1.20.0

nic.ifconfig(('192.168.0.4', '255.255.255.0', '192.168.0.1', '8.8.8.8'))

AbstractNIC.config('param')
AbstractNIC.config(param=value, ...)

Get or set general network interface parameters. These methods allow to work with additional parameters beyond
standard IP configuration (as dealt with by ifconfig()). These include network-specific and hardware-specific
parameters. For setting parameters, the keyword argument syntax should be used, and multiple parameters can be
set at once. For querying, a parameter name should be quoted as a string, and only one parameter can be queried
at a time:

Set WiFi access point name (formally known as SSID) and WiFi channel
ap.config(ssid='My AP', channel=11)
Query params one by one
print(ap.config('ssid'))
print(ap.config('channel'))

Specific network class implementations

The following concrete classes implement the AbstractNIC interface and provide a way to control networking interfaces
of various kinds.

class WLAN – control built-in WiFi interfaces

This class provides a driver for WiFi network processors. Example usage:

import network
enable station interface and connect to WiFi access point
nic = network.WLAN(network.STA_IF)
nic.active(True)
nic.connect('your-ssid', 'your-key')
now use sockets as usual

Constructors

class network.WLAN(interface_id)

Create a WLAN network interface object. Supported interfaces are network.STA_IF (station aka client, connects to
upstream WiFi access points) and network.AP_IF (access point, allows other WiFi clients to connect). Availability
of the methods below depends on interface type. For example, only STA interface may WLAN.connect() to an access
point.

Methods

WLAN.active([is_active])
Activate (“up”) or deactivate (“down”) network interface, if boolean argument is passed. Otherwise, query current
state if no argument is provided. Most other methods require active interface.

WLAN.connect(ssid=None, key=None, *, bssid=None)
Connect to the specified wireless network, using the specified key. If bssid is given then the connection will be
restricted to the access-point with that MAC address (the ssid must also be specified in this case).

96 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

WLAN.disconnect()
Disconnect from the currently connected wireless network.

WLAN.scan()
Scan for the available wireless networks. Hidden networks – where the SSID is not broadcast – will also be scanned
if the WLAN interface allows it.
Scanning is only possible on STA interface. Returns list of tuples with the information about WiFi access points:

(ssid, bssid, channel, RSSI, security, hidden)
bssid is hardware address of an access point, in binary form, returned as bytes object. You can use binascii.
hexlify() to convert it to ASCII form.
There are five values for security:

• 0 – open
• 1 – WEP
• 2 – WPA-PSK
• 3 – WPA2-PSK
• 4 – WPA/WPA2-PSK

and two for hidden:
• 0 – visible
• 1 – hidden

WLAN.status([param])
Return the current status of the wireless connection.
When called with no argument the return value describes the network link status. The possible statuses are defined
as constants:

• STAT_IDLE – no connection and no activity,
• STAT_CONNECTING – connecting in progress,
• STAT_WRONG_PASSWORD – failed due to incorrect password,
• STAT_NO_AP_FOUND – failed because no access point replied,
• STAT_CONNECT_FAIL – failed due to other problems,
• STAT_GOT_IP – connection successful.

When called with one argument param should be a string naming the status parameter to retrieve. Supported
parameters in WiFI STA mode are: 'rssi'.

WLAN.isconnected()
In case of STA mode, returns True if connected to a WiFi access point and has a valid IP address. In AP mode
returns True when a station is connected. Returns False otherwise.

WLAN.ifconfig([(ip, subnet, gateway, dns)])
Get/set IP-level network interface parameters: IP address, subnet mask, gateway and DNS server. When called
with no arguments, this method returns a 4-tuple with the above information. To set the above values, pass a 4-tuple
with the required information. For example:

nic.ifconfig(('192.168.0.4', '255.255.255.0', '192.168.0.1', '8.8.8.8'))

WLAN.config('param')

1.2. MicroPython-specific libraries 97

MicroPython Documentation, Release v1.20.0

WLAN.config(param=value, ...)
Get or set general network interface parameters. These methods allow to work with additional parameters beyond
standard IP configuration (as dealt with by WLAN.ifconfig()). These include network-specific and hardware-
specific parameters. For setting parameters, keyword argument syntax should be used, multiple parameters can be
set at once. For querying, parameters name should be quoted as a string, and only one parameter can be queries at
time:

Set WiFi access point name (formally known as SSID) and WiFi channel
ap.config(ssid='My AP', channel=11)
Query params one by one
print(ap.config('ssid'))
print(ap.config('channel'))

Following are commonly supported parameters (availability of a specific parameter depends on network technology
type, driver, and MicroPython port).

Pa-
rame-
ter

Description

mac MAC address (bytes)
ssid WiFi access point name (string)
chan-
nel

WiFi channel (integer)

hidden Whether SSID is hidden (boolean)
secu-
rity

Security protocol supported (enumeration, see module constants)

key Access key (string)
host-
name

The hostname that will be sent to DHCP (STA interfaces) and mDNS (if supported, both STA and
AP). (Deprecated, use network.hostname() instead)

recon-
nects

Number of reconnect attempts to make (integer, 0=none, -1=unlimited)

tx-
power

Maximum transmit power in dBm (integer or float)

class WLANWiPy – WiPy specific WiFi control

Note: This class is a non-standard WLAN implementation for the WiPy. It is available simply as network.WLAN on
the WiPy but is named in the documentation below as network.WLANWiPy to distinguish it from the more general
network.WLAN class.

This class provides a driver for the WiFi network processor in the WiPy. Example usage:

import network
import time
setup as a station
wlan = network.WLAN(mode=WLAN.STA)
wlan.connect('your-ssid', auth=(WLAN.WPA2, 'your-key'))
while not wlan.isconnected():

time.sleep_ms(50)
print(wlan.ifconfig())

(continues on next page)

98 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

(continued from previous page)
now use socket as usual
...

Constructors

class network.WLANWiPy(id=0, ...)
Create a WLAN object, and optionally configure it. See init() for params of configuration.

Note: The WLAN constructor is special in the sense that if no arguments besides the id are given, it will return the already
existing WLAN instance without re-configuring it. This is because WLAN is a system feature of the WiPy. If the already
existing instance is not initialized it will do the same as the other constructors an will initialize it with default values.

Methods

WLANWiPy.init(mode, *, ssid, auth, channel, antenna)
Set or get the WiFi network processor configuration.
Arguments are:

• mode can be either WLAN.STA or WLAN.AP.
• ssid is a string with the ssid name. Only needed when mode is WLAN.AP.
• auth is a tuple with (sec, key). Security can be None, WLAN.WEP, WLAN.WPA or WLAN.WPA2. The key is
a string with the network password. If sec is WLAN.WEP the key must be a string representing hexadecimal
values (e.g. ‘ABC1DE45BF’). Only needed when mode is WLAN.AP.

• channel a number in the range 1-11. Only needed when mode is WLAN.AP.
• antenna selects between the internal and the external antenna. Can be either WLAN.INT_ANT or WLAN.
EXT_ANT.

For example, you can do:

create and configure as an access point
wlan.init(mode=WLAN.AP, ssid='wipy-wlan', auth=(WLAN.WPA2,'www.wipy.io'),␣
↪→channel=7, antenna=WLAN.INT_ANT)

or:

configure as an station
wlan.init(mode=WLAN.STA)

WLANWiPy.connect(ssid, *, auth=None, bssid=None, timeout=None)
Connect to a WiFi access point using the given SSID, and other security parameters.

• auth is a tuple with (sec, key). Security can be None, WLAN.WEP, WLAN.WPA or WLAN.WPA2. The key is
a string with the network password. If sec is WLAN.WEP the key must be a string representing hexadecimal
values (e.g. ‘ABC1DE45BF’).

• bssid is the MAC address of the AP to connect to. Useful when there are several APs with the same ssid.
• timeout is the maximum time in milliseconds to wait for the connection to succeed.

1.2. MicroPython-specific libraries 99

MicroPython Documentation, Release v1.20.0

WLANWiPy.scan()
Performs a network scan and returns a list of named tuples with (ssid, bssid, sec, channel, rssi). Note that channel
is always None since this info is not provided by the WiPy.

WLANWiPy.disconnect()
Disconnect from the WiFi access point.

WLANWiPy.isconnected()
In case of STA mode, returns True if connected to a WiFi access point and has a valid IP address. In AP mode
returns True when a station is connected, False otherwise.

WLANWiPy.ifconfig(if_id=0, config=['dhcp' or configtuple])
With no parameters given returns a 4-tuple of (ip, subnet_mask, gateway, DNS_server).
if 'dhcp' is passed as a parameter then the DHCP client is enabled and the IP params are negotiated with the
AP.
If the 4-tuple config is given then a static IP is configured. For instance:

wlan.ifconfig(config=('192.168.0.4', '255.255.255.0', '192.168.0.1', '8.8.8.8'))

WLANWiPy.mode([mode])
Get or set the WLAN mode.

WLANWiPy.ssid([ssid])
Get or set the SSID when in AP mode.

WLANWiPy.auth([auth])
Get or set the authentication type when in AP mode.

WLANWiPy.channel([channel])
Get or set the channel (only applicable in AP mode).

WLANWiPy.antenna([antenna])
Get or set the antenna type (external or internal).

WLANWiPy.mac([mac_addr])
Get or set a 6-byte long bytes object with the MAC address.

WLANWiPy.irq(*, handler, wake)
Create a callback to be triggered when a WLAN event occurs during machine.SLEEP mode. Events are trig-
gered by socket activity or by WLAN connection/disconnection.

• handler is the function that gets called when the IRQ is triggered.
• wake must be machine.SLEEP.

Returns an IRQ object.

Constants

WLANWiPy.STA

WLANWiPy.AP
selects the WLAN mode

WLANWiPy.WEP

WLANWiPy.WPA

WLANWiPy.WPA2
selects the network security

100 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

WLANWiPy.INT_ANT

WLANWiPy.EXT_ANT
selects the antenna type

class WIZNET5K – control WIZnet5x00 Ethernet modules

This class allows you to control WIZnet5x00 Ethernet adaptors based on the W5200 and W5500 chipsets. The particular
chipset that is supported by the firmware is selected at compile-time via the MICROPY_PY_NETWORK_WIZNET5K
option.
Example usage:

import network
nic = network.WIZNET5K(pyb.SPI(1), pyb.Pin.board.X5, pyb.Pin.board.X4)
print(nic.ifconfig())

now use socket as usual
...

For this example to work the WIZnet5x00 module must have the following connections:
• MOSI connected to X8
• MISO connected to X7
• SCLK connected to X6
• nSS connected to X5
• nRESET connected to X4

It is possible to use other SPI buses and other pins for nSS and nRESET.

Constructors

class network.WIZNET5K(spi, pin_cs, pin_rst)
Create a WIZNET5K driver object, initialise the WIZnet5x00 module using the given SPI bus and pins, and return
the WIZNET5K object.
Arguments are:

• spi is an SPI object which is the SPI bus that the WIZnet5x00 is connected to (the MOSI, MISO and SCLK
pins).

• pin_cs is a Pin object which is connected to the WIZnet5x00 nSS pin.
• pin_rst is a Pin object which is connected to the WIZnet5x00 nRESET pin.

All of these objects will be initialised by the driver, so there is no need to initialise them yourself. For example,
you can use:

nic = network.WIZNET5K(pyb.SPI(1), pyb.Pin.board.X5, pyb.Pin.board.X4)

1.2. MicroPython-specific libraries 101

MicroPython Documentation, Release v1.20.0

Methods

WIZNET5K.isconnected()
Returns True if the physical Ethernet link is connected and up. Returns False otherwise.

WIZNET5K.ifconfig([(ip, subnet, gateway, dns)])
Get/set IP address, subnet mask, gateway and DNS.
When called with no arguments, this method returns a 4-tuple with the above information.
To set the above values, pass a 4-tuple with the required information. For example:

nic.ifconfig(('192.168.0.4', '255.255.255.0', '192.168.0.1', '8.8.8.8'))

WIZNET5K.regs()
Dump the WIZnet5x00 registers. Useful for debugging.

class LAN – control an Ethernet module

This class allows you to control the Ethernet interface. The PHY hardware type is board-specific.
Example usage:

import network
nic = network.LAN(0)
print(nic.ifconfig())

now use socket as usual
...

Constructors

class network.LAN(id, *, phy_type=<board_default>, phy_addr=<board_default>,
ref_clk_mode=<board_default>)

Create a LAN driver object, initialise the LAN module using the given PHY driver name, and return the LAN
object.
Arguments are:

• id is the number of the Ethernet port, either 0 or 1.
• phy_type is the name of the PHY driver. For most board the on-board PHY has to be used and is the default.
Suitable values are port specific.

• phy_addr specifies the address of the PHY interface. As with phy_type, the hardwired value has to be used
for most boards and that value is the default.

• ref_clk_mode specifies, whether the data clock is provided by the Ethernet controller or the PYH interface.
The default value is the one that matches the board. If set to LAN.OUT or Pin.OUT or True, the clock is
driven by the Ethernet controller, if set to LAN.IN or Pin.IN or False, the clock is driven by the PHY
interface.

For example, with the Seeed Arch Mix board you can use:

nic = LAN(0, phy_type=LAN.PHY_LAN8720, phy_addr=1, ref_clk_mode=Pin.IN)

102 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

Methods

LAN.active([state])
With a parameter, it sets the interface active if state is true, otherwise it sets it inactive. Without a parameter, it
returns the state.

LAN.isconnected()
Returns True if the physical Ethernet link is connected and up. Returns False otherwise.

LAN.status()
Returns the LAN status.

LAN.ifconfig([(ip, subnet, gateway, dns)])
Get/set IP address, subnet mask, gateway and DNS.
When called with no arguments, this method returns a 4-tuple with the above information.
To set the above values, pass a 4-tuple with the required information. For example:

nic.ifconfig(('192.168.0.4', '255.255.255.0', '192.168.0.1', '8.8.8.8'))

LAN.config(config_parameters)
Sets or gets parameters of the LAN interface. The only parameter that can be retrieved is the MAC address, using:

mac = LAN.config("mac")

The parameters that can be set are:
• trace=n sets trace levels; suitable values are:

– 2: trace TX
– 4: trace RX
– 8: full trace

• low_power=bool sets or clears low power mode, valid values being False or True.

Specific LAN class implementations

On the mimxrt port, suitable values for the phy_type constructor argument are: PHY_KSZ8081, PHY_DP83825,
PHY_DP83848, PHY_LAN8720, PHY_RTL8211F.

Network functions

The following are functions available in the network module.
network.country([code])

Get or set the two-letter ISO 3166-1 Alpha-2 country code to be used for radio compliance.
If the code parameter is provided, the country will be set to this value. If the function is called without parameters,
it returns the current country.
The default code "XX" represents the “worldwide” region.

network.hostname([name])
Get or set the hostname that will identify this device on the network. It is applied to all interfaces.
This hostname is used for:

1.2. MicroPython-specific libraries 103

MicroPython Documentation, Release v1.20.0

• Sending to the DHCP server in the client request. (If using DHCP)
• Broadcasting via mDNS. (If enabled)

If the name parameter is provided, the hostnamewill be set to this value. If the function is calledwithout parameters,
it returns the current hostname.
The default hostname is typically the name of the board.

network.phy_mode([mode])
Get or set the PHY mode.
If the mode parameter is provided, the PHY mode will be set to this value. If the function is called without
parameters, it returns the current PHY mode.
The possible modes are defined as constants:

• MODE_11B – IEEE 802.11b,
• MODE_11G – IEEE 802.11g,
• MODE_11N – IEEE 802.11n.

Availability: ESP8266.

1.2.9 uctypes – access binary data in a structured way

This module implements “foreign data interface” for MicroPython. The idea behind it is similar to CPython’s ctypes
modules, but the actual API is different, streamlined and optimized for small size. The basic idea of the module is to define
data structure layout with about the same power as the C language allows, and then access it using familiar dot-syntax to
reference sub-fields.

Warning: uctypesmodule allows access to arbitrary memory addresses of the machine (including I/O and control
registers). Uncareful usage of it may lead to crashes, data loss, and even hardware malfunction.

See also:
Module struct Standard Python way to access binary data structures (doesn’t scale well to large and complex struc-

tures).
Usage examples:

import uctypes

Example 1: Subset of ELF file header
https://wikipedia.org/wiki/Executable_and_Linkable_Format#File_header
ELF_HEADER = {

"EI_MAG": (0x0 | uctypes.ARRAY, 4 | uctypes.UINT8),
"EI_DATA": 0x5 | uctypes.UINT8,
"e_machine": 0x12 | uctypes.UINT16,

}

"f" is an ELF file opened in binary mode
buf = f.read(uctypes.sizeof(ELF_HEADER, uctypes.LITTLE_ENDIAN))
header = uctypes.struct(uctypes.addressof(buf), ELF_HEADER, uctypes.LITTLE_ENDIAN)
assert header.EI_MAG == b"\x7fELF"
assert header.EI_DATA == 1, "Oops, wrong endianness. Could retry with uctypes.BIG_
↪→ENDIAN."

(continues on next page)

104 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

(continued from previous page)
print("machine:", hex(header.e_machine))

Example 2: In-memory data structure, with pointers
COORD = {

"x": 0 | uctypes.FLOAT32,
"y": 4 | uctypes.FLOAT32,

}

STRUCT1 = {
"data1": 0 | uctypes.UINT8,
"data2": 4 | uctypes.UINT32,
"ptr": (8 | uctypes.PTR, COORD),

}

Suppose you have address of a structure of type STRUCT1 in "addr"
uctypes.NATIVE is optional (used by default)
struct1 = uctypes.struct(addr, STRUCT1, uctypes.NATIVE)
print("x:", struct1.ptr[0].x)

Example 3: Access to CPU registers. Subset of STM32F4xx WWDG block
WWDG_LAYOUT = {

"WWDG_CR": (0, {
BFUINT32 here means size of the WWDG_CR register
"WDGA": 7 << uctypes.BF_POS | 1 << uctypes.BF_LEN | uctypes.BFUINT32,
"T": 0 << uctypes.BF_POS | 7 << uctypes.BF_LEN | uctypes.BFUINT32,

}),
"WWDG_CFR": (4, {

"EWI": 9 << uctypes.BF_POS | 1 << uctypes.BF_LEN | uctypes.BFUINT32,
"WDGTB": 7 << uctypes.BF_POS | 2 << uctypes.BF_LEN | uctypes.BFUINT32,
"W": 0 << uctypes.BF_POS | 7 << uctypes.BF_LEN | uctypes.BFUINT32,

}),
}

WWDG = uctypes.struct(0x40002c00, WWDG_LAYOUT)

WWDG.WWDG_CFR.WDGTB = 0b10
WWDG.WWDG_CR.WDGA = 1
print("Current counter:", WWDG.WWDG_CR.T)

Defining structure layout

Structure layout is defined by a “descriptor” - a Python dictionary which encodes field names as keys and other properties
required to access them as associated values:

{
"field1": <properties>,
"field2": <properties>,
...

}

Currently, uctypes requires explicit specification of offsets for each field. Offset are given in bytes from the structure
start.
Following are encoding examples for various field types:

1.2. MicroPython-specific libraries 105

MicroPython Documentation, Release v1.20.0

• Scalar types:

"field_name": offset | uctypes.UINT32

in other words, the value is a scalar type identifier ORed with a field offset (in bytes) from the start of the structure.
• Recursive structures:

"sub": (offset, {
"b0": 0 | uctypes.UINT8,
"b1": 1 | uctypes.UINT8,

})

i.e. value is a 2-tuple, first element of which is an offset, and second is a structure descriptor dictionary (note: offsets
in recursive descriptors are relative to the structure it defines). Of course, recursive structures can be specified not
just by a literal dictionary, but by referring to a structure descriptor dictionary (defined earlier) by name.

• Arrays of primitive types:

"arr": (offset | uctypes.ARRAY, size | uctypes.UINT8),

i.e. value is a 2-tuple, first element of which is ARRAY flag ORed with offset, and second is scalar element type
ORed number of elements in the array.

• Arrays of aggregate types:

"arr2": (offset | uctypes.ARRAY, size, {"b": 0 | uctypes.UINT8}),

i.e. value is a 3-tuple, first element of which is ARRAY flag ORed with offset, second is a number of elements in
the array, and third is a descriptor of element type.

• Pointer to a primitive type:

"ptr": (offset | uctypes.PTR, uctypes.UINT8),

i.e. value is a 2-tuple, first element of which is PTR flag ORed with offset, and second is a scalar element type.
• Pointer to an aggregate type:

"ptr2": (offset | uctypes.PTR, {"b": 0 | uctypes.UINT8}),

i.e. value is a 2-tuple, first element of which is PTR flag ORed with offset, second is a descriptor of type pointed
to.

• Bitfields:

"bitf0": offset | uctypes.BFUINT16 | lsbit << uctypes.BF_POS | bitsize << uctypes.
↪→BF_LEN,

i.e. value is a type of scalar value containing given bitfield (typenames are similar to scalar types, but prefixes with
BF), ORed with offset for scalar value containing the bitfield, and further ORed with values for bit position and bit
length of the bitfield within the scalar value, shifted by BF_POS and BF_LEN bits, respectively. A bitfield position
is counted from the least significant bit of the scalar (having position of 0), and is the number of right-most bit of
a field (in other words, it’s a number of bits a scalar needs to be shifted right to extract the bitfield).
In the example above, first a UINT16 value will be extracted at offset 0 (this detail may be important when accessing
hardware registers, where particular access size and alignment are required), and then bitfield whose rightmost bit
is lsbit bit of this UINT16, and length is bitsize bits, will be extracted. For example, if lsbit is 0 and bitsize is 8, then
effectively it will access least-significant byte of UINT16.

106 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

Note that bitfield operations are independent of target byte endianness, in particular, example above will access
least-significant byte of UINT16 in both little- and big-endian structures. But it depends on the least significant bit
being numbered 0. Some targets may use different numbering in their native ABI, but uctypes always uses the
normalized numbering described above.

Module contents

class uctypes.struct(addr, descriptor, layout_type=NATIVE, /)
Instantiate a “foreign data structure” object based on structure address in memory, descriptor (encoded as a dic-
tionary), and layout type (see below).

uctypes.LITTLE_ENDIAN
Layout type for a little-endian packed structure. (Packed means that every field occupies exactly as many bytes as
defined in the descriptor, i.e. the alignment is 1).

uctypes.BIG_ENDIAN
Layout type for a big-endian packed structure.

uctypes.NATIVE
Layout type for a native structure - with data endianness and alignment conforming to the ABI of the system on
which MicroPython runs.

uctypes.sizeof(struct, layout_type=NATIVE, /)
Return size of data structure in bytes. The struct argument can be either a structure class or a specific instantiated
structure object (or its aggregate field).

uctypes.addressof(obj)
Return address of an object. Argument should be bytes, bytearray or other object supporting buffer protocol (and
address of this buffer is what actually returned).

uctypes.bytes_at(addr, size)
Capture memory at the given address and size as bytes object. As bytes object is immutable, memory is actually
duplicated and copied into bytes object, so if memory contents change later, created object retains original value.

uctypes.bytearray_at(addr, size)
Capture memory at the given address and size as bytearray object. Unlike bytes_at() function above, memory is
captured by reference, so it can be both written too, and you will access current value at the given memory address.

uctypes.UINT8
uctypes.INT8
uctypes.UINT16
uctypes.INT16
uctypes.UINT32
uctypes.INT32
uctypes.UINT64
uctypes.INT64

Integer types for structure descriptors. Constants for 8, 16, 32, and 64 bit types are provided, both signed and
unsigned.

uctypes.FLOAT32
uctypes.FLOAT64

Floating-point types for structure descriptors.
uctypes.VOID

VOID is an alias for UINT8, and is provided to conveniently define C’s void pointers: (uctypes.PTR,
uctypes.VOID).

uctypes.PTR

1.2. MicroPython-specific libraries 107

MicroPython Documentation, Release v1.20.0

uctypes.ARRAY
Type constants for pointers and arrays. Note that there is no explicit constant for structures, it’s implicit: an
aggregate type without PTR or ARRAY flags is a structure.

Structure descriptors and instantiating structure objects

Given a structure descriptor dictionary and its layout type, you can instantiate a specific structure instance at a given
memory address using uctypes.struct() constructor. Memory address usually comes from following sources:

• Predefined address, when accessing hardware registers on a baremetal system. Lookup these addresses in datasheet
for a particular MCU/SoC.

• As a return value from a call to some FFI (Foreign Function Interface) function.
• From uctypes.addressof(), when you want to pass arguments to an FFI function, or alternatively, to access
some data for I/O (for example, data read from a file or network socket).

Structure objects

Structure objects allow accessing individual fields using standard dot notation: my_struct.substruct1.field1.
If a field is of scalar type, getting it will produce a primitive value (Python integer or float) corresponding to the value
contained in a field. A scalar field can also be assigned to.
If a field is an array, its individual elements can be accessed with the standard subscript operator [] - both read and
assigned to.
If a field is a pointer, it can be dereferenced using [0] syntax (corresponding to C * operator, though [0] works in C
too). Subscripting a pointer with other integer values but 0 are also supported, with the same semantics as in C.
Summing up, accessing structure fields generally follows the C syntax, except for pointer dereference, when you need to
use [0] operator instead of *.

Limitations

1. Accessing non-scalar fields leads to allocation of intermediate objects to represent them. This means that special
care should be taken to layout a structure which needs to be accessed when memory allocation is disabled (e.g. from an
interrupt). The recommendations are:

• Avoid accessing nested structures. For example, instead ofmcu_registers.peripheral_a.register1,
define separate layout descriptors for each peripheral, to be accessed as peripheral_a.register1. Or just
cache a particular peripheral: peripheral_a = mcu_registers.peripheral_a. If a register consists
of multiple bitfields, you would need to cache references to a particular register: reg_a = mcu_registers.
peripheral_a.reg_a.

• Avoid other non-scalar data, like arrays. For example, instead of peripheral_a.register[0] use
peripheral_a.register0. Again, an alternative is to cache intermediate values, e.g. register0 =
peripheral_a.register[0].

2. Range of offsets supported by the uctypes module is limited. The exact range supported is considered an imple-
mentation detail, and the general suggestion is to split structure definitions to cover from a few kilobytes to a few dozen of
kilobytes maximum. In most cases, this is a natural situation anyway, e.g. it doesn’t make sense to define all registers of
an MCU (spread over 32-bit address space) in one structure, but rather a peripheral block by peripheral block. In some
extreme cases, you may need to split a structure in several parts artificially (e.g. if accessing native data structure with
multi-megabyte array in the middle, though that would be a very synthetic case).
The following libraries provide drivers for hardware components.

108 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

1.2.10 WM8960 – Driver for the WM8960 codec

This driver is used to control a WM8960 codec chip. It is a Python translation of the C-Code provided by NXP/Freescale
for their i.MX RT series of MCUs. Very little has been added, and just a few API related names were changed or added
to cope with the naming style of MicroPython.
The primary purpose of the driver is initialization and setting operation modes of the codec. It does not do the audio data
processing for the codec. That is the task of a separate driver.
The WM8960 supports an I2C interface, in addition to the audio interface. The connection depends on the interface used
and the number of devices in the system. For the I2C interface, SCL and SDA have to be connected, and of course GND
and Vcc. The I2C default address is 0x1A.

Constructor

class WM8960(i2c, sample_rate, *, bits=16, swap=SWAP_NONE, route=ROUTE_PLAYBACK_RECORD,
left_input=INPUT_MIC3, right_input=INPUT_MIC2, sysclk_source=SYSCLK_MCLK,
mclk_freq=None, primary=False, adc_sync=SYNC_DAC, protocol=BUS_I2S,
i2c_address=WM8960_I2C_ADDR)

Create a WM8960 driver object, initialize the device with default settings and return the WM8960 object.
Only the first two arguments are mandatory. All others are optional. The arguments are:

• i2c is the I2C bus object.
• sample_rate is the audio sample rate. Acceptable values are 8000, 11025, 12000, 16000, 22050, 24000,
32000, 44100, 48000, 96000, 192000 and 384000. Note that not every I2S hardware will support all values.

• bits is the number of bits per audio word. Acceptable value are 16, 20, 24, and 32.
• swap swaps the left & right channel, if set; see below for options.
• route Setting the audio path in the codec; see below for options.
• left_input sets the audio source for the left input channel; see below for options.
• right_input sets the audio source for the right input channel; see below for options.
• play_source sets the audio target for the output audio; see below for options.
• sysclk_source controls whether the internal master clock called “sysclk” is directly taken from the MCLK
input or derived from it using an internal PLL. It is usually not required to change this.

• mclk_freq sets the mclk frequency applied to the MCLK pin of the codec. If not set, default values are used.
• primary lets the WM8960 act as primary or secondary device. The default setting is False. When set to
False, sample_rate and bits are controlled by the MCU.

• adc_sync sets which input is used for the ADC sync signal. The default is using the DACLRC pin.
• protocol sets the communication protocol. The default is I2S. See below for all options.
• i2c_address sets the I2C address of the WM8960, with default 0x1A.

If mclk_freq is not set the following default values are used:
• sysclk_source == SYSCLK_PLL: 11.2896MHz for sample rates of 44100, 22050 and 11015 Hz, and 12.288
Mhz for sample rates < 48000, otherwise sample_rate * 256.

• sysclk_source == SYSCLK_MCLK: sample_rate * 256.
If the MCLK signal is applied using, for example,. a separate oscillator, it must be specified for proper operation.

1.2. MicroPython-specific libraries 109

MicroPython Documentation, Release v1.20.0

Tables of parameter constants

Table 1: Swap Parameter
Value Name
0 SWAP_NONE
1 SWAP_INPUT
2 SWAP_OUTPUT

Table 2: Protocol Parameter
Value Name
2 BUS_I2S
1 BUS_LEFT_JUSTIFIED
0 BUS_RIGHT_JUSTIFIED
3 BUS_PCMA
19 BUS_PCMB

Table 3: Input Source Parameter
Value Name Type
0 INPUT_CLOSED
1 INPUT_MIC1 Single ended
2 INPUT_MIC2 Differential
3 INPUT_MIC3 Differential
4 INPUT_LINE2
5 INPUT_LINE3

Table 4: Route Parameter
Value Name
0 ROUTE_BYPASS
1 ROUTE_PLAYBACK
2 ROUTE_PLAYBACK_RECORD
5 ROUTE_RECORD

Table 5: Master Clock Source Parameter
Value Name
0 SYSCLK_MCLK
1 SYSCLK_PLL

110 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

Table 6: Module Names
Value Name
0 MODULE_ADC
1 MODULE_DAC
2 MODULE_VREF
3 MODULE_HEADPHONE
4 MODULE_MIC_BIAS
5 MODULE_MIC
6 MODULE_LINE_IN
7 MODULE_LINE_OUT
8 MODULE_SPEAKER
9 MODULE_OMIX
10 MODULE_MONO_OUT

Table 7: Play Channel Names
Value Name
1 PLAY_HEADPHONE_LEFT
2 PLAY_HEADPHONE_RIGHT
4 PLAY_SPEAKER_LEFT
8 PLAY_SPEAKER_RIGHT

Table 8: adc_sync Parameters
Value Name
0 SYNC_ADC
1 SYNC_DAC

Methods

In addition to initialization, the driver provides some useful methods for controlling its operation:
WM8960.set_left_input(input_source)

Specify the source for the left input. The input source names are listed above.
WM8960.set_right_input(input_source)

Specify the source for the right input. The input source names are listed above.
WM8960.volume(module, volume_l=None, volume_r=None)

Sets or gets the volume of a certain module.
If no volume values are supplied, the actual volume tuple is returned.
If one or two values are supplied, it sets the volume of a certain module. If two values are provided, the first one is
used for the left channel, the second for the right channel. If only one value is supplied, it is used for both channels.
The value range is normalized to 0.0-100.0 with a logarithmic scale.
For a list of suitable modules and db/step, see the table below.

1.2. MicroPython-specific libraries 111

MicroPython Documentation, Release v1.20.0

Table 9: Module Names and dB steps
dB/Step Name
1.28 MODULE_ADC
1.28 MODULE_DAC
0.8 MODULE_HEADPHONE
0.475 MODULE_LINE_IN
0.8 MODULE_SPEAKER

WM8960.mute(module, mute, soft=True, ramp=wm8960.MUTE_FAST)
Mute or unmute the output. If mute is True, the output is muted, if False it is unmuted.
If soft is set as True, muting will happen as a soft transition. The time for the transition is defined by ramp, which
is either MUTE_FAST or MUTE_SLOW.

WM8960.set_data_route(route)
Set the audio data route. For the parameter value/names, see the table above.

WM8960.set_module(module, active)
Enable or disable a module, with active being False or True. For the list of module names, see the table above.
Note that enabling MODULE_MONO_OUT is different from the WM8960.mono method. The first enables output
3, while the WM8960.mono method sends a mono mix to the left and right output.

WM8960.enable_module(module)
Enable a module. For the list of module names, see the table above.

WM8960.disable_module(module)
Disable a module. For the list of module names, see the table above.

WM8960.expand_3d(level)
Enable Stereo 3D exansion. level is a number between 0 and 15. A value of 0 disables the expansion.

WM8960.mono(active)
If active is True, a Mono mix is sent to the left and right output channel. This is different from enabling the
MODULE_MONO_MIX, which enables output 3.

WM8960.alc_mode(channel, mode=ALC_MODE)
Enables or disables ALC mode. Parameters are:

• channel enables and sets the channel for ALC. The parameter values are:
– ALC_OFF: Switch ALC off
– ALS_RIGHT: Use the right input channel
– ALC_LEFT: Use the left input channel
– ALC_STEREO: Use both input channels.

• mode sets the ALC mode. Input values are:
– ALC_MODE: act as ALC
– ALC_LIMITER: act as limiter.

WM8960.alc_gain(target=- 12, max_gain=30, min_gain=- 17.25, noise_gate=- 78)
Set the target level, highest and lowest gain levels and the noise gate as dB level. Permitted ranges are:

• target: -22.5 to -1.5 dB
• max_gain: -12 to 30 dB
• min_gain: -17 to 25 dB

112 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

• noise_gate: -78 to -30 dB
Excess values are limited to the permitted ranges. A value of -78 or less for noise_gate disables the noise gate
function.

WM8960.alc_time(attack=24, decay=192, hold=0)
Set the dynamic characteristic of ALC. The times are given as millisecond values. Permitted ranges are:

• attack: 6 to 6140
• decay: 24 to 24580
• hold: 0 to 43000

Excess values are limited within the permitted ranges.
WM8960.deemphasis(active)

Enables or disables a deemphasis filter for playback, with active being False or True. This filter is applied only
for sample rates of 32000, 44100 and 48000. For other sample rates, the filter setting is silently ignored.

WM8960.deinit()
Disable all modules.

Examples

Run WM8960 in secondary mode (default):

Micro_python WM8960 Codec driver
#
Setting the driver to Slave mode using the default settings
#
from machine import Pin, I2C
import wm8960
i2c = I2C(0)
wm=wm8960.WM8960(i2c, 32000, left_input=wm8960.INPUT_MIC1)
wm.set_volume(wm8960.MODULE_HEADPHONE, 100)

Run WM8960 in primary mode:

Micro_python WM8960 Codec driver
#
Setting the driver to Master mode using specific audio format settings
#
from machine import Pin, I2C
import wm8960

i2c = I2C(0)
wm=wm8960.WM8960(i2c, 44100, primary=True, bits=16)

Run WM8960 on a MIMXRT10xx_DEV board in secondary mode (default):

Micro_python WM8960 Codec driver
#
Setting the driver to Slave mode using the default settings
swap the input channels such that a MIMXRT Dev board mic, which
is connected to the right input, is assigned to the left audio channel.
#
from machine import Pin, I2C
import wm8960

(continues on next page)

1.2. MicroPython-specific libraries 113

MicroPython Documentation, Release v1.20.0

(continued from previous page)
i2c = I2C(0)
wm=wm8960.WM8960(i2c, sample_rate=16_000,

adc_sync=wm8960.SYNC_DAC,
swap=wm8960.SWAP_INPUT,
sysclk_source=wm8960.SYSCLK_MCLK)

Record with a Sparkfun WM8960 breakout board with Teensy in secondary mode (default):

Micro_python WM8960 Codec driver
#
The breakout board uses a fixed 24MHz MCLK. Therefore the internal
PLL must be used as sysclk, which is the master audio clock.
The Sparkfun board has the WS pins for RX and TX connected on the
board. Therefore adc_sync must be set to sync_adc, to configure
it's ADCLRC pin as input.
#
from machine import Pin, I2C
import wm8960
i2c = I2C(0)
wm=wm8960.WM8960(i2c, sample_rate=16_000,

adc_sync=wm8960.SYNC_ADC,
sysclk_source=wm8960.SYSCLK_PLL,
mclk_freq=24_000_000,
left_input=wm8960.INPUT_MIC1,
right_input=wm8960.INPUT_CLOSED)

Play with a Sparkfun WM8960 breakout board with Teensy in secondary mode (default):

The breakout board uses a fixed 24MHz MCLK. Therefore the internal
PLL must be used as sysclk, which is the master audio clock.
The Sparkfun board has the WS pins for RX and TX connected on the
board. Therefore adc_sync must be set to sync_adc, to configure
it's ADCLRC pin as input.

from machine import I2C
i2c=I2C(0)
import wm8960
wm=wm8960.WM8960(i2c, sample_rate=44_100,

adc_sync=wm8960.SYNC_ADC,
sysclk_source=wm8960.SYSCLK_PLL,
mclk_freq=24_000_000)

wm.set_volume(wm8960.MODULE_HEADPHONE, 100)

1.3 Port-specific libraries

In some cases the following port/board-specific libraries have functions or classes similar to those in the machine library.
Where this occurs, the entry in the port specific library exposes hardware functionality unique to that platform.
To write portable code use functions and classes from the machine module. To access platform-specific hardware use
the appropriate library, e.g. pyb in the case of the Pyboard.

114 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

1.3.1 Libraries specific to the pyboard

The following libraries are specific to the pyboard.

pyb— functions related to the board

The pyb module contains specific functions related to the board.

Time related functions

pyb.delay(ms)
Delay for the given number of milliseconds.

pyb.udelay(us)
Delay for the given number of microseconds.

pyb.millis()
Returns the number of milliseconds since the board was last reset.
The result is always a MicroPython smallint (31-bit signed number), so after 2^30 milliseconds (about 12.4 days)
this will start to return negative numbers.
Note that if pyb.stop() is issued the hardware counter supporting this function will pause for the duration of
the “sleeping” state. This will affect the outcome of pyb.elapsed_millis().

pyb.micros()
Returns the number of microseconds since the board was last reset.
The result is always a MicroPython smallint (31-bit signed number), so after 2^30 microseconds (about 17.8 min-
utes) this will start to return negative numbers.
Note that if pyb.stop() is issued the hardware counter supporting this function will pause for the duration of
the “sleeping” state. This will affect the outcome of pyb.elapsed_micros().

pyb.elapsed_millis(start)
Returns the number of milliseconds which have elapsed since start.
This function takes care of counter wrap, and always returns a positive number. This means it can be used to
measure periods up to about 12.4 days.
Example:

start = pyb.millis()
while pyb.elapsed_millis(start) < 1000:

Perform some operation

pyb.elapsed_micros(start)
Returns the number of microseconds which have elapsed since start.
This function takes care of counter wrap, and always returns a positive number. This means it can be used to
measure periods up to about 17.8 minutes.
Example:

start = pyb.micros()
while pyb.elapsed_micros(start) < 1000:

Perform some operation
pass

1.3. Port-specific libraries 115

MicroPython Documentation, Release v1.20.0

Reset related functions

pyb.hard_reset()
Resets the pyboard in a manner similar to pushing the external RESET button.

pyb.bootloader()
Activate the bootloader without BOOT* pins.

pyb.fault_debug(value)
Enable or disable hard-fault debugging. A hard-fault is when there is a fatal error in the underlying system, like an
invalid memory access.
If the value argument is False then the board will automatically reset if there is a hard fault.
If value is True then, when the board has a hard fault, it will print the registers and the stack trace, and then cycle
the LEDs indefinitely.
The default value is disabled, i.e. to automatically reset.

Interrupt related functions

pyb.disable_irq()
Disable interrupt requests. Returns the previous IRQ state: False/True for disabled/enabled IRQs respectively.
This return value can be passed to enable_irq to restore the IRQ to its original state.

pyb.enable_irq(state=True)
Enable interrupt requests. If state is True (the default value) then IRQs are enabled. If state is False then
IRQs are disabled. The most common use of this function is to pass it the value returned by disable_irq to
exit a critical section.

Power related functions

pyb.freq([sysclk[, hclk[, pclk1[, pclk2]]]])
If given no arguments, returns a tuple of clock frequencies: (sysclk, hclk, pclk1, pclk2). These correspond to:

• sysclk: frequency of the CPU
• hclk: frequency of the AHB bus, core memory and DMA
• pclk1: frequency of the APB1 bus
• pclk2: frequency of the APB2 bus

If given any arguments then the function sets the frequency of the CPU, and the buses if additional arguments are
given. Frequencies are given in Hz. Eg freq(120000000) sets sysclk (the CPU frequency) to 120MHz. Note that
not all values are supported and the largest supported frequency not greater than the given value will be selected.
Supported sysclk frequencies are (in MHz): 8, 16, 24, 30, 32, 36, 40, 42, 48, 54, 56, 60, 64, 72, 84, 96, 108, 120,
144, 168.
The maximum frequency of hclk is 168MHz, of pclk1 is 42MHz, and of pclk2 is 84MHz. Be sure not to set
frequencies above these values.
The hclk, pclk1 and pclk2 frequencies are derived from the sysclk frequency using a prescaler (divider). Supported
prescalers for hclk are: 1, 2, 4, 8, 16, 64, 128, 256, 512. Supported prescalers for pclk1 and pclk2 are: 1, 2, 4, 8.
A prescaler will be chosen to best match the requested frequency.

116 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

A sysclk frequency of 8MHz uses the HSE (external crystal) directly and 16MHz uses the HSI (internal oscillator)
directly. The higher frequencies use the HSE to drive the PLL (phase locked loop), and then use the output of the
PLL.
Note that if you change the frequency while the USB is enabled then the USB may become unreliable. It is best
to change the frequency in boot.py, before the USB peripheral is started. Also note that sysclk frequencies below
36MHz do not allow the USB to function correctly.

pyb.wfi()
Wait for an internal or external interrupt.
This executes a wfi instruction which reduces power consumption of the MCU until any interrupt occurs (be it
internal or external), at which point execution continues. Note that the system-tick interrupt occurs once every
millisecond (1000Hz) so this function will block for at most 1ms.

pyb.stop()
Put the pyboard in a “sleeping” state.
This reduces power consumption to less than 500 uA. To wake from this sleep state requires an external interrupt
or a real-time-clock event. Upon waking execution continues where it left off.
See rtc.wakeup() to configure a real-time-clock wakeup event.

pyb.standby()
Put the pyboard into a “deep sleep” state.
This reduces power consumption to less than 50 uA. To wake from this sleep state requires a real-time-clock event,
or an external interrupt on X1 (PA0=WKUP) or X18 (PC13=TAMP1). Upon waking the system undergoes a hard
reset.
See rtc.wakeup() to configure a real-time-clock wakeup event.

Miscellaneous functions

pyb.have_cdc()
Return True if USB is connected as a serial device, False otherwise.

Note: This function is deprecated. Use pyb.USB_VCP().isconnected() instead.

pyb.hid((buttons, x, y, z))
Takes a 4-tuple (or list) and sends it to the USB host (the PC) to signal a HID mouse-motion event.

Note: This function is deprecated. Use pyb.USB_HID.send() instead.

pyb.info([dump_alloc_table])
Print out lots of information about the board.

pyb.main(filename)
Set the filename of the main script to run after boot.py is finished. If this function is not called then the default file
main.py will be executed.
It only makes sense to call this function from within boot.py.

pyb.mount(device, mountpoint, *, readonly=False, mkfs=False)

1.3. Port-specific libraries 117

MicroPython Documentation, Release v1.20.0

Note: This function is deprecated. Mounting and unmounting devices should be performed by os.mount()
and os.umount() instead.

Mount a block device and make it available as part of the filesystem. device must be an object that provides the
block protocol. (The following is also deprecated. See os.AbstractBlockDev for the correct way to create
a block device.)

• readblocks(self, blocknum, buf)

• writeblocks(self, blocknum, buf) (optional)
• count(self)

• sync(self) (optional)
readblocks and writeblocks should copy data between buf and the block device, starting from block
number blocknum on the device. buf will be a bytearray with length a multiple of 512. If writeblocks is
not defined then the device is mounted read-only. The return value of these two functions is ignored.
count should return the number of blocks available on the device. sync, if implemented, should sync the data
on the device.
The parameter mountpoint is the location in the root of the filesystem to mount the device. It must begin with
a forward-slash.
If readonly is True, then the device is mounted read-only, otherwise it is mounted read-write.
If mkfs is True, then a new filesystem is created if one does not already exist.

pyb.repl_uart(uart)
Get or set the UART object where the REPL is repeated on.

pyb.rng()
Return a 30-bit hardware generated random number.

pyb.sync()
Sync all file systems.

pyb.unique_id()
Returns a string of 12 bytes (96 bits), which is the unique ID of the MCU.

pyb.usb_mode([modestr], port=-1, vid=0xf055, pid=-1, msc=(), hid=pyb.hid_mouse, high_speed=False)
If called with no arguments, return the current USB mode as a string.
If called with modestr provided, attempts to configure the USB mode. The following values of modestr are under-
stood:

• None: disables USB
• 'VCP': enable with VCP (Virtual COM Port) interface
• 'MSC': enable with MSC (mass storage device class) interface
• 'VCP+MSC': enable with VCP and MSC
• 'VCP+HID': enable with VCP and HID (human interface device)
• 'VCP+MSC+HID': enabled with VCP, MSC and HID (only available on PYBD boards)

For backwards compatibility, 'CDC' is understood to mean 'VCP' (and similarly for 'CDC+MSC' and
'CDC+HID').
The port parameter should be an integer (0, 1, …) and selects which USB port to use if the board supports multiple
ports. A value of -1 uses the default or automatically selected port.

118 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

The vid and pid parameters allow you to specify the VID (vendor id) and PID (product id). A pid value of -1 will
select a PID based on the value of modestr.
If enablingMSCmode, themsc parameter can be used to specify a list of SCSI LUNs to expose on the mass storage
interface. For example msc=(pyb.Flash(), pyb.SDCard()).
If enabling HID mode, you may also specify the HID details by passing the hid keyword parameter. It takes a tuple
of (subclass, protocol, max packet length, polling interval, report descriptor). By default it will set appropriate
values for a USB mouse. There is also a pyb.hid_keyboard constant, which is an appropriate tuple for a USB
keyboard.
The high_speed parameter, when set to True, enables USB HS mode if it is supported by the hardware.

Constants

pyb.hid_mouse
pyb.hid_keyboard

A tuple of (subclass, protocol, max packet length, polling interval, report descriptor) to set appropriate values for
a USB mouse or keyboard.

Classes

class Accel – accelerometer control

Accel is an object that controls the accelerometer. Example usage:

accel = pyb.Accel()
for i in range(10):

print(accel.x(), accel.y(), accel.z())

Raw values are between -32 and 31.

Constructors

class pyb.Accel
Create and return an accelerometer object.

Methods

Accel.filtered_xyz()
Get a 3-tuple of filtered x, y and z values.
Implementation note: this method is currently implemented as taking the sum of 4 samples, sampled from the 3
previous calls to this function along with the sample from the current call. Returned values are therefore 4 times
the size of what they would be from the raw x(), y() and z() calls.

Accel.tilt()
Get the tilt register.

Accel.x()
Get the x-axis value.

1.3. Port-specific libraries 119

MicroPython Documentation, Release v1.20.0

Accel.y()
Get the y-axis value.

Accel.z()
Get the z-axis value.

Hardware Note

The accelerometer uses I2C bus 1 to communicate with the processor. Consequently when readings are being taken pins
X9 and X10 should be unused (other than for I2C). Other devices using those pins, and which therefore cannot be used
concurrently, are UART 1 and Timer 4 channels 1 and 2.

class ADC – analog to digital conversion

Usage:

import pyb

adc = pyb.ADC(pin) # create an analog object from a pin
val = adc.read() # read an analog value

adc = pyb.ADCAll(resolution) # create an ADCAll object
adc = pyb.ADCAll(resolution, mask) # create an ADCAll object for selected analog␣
↪→channels
val = adc.read_channel(channel) # read the given channel
val = adc.read_core_temp() # read MCU temperature
val = adc.read_core_vbat() # read MCU VBAT
val = adc.read_core_vref() # read MCU VREF
val = adc.read_vref() # read MCU supply voltage

Constructors

class pyb.ADC(pin)
Create an ADC object associated with the given pin. This allows you to then read analog values on that pin.

Methods

ADC.read()
Read the value on the analog pin and return it. The returned value will be between 0 and 4095.

ADC.read_timed(buf, timer)
Read analog values into buf at a rate set by the timer object.
buf can be bytearray or array.array for example. The ADC values have 12-bit resolution and are stored directly
into buf if its element size is 16 bits or greater. If buf has only 8-bit elements (eg a bytearray) then the sample
resolution will be reduced to 8 bits.
timer should be a Timer object, and a sample is read each time the timer triggers. The timer must already be
initialised and running at the desired sampling frequency.
To support previous behaviour of this function, timer can also be an integer which specifies the frequency (in Hz)
to sample at. In this case Timer(6) will be automatically configured to run at the given frequency.
Example using a Timer object (preferred way):

120 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

adc = pyb.ADC(pyb.Pin.board.X19) # create an ADC on pin X19
tim = pyb.Timer(6, freq=10) # create a timer running at 10Hz
buf = bytearray(100) # creat a buffer to store the samples
adc.read_timed(buf, tim) # sample 100 values, taking 10s

Example using an integer for the frequency:

adc = pyb.ADC(pyb.Pin.board.X19) # create an ADC on pin X19
buf = bytearray(100) # create a buffer of 100 bytes
adc.read_timed(buf, 10) # read analog values into buf at 10Hz

this will take 10 seconds to finish
for val in buf: # loop over all values

print(val) # print the value out

This function does not allocate any heap memory. It has blocking behaviour: it does not return to the calling
program until the buffer is full.

ADC.read_timed_multi((adcx, adcy, ...), (bufx, bufy, ...), timer)
This is a static method. It can be used to extract relative timing or phase data from multiple ADC’s.
It reads analog values frommultiple ADC’s into buffers at a rate set by the timer object. Each time the timer triggers
a sample is rapidly read from each ADC in turn.
ADC and buffer instances are passed in tuples with each ADC having an associated buffer. All buffers must be of
the same type and length and the number of buffers must equal the number of ADC’s.
Buffers can be bytearray or array.array for example. The ADC values have 12-bit resolution and are
stored directly into the buffer if its element size is 16 bits or greater. If buffers have only 8-bit elements (eg a
bytearray) then the sample resolution will be reduced to 8 bits.
timer must be a Timer object. The timer must already be initialised and running at the desired sampling frequency.
Example reading 3 ADC’s:

adc0 = pyb.ADC(pyb.Pin.board.X1) # Create ADC's
adc1 = pyb.ADC(pyb.Pin.board.X2)
adc2 = pyb.ADC(pyb.Pin.board.X3)
tim = pyb.Timer(8, freq=100) # Create timer
rx0 = array.array('H', (0 for i in range(100))) # ADC buffers of
rx1 = array.array('H', (0 for i in range(100))) # 100 16-bit words
rx2 = array.array('H', (0 for i in range(100)))
read analog values into buffers at 100Hz (takes one second)
pyb.ADC.read_timed_multi((adc0, adc1, adc2), (rx0, rx1, rx2), tim)
for n in range(len(rx0)):

print(rx0[n], rx1[n], rx2[n])

This function does not allocate any heap memory. It has blocking behaviour: it does not return to the calling
program until the buffers are full.
The function returns True if all samples were acquired with correct timing. At high sample rates the time taken
to acquire a set of samples can exceed the timer period. In this case the function returns False, indicating a loss
of precision in the sample interval. In extreme cases samples may be missed.
The maximum rate depends on factors including the data width and the number of ADC’s being read. In testing
two ADC’s were sampled at a timer rate of 210kHz without overrun. Samples were missed at 215kHz. For three
ADC’s the limit is around 140kHz, and for four it is around 110kHz. At high sample rates disabling interrupts for
the duration can reduce the risk of sporadic data loss.

1.3. Port-specific libraries 121

MicroPython Documentation, Release v1.20.0

The ADCAll Object

Instantiating this changes all masked ADC pins to analog inputs. The preprocessed MCU temperature, VREF and VBAT
data can be accessed on ADC channels 16, 17 and 18 respectively. Appropriate scaling is handled according to reference
voltage used (usually 3.3V). The temperature sensor on the chip is factory calibrated and allows to read the die temperature
to +/- 1 degree centigrade. Although this sounds pretty accurate, don’t forget that the MCU’s internal temperature is
measured. Depending on processing loads and I/O subsystems active the die temperature may easily be tens of degrees
above ambient temperature. On the other hand a pyboard woken up after a long standby period will show correct ambient
temperature within limits mentioned above.
The ADCAll read_core_vbat(), read_vref() and read_core_vref() methods read the backup battery
voltage, reference voltage and the (1.21V nominal) reference voltage using the actual supply as a reference. All results
are floating point numbers giving direct voltage values.
read_core_vbat() returns the voltage of the backup battery. This voltage is also adjusted according to the actual
supply voltage. To avoid analog input overload the battery voltage is measured via a voltage divider and scaled according
to the divider value. To prevent excessive loads to the backup battery, the voltage divider is only active during ADC
conversion.
read_vref() is evaluated by measuring the internal voltage reference and backscale it using factory calibration value
of the internal voltage reference. In most cases the reading would be close to 3.3V. If the pyboard is operated from a
battery, the supply voltage may drop to values below 3.3V. The pyboard will still operate fine as long as the operating
conditions are met. With proper settings of MCU clock, flash access speed and programming mode it is possible to run
the pyboard down to 2 V and still get useful ADC conversion.
It is very important to make sure analog input voltages never exceed actual supply voltage.
Other analog input channels (0..15) will return unscaled integer values according to the selected precision.
To avoid unwanted activation of analog inputs (channel 0..15) a second parameter can be specified. This parameter is
a binary pattern where each requested analog input has the corresponding bit set. The default value is 0xffffffff which
means all analog inputs are active. If just the internal channels (16..18) are required, the mask value should be 0x70000.
Example:

adcall = pyb.ADCAll(12, 0x70000) # 12 bit resolution, internal channels
temp = adcall.read_core_temp()

class CAN – controller area network communication bus

CAN implements support for classic CAN (available on F4, F7 MCUs) and CAN FD (H7 series) controllers. At the
physical level CAN bus consists of 2 lines: RX and TX. Note that to connect the pyboard to a CAN bus you must use a
CAN transceiver to convert the CAN logic signals from the pyboard to the correct voltage levels on the bus.
Example usage for classic CAN controller in Loopback (transceiver-less) mode:

from pyb import CAN
can = CAN(1, CAN.LOOPBACK)
can.setfilter(0, CAN.LIST16, 0, (123, 124, 125, 126)) # set a filter to receive␣
↪→messages with id=123, 124, 125 and 126
can.send('message!', 123) # send a message with id 123
can.recv(0) # receive message on FIFO 0

Example usage for CAN FD controller with all of the possible options enabled:

122 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

FD frame + BRS mode + Extended frame ID. 500 Kbit/s for arbitration phase, 1Mbit/s␣
↪→for data phase.
can = CAN(1, CAN.NORMAL, baudrate=500_000, brs_baudrate=1_000_000, sample_point=80)
can.setfilter(0, CAN.RANGE, 0, (0xFFF0, 0xFFFF))
can.send('a'*64, 0xFFFF, fdf=True, brs=True, extframe=True)
can.recv(0)

The following CAN module functions and their arguments are available for both classic and FD CAN controllers, unless
otherwise stated.

Constructors

class pyb.CAN(bus, ...)
Construct a CAN object on the given bus. bus can be 1-2, or 'YA' or 'YB'. With no additional parameters, the
CAN object is created but not initialised (it has the settings from the last initialisation of the bus, if any). If extra
arguments are given, the bus is initialised. See CAN.init() for parameters of initialisation.
The physical pins of the CAN buses are:

• CAN(1) is on YA: (RX, TX) = (Y3, Y4) = (PB8, PB9)

• CAN(2) is on YB: (RX, TX) = (Y5, Y6) = (PB12, PB13)

Methods

CAN.init(mode, prescaler=100, *, sjw=1, bs1=6, bs2=8, auto_restart=False,
baudrate=0, sample_point=75,
num_filter_banks=14, brs_sjw=1, brs_bs1=8, brs_bs2=3, brs_baudrate=0,
brs_sample_point=75)

Initialise the CAN bus with the given parameters:
• mode is one of: NORMAL, LOOPBACK, SILENT, SILENT_LOOPBACK
• prescaler is the value by which the CAN input clock is divided to generate the nominal bit time quanta. The
prescaler can be a value between 1 and 1024 inclusive for classic CAN, and between 1 and 512 inclusive for
CAN FD.

• sjw is the resynchronisation jump width in units of time quanta for nominal bits; it can be a value between 1
and 4 inclusive for classic CAN, and between 1 and 128 inclusive for CAN FD.

• bs1 defines the location of the sample point in units of the time quanta for nominal bits; it can be a value
between 1 and 16 inclusive for classic CAN, and between 2 and 256 inclusive for CAN FD.

• bs2 defines the location of the transmit point in units of the time quanta for nominal bits; it can be a value
between 1 and 8 inclusive for classic CAN, and between 2 and 128 inclusive for CAN FD.

• auto_restart sets whether the controller will automatically try and restart communications after entering the
bus-off state; if this is disabled then restart() can be used to leave the bus-off state

• baudrate if a baudrate other than 0 is provided, this function will try to automatically calculate the CAN nom-
inal bit time (overriding prescaler, bs1 and bs2) that satisfies both the baudrate and the desired sample_point.

• sample_point given in a percentage of the nominal bit time, the sample_point specifies the position of the bit
sample with respect to the whole nominal bit time. The default sample_point is 75%.

• num_filter_banks for classic CAN, this is the number of banks that will be assigned to CAN(1), the rest of
the 28 are assigned to CAN(2).

1.3. Port-specific libraries 123

MicroPython Documentation, Release v1.20.0

• brs_prescaler is the value by which the CAN FD input clock is divided to generate the data bit time quanta.
The prescaler can be a value between 1 and 32 inclusive.

• brs_sjw is the resynchronisation jump width in units of time quanta for data bits; it can be a value between 1
and 16 inclusive

• brs_bs1 defines the location of the sample point in units of the time quanta for data bits; it can be a value
between 1 and 32 inclusive

• brs_bs2 defines the location of the transmit point in units of the time quanta for data bits; it can be a value
between 1 and 16 inclusive

• brs_baudrate if a baudrate other than 0 is provided, this function will try to automatically calculate the CAN
data bit time (overriding brs_prescaler, brs_bs1 and brs_bs2) that satisfies both the baudrate and the desired
brs_sample_point.

• brs_sample_point given in a percentage of the data bit time, the brs_sample_point specifies the position of the
bit sample with respect to the whole data bit time. The default brs_sample_point is 75%.

The time quanta tq is the basic unit of time for the CAN bus. tq is the CAN prescaler value divided by PCLK1
(the frequency of internal peripheral bus 1); see pyb.freq() to determine PCLK1.
A single bit is made up of the synchronisation segment, which is always 1 tq. Then follows bit segment 1, then bit
segment 2. The sample point is after bit segment 1 finishes. The transmit point is after bit segment 2 finishes. The
baud rate will be 1/bittime, where the bittime is 1 + BS1 + BS2 multiplied by the time quanta tq.
For example, with PCLK1=42MHz, prescaler=100, sjw=1, bs1=6, bs2=8, the value of tq is 2.38 microseconds.
The bittime is 35.7 microseconds, and the baudrate is 28kHz.
See page 680 of the STM32F405 datasheet for more details.

CAN.deinit()
Turn off the CAN bus.

CAN.restart()
Force a software restart of the CAN controller without resetting its configuration.
If the controller enters the bus-off state then it will no longer participate in bus activity. If the controller is not
configured to automatically restart (see init()) then this method can be used to trigger a restart, and the controller
will follow the CAN protocol to leave the bus-off state and go into the error active state.

CAN.state()
Return the state of the controller. The return value can be one of:

• CAN.STOPPED – the controller is completely off and reset;
• CAN.ERROR_ACTIVE – the controller is on and in the Error Active state (both TEC and REC are less than
96);

• CAN.ERROR_WARNING – the controller is on and in the Error Warning state (at least one of TEC or REC
is 96 or greater);

• CAN.ERROR_PASSIVE – the controller is on and in the Error Passive state (at least one of TEC or REC is
128 or greater);

• CAN.BUS_OFF – the controller is on but not participating in bus activity (TEC overflowed beyond 255).
CAN.info([list])

Get information about the controller’s error states and TX and RX buffers. If list is provided then it should be a list
object with at least 8 entries, which will be filled in with the information. Otherwise a new list will be created and
filled in. In both cases the return value of the method is the populated list.
The values in the list are:

124 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

• TEC value
• REC value
• number of times the controller enterted the Error Warning state (wrapped around to 0 after 65535)
• number of times the controller enterted the Error Passive state (wrapped around to 0 after 65535)
• number of times the controller enterted the Bus Off state (wrapped around to 0 after 65535)
• number of pending TX messages
• number of pending RX messages on fifo 0
• number of pending RX messages on fifo 1

CAN.setfilter(bank, mode, fifo, params, *, rtr, extframe=False)
Configure a filter bank:

• bank is the classic CAN controller filter bank, or CAN FD filter index, to configure.
• mode is the mode the filter should operate in, see the tables below.
• fifo is which fifo (0 or 1) a message should be stored in, if it is accepted by this filter.
• params is an array of values the defines the filter. The contents of the array depends on the mode argument.

mode Contents of params array for classic CAN con-
troller

CAN.LIST16 Four 16 bit ids that will be accepted
CAN.LIST32 Two 32 bit ids that will be accepted
CAN.MASK16

Two 16 bit id/mask pairs. E.g. (1, 3, 4, 4)
The first pair, 1 and 3 will accept all ids
that have bit 0 = 1 and bit 1 = 0.
The second pair, 4 and 4, will accept all ids
that have bit 2 = 1.

CAN.MASK32 As with CAN.MASK16 but with only one 32 bit
id/mask pair.

mode Contents of params array for CAN FD controller
CAN.RANGE Two ids that represent a range of accepted ids.
CAN.DUAL Two ids that will be accepted. For example (1, 2)
CAN.MASK One filter ID and a mask. For example (0x111, 0x7FF)

• rtr For classic CAN controllers, this is an array of booleans that states if a filter should accept a remote
transmission request message. If this argument is not given then it defaults to False for all entries. The
length of the array depends on the mode argument. For CAN FD, this argument is ignored.

mode length of rtr array
CAN.LIST16 4
CAN.LIST32 2
CAN.MASK16 2
CAN.MASK32 1

1.3. Port-specific libraries 125

MicroPython Documentation, Release v1.20.0

• extframe If True the frame will have an extended identifier (29 bits), otherwise a standard identifier (11 bits)
is used.

CAN.clearfilter(bank, extframe=False)
Clear and disables a filter bank:

• bank is the classic CAN controller filter bank, or CAN FD filter index, to clear.
• extframe For CAN FD controllers, if True, clear an extended filter (configured with extframe=True), other-
wise the clear a standard identifier (configured with extframe=False).

CAN.any(fifo)
Return True if any message waiting on the FIFO, else False.

CAN.recv(fifo, list=None, *, timeout=5000)
Receive data on the bus:

• fifo is an integer, which is the FIFO to receive on
• list is an optional list object to be used as the return value
• timeout is the timeout in milliseconds to wait for the receive.

Return value: A tuple containing five values.
• The id of the message.
• A boolean that indicates if the message ID is standard or extended.
• A boolean that indicates if the message is an RTR message.
• The FMI (Filter Match Index) value.
• An array containing the data.

If list is None then a new tuple will be allocated, as well as a new bytes object to contain the data (as the fifth
element in the tuple).
If list is not None then it should be a list object with a least five elements. The fifth element should be a memoryview
object which is created from either a bytearray or an array of type ‘B’ or ‘b’, and this array must have enough room
for at least 8 bytes. The list object will then be populated with the first four return values above, and thememoryview
object will be resized inplace to the size of the data and filled in with that data. The same list and memoryview
objects can be reused in subsequent calls to this method, providing a way of receiving data without using the heap.
For example:

buf = bytearray(8)
lst = [0, 0, 0, 0, memoryview(buf)]
No heap memory is allocated in the following call
can.recv(0, lst)

CAN.send(data, id, *, timeout=0, rtr=False, extframe=False, fdf=False, brs=False)
Send a message on the bus:

• data is the data to send (an integer to send, or a buffer object).
• id is the id of the message to be sent.
• timeout is the timeout in milliseconds to wait for the send.
• rtr is a boolean that specifies if the message shall be sent as a remote transmission request. If rtr
is True then only the length of data is used to fill in the DLC slot of the frame; the actual bytes in
data are unused.

126 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

• extframe if True the frame will have an extended identifier (29 bits), otherwise a standard identifier
(11 bits) is used.

• fdf for CAN FD controllers, if set to True, the frame will have an FD frame format, which supports
data payloads up to 64 bytes.

• brs for CAN FD controllers, if set to True, the bitrate switching mode is enabled, in which the data
phase is transmitted at a differet bitrate. See CAN.init() for the data bit timing configuration
parameters.

If timeout is 0 the message is placed in a buffer in one of three hardware buffers and the method returns
immediately. If all three buffers are in use an exception is thrown. If timeout is not 0, the method
waits until the message is transmitted. If the message can’t be transmitted within the specified time an
exception is thrown.

Return value: None.
CAN.rxcallback(fifo, fun)

Register a function to be called when a message is accepted into a empty fifo:
• fifo is the receiving fifo.
• fun is the function to be called when the fifo becomes non empty.

The callback function takes two arguments the first is the can object it self the second is a integer that indicates the
reason for the callback.

Reason
0 A message has been accepted into a empty FIFO.
1 The FIFO is full
2 A message has been lost due to a full FIFO

Example use of rxcallback:

def cb0(bus, reason):
print('cb0')
if reason == 0:

print('pending')
if reason == 1:

print('full')
if reason == 2:

print('overflow')

can = CAN(1, CAN.LOOPBACK)
can.rxcallback(0, cb0)

Constants

CAN.NORMAL
CAN.LOOPBACK
CAN.SILENT
CAN.SILENT_LOOPBACK

The mode of the CAN bus used in init().
CAN.STOPPED
CAN.ERROR_ACTIVE
CAN.ERROR_WARNING

1.3. Port-specific libraries 127

MicroPython Documentation, Release v1.20.0

CAN.ERROR_PASSIVE
CAN.BUS_OFF

Possible states of the CAN controller returned from state().
CAN.LIST16
CAN.MASK16
CAN.LIST32
CAN.MASK32

The operation mode of a filter used in setfilter() for classic CAN.
CAN.DUAL
CAN.RANGE
CAN.MASK

The operation mode of a filter used in setfilter() for CAN FD.

class DAC – digital to analog conversion

The DAC is used to output analog values (a specific voltage) on pin X5 or pin X6. The voltage will be between 0 and
3.3V.
This module will undergo changes to the API.

Example usage:

from pyb import DAC

dac = DAC(1) # create DAC 1 on pin X5
dac.write(128) # write a value to the DAC (makes X5 1.65V)

dac = DAC(1, bits=12) # use 12 bit resolution
dac.write(4095) # output maximum value, 3.3V

To output a continuous sine-wave:

import math
from pyb import DAC

create a buffer containing a sine-wave
buf = bytearray(100)
for i in range(len(buf)):

buf[i] = 128 + int(127 * math.sin(2 * math.pi * i / len(buf)))

output the sine-wave at 400Hz
dac = DAC(1)
dac.write_timed(buf, 400 * len(buf), mode=DAC.CIRCULAR)

To output a continuous sine-wave at 12-bit resolution:

import math
from array import array
from pyb import DAC

create a buffer containing a sine-wave, using half-word samples
buf = array('H', 2048 + int(2047 * math.sin(2 * math.pi * i / 128)) for i in␣
↪→range(128))

output the sine-wave at 400Hz

(continues on next page)

128 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

(continued from previous page)
dac = DAC(1, bits=12)
dac.write_timed(buf, 400 * len(buf), mode=DAC.CIRCULAR)

Constructors

class pyb.DAC(port, bits=8, *, buffering=None)
Construct a new DAC object.
port can be a pin object, or an integer (1 or 2). DAC(1) is on pin X5 and DAC(2) is on pin X6.
bits is an integer specifying the resolution, and can be 8 or 12. The maximum value for the write and write_timed
methods will be 2**``bits``-1.
The buffering parameter selects the behaviour of theDACop-amp output buffer, whose purpose is to reduce the out-
put impedance. It can be None to select the default (buffering enabled for DAC.noise(), DAC.triangle()
and DAC.write_timed(), and disabled for DAC.write()), False to disable buffering completely, or
True to enable output buffering.
When buffering is enabled the DAC pin can drive loads down to 5KΩ. Otherwise it has an output impedance of
15KΩmaximum: consequently to achieve a 1% accuracy without buffering requires the applied load to be less than
1.5MΩ. Using the buffer incurs a penalty in accuracy, especially near the extremes of range.

Methods

DAC.init(bits=8, *, buffering=None)
Reinitialise the DAC. bits can be 8 or 12. buffering can be None, False or True; see above constructor for the
meaning of this parameter.

DAC.deinit()
De-initialise the DAC making its pin available for other uses.

DAC.noise(freq)
Generate a pseudo-random noise signal. A new random sample is written to the DAC output at the given frequency.

DAC.triangle(freq)
Generate a triangle wave. The value on the DAC output changes at the given frequency and ramps through the full
12-bit range (up and down). Therefore the frequency of the repeating triangle wave itself is 8192 times smaller.

DAC.write(value)
Direct access to the DAC output. The minimum value is 0. The maximum value is 2**``bits``-1, where bits is
set when creating the DAC object or by using the init method.

DAC.write_timed(data, freq, *, mode=DAC.NORMAL)
Initiates a burst of RAM to DAC using a DMA transfer. The input data is treated as an array of bytes in 8-bit
mode, and an array of unsigned half-words (array typecode ‘H’) in 12-bit mode.
freq can be an integer specifying the frequency to write the DAC samples at, using Timer(6). Or it can be an
already-initialised Timer object which is used to trigger the DAC sample. Valid timers are 2, 4, 5, 6, 7 and 8.
mode can be DAC.NORMAL or DAC.CIRCULAR.
Example using both DACs at the same time:

dac1 = DAC(1)
dac2 = DAC(2)

(continues on next page)

1.3. Port-specific libraries 129

MicroPython Documentation, Release v1.20.0

(continued from previous page)
dac1.write_timed(buf1, pyb.Timer(6, freq=100), mode=DAC.CIRCULAR)
dac2.write_timed(buf2, pyb.Timer(7, freq=200), mode=DAC.CIRCULAR)

Constants

DAC.NORMAL
NORMAL mode does a single transmission of the waveform in the data buffer,

DAC.CIRCULAR
CIRCULAR mode does a transmission of the waveform in the data buffer, and wraps around to the start of the
data buffer every time it reaches the end of the table.

class ExtInt – configure I/O pins to interrupt on external events

There are a total of 22 interrupt lines. 16 of these can come from GPIO pins and the remaining 6 are from internal
sources.
For lines 0 through 15, a given line can map to the corresponding line from an arbitrary port. So line 0 can map to Px0
where x is A, B, C, … and line 1 can map to Px1 where x is A, B, C, …

def callback(line):
print("line =", line)

Note: ExtInt will automatically configure the gpio line as an input.

extint = pyb.ExtInt(pin, pyb.ExtInt.IRQ_FALLING, pyb.Pin.PULL_UP, callback)

Now every time a falling edge is seen on the X1 pin, the callback will be called. Caution: mechanical pushbuttons have
“bounce” and pushing or releasing a switch will often generate multiple edges. See: http://www.eng.utah.edu/~cs5780/
debouncing.pdf for a detailed explanation, along with various techniques for debouncing.
Trying to register 2 callbacks onto the same pin will throw an exception.
If pin is passed as an integer, then it is assumed to map to one of the internal interrupt sources, and must be in the range
16 through 22.
All other pin objects go through the pin mapper to come up with one of the gpio pins.

extint = pyb.ExtInt(pin, mode, pull, callback)

Valid modes are pyb.ExtInt.IRQ_RISING, pyb.ExtInt.IRQ_FALLING, pyb.ExtInt.IRQ_RISING_FALLING,
pyb.ExtInt.EVT_RISING, pyb.ExtInt.EVT_FALLING, and pyb.ExtInt.EVT_RISING_FALLING.
Only the IRQ_xxx modes have been tested. The EVT_xxx modes have something to do with sleep mode and the WFE
instruction.
Valid pull values are pyb.Pin.PULL_UP, pyb.Pin.PULL_DOWN, pyb.Pin.PULL_NONE.
There is also a C API, so that drivers which require EXTI interrupt lines can also use this code. See extint.h for the
available functions and usrsw.h for an example of using this.

130 Chapter 1. MicroPython libraries

http://www.eng.utah.edu/~cs5780/debouncing.pdf
http://www.eng.utah.edu/~cs5780/debouncing.pdf

MicroPython Documentation, Release v1.20.0

Constructors

class pyb.ExtInt(pin, mode, pull, callback)
Create an ExtInt object:

• pin is the pin on which to enable the interrupt (can be a pin object or any valid pin name).
• mode can be one of: - ExtInt.IRQ_RISING - trigger on a rising edge; - ExtInt.IRQ_FALLING -
trigger on a falling edge; - ExtInt.IRQ_RISING_FALLING - trigger on a rising or falling edge.

• pull can be one of: - pyb.Pin.PULL_NONE - no pull up or down resistors; - pyb.Pin.PULL_UP -
enable the pull-up resistor; - pyb.Pin.PULL_DOWN - enable the pull-down resistor.

• callback is the function to call when the interrupt triggers. The callback function must accept exactly 1
argument, which is the line that triggered the interrupt.

Class methods

classmethod ExtInt.regs()
Dump the values of the EXTI registers.

Methods

ExtInt.disable()
Disable the interrupt associated with the ExtInt object. This could be useful for debouncing.

ExtInt.enable()
Enable a disabled interrupt.

ExtInt.line()
Return the line number that the pin is mapped to.

ExtInt.swint()
Trigger the callback from software.

Constants

ExtInt.IRQ_FALLING
interrupt on a falling edge

ExtInt.IRQ_RISING
interrupt on a rising edge

ExtInt.IRQ_RISING_FALLING
interrupt on a rising or falling edge

1.3. Port-specific libraries 131

MicroPython Documentation, Release v1.20.0

class Flash – access to built-in flash storage

The Flash class allows direct access to the primary flash device on the pyboard.
In most cases, to store persistent data on the device, you’ll want to use a higher-level abstraction, for example the filesystem
via Python’s standard file API, but this interface is useful to customise the filesystem configuration or implement a low-level
storage system for your application.

Constructors

class pyb.Flash
Create and return a block device that represents the flash device presented to the USB mass storage interface.
It includes a virtual partition table at the start, and the actual flash starts at block 0x100.
This constructor is deprecated and will be removed in a future version of MicroPython.

class pyb.Flash(*, start=- 1, len=- 1)
Create and return a block device that accesses the flash at the specified offset. The length defaults to the remaining
size of the device.
The start and len offsets are in bytes, and must be a multiple of the block size (typically 512 for internal flash).

Methods

Flash.readblocks(block_num, buf)
Flash.readblocks(block_num, buf, offset)
Flash.writeblocks(block_num, buf)
Flash.writeblocks(block_num, buf, offset)
Flash.ioctl(cmd, arg)

These methods implement the simple and extended block protocol defined by os.AbstractBlockDev.

Hardware Note

On boards with external spiflash (e.g. Pyboard D), the MicroPython firmware will be configured to use that as the primary
flash storage. On all other boards, the internal flash inside the MCU will be used.

class I2C – a two-wire serial protocol

I2C is a two-wire protocol for communicating between devices. At the physical level it consists of 2 wires: SCL and
SDA, the clock and data lines respectively.
I2C objects are created attached to a specific bus. They can be initialised when created, or initialised later on.
Example:

from pyb import I2C

i2c = I2C(1) # create on bus 1
i2c = I2C(1, I2C.CONTROLLER) # create and init as a controller
i2c.init(I2C.CONTROLLER, baudrate=20000) # init as a controller

(continues on next page)

132 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

(continued from previous page)
i2c.init(I2C.PERIPHERAL, addr=0x42) # init as a peripheral with given address
i2c.deinit() # turn off the I2C unit

Printing the i2c object gives you information about its configuration.
The basic methods are send and recv:

i2c.send('abc') # send 3 bytes
i2c.send(0x42) # send a single byte, given by the number
data = i2c.recv(3) # receive 3 bytes

To receive inplace, first create a bytearray:

data = bytearray(3) # create a buffer
i2c.recv(data) # receive 3 bytes, writing them into data

You can specify a timeout (in ms):

i2c.send(b'123', timeout=2000) # timeout after 2 seconds

A controller must specify the recipient’s address:

i2c.init(I2C.CONTROLLER)
i2c.send('123', 0x42) # send 3 bytes to peripheral with address 0x42
i2c.send(b'456', addr=0x42) # keyword for address

Master also has other methods:

i2c.is_ready(0x42) # check if peripheral 0x42 is ready
i2c.scan() # scan for peripherals on the bus, returning

a list of valid addresses
i2c.mem_read(3, 0x42, 2) # read 3 bytes from memory of peripheral 0x42,

starting at address 2 in the peripheral
i2c.mem_write('abc', 0x42, 2, timeout=1000) # write 'abc' (3 bytes) to memory of␣
↪→peripheral 0x42

starting at address 2 in the peripheral,
↪→ timeout after 1 second

Constructors

class pyb.I2C(bus, ...)
Construct an I2C object on the given bus. bus can be 1 or 2, ‘X’ or ‘Y’. With no additional parameters, the
I2C object is created but not initialised (it has the settings from the last initialisation of the bus, if any). If extra
arguments are given, the bus is initialised. See init for parameters of initialisation.
The physical pins of the I2C buses on Pyboards V1.0 and V1.1 are:

• I2C(1) is on the X position: (SCL, SDA) = (X9, X10) = (PB6, PB7)

• I2C(2) is on the Y position: (SCL, SDA) = (Y9, Y10) = (PB10, PB11)

On the Pyboard Lite:
• I2C(1) is on the X position: (SCL, SDA) = (X9, X10) = (PB6, PB7)

• I2C(3) is on the Y position: (SCL, SDA) = (Y9, Y10) = (PA8, PB8)

Calling the constructor with ‘X’ or ‘Y’ enables portability between Pyboard types.

1.3. Port-specific libraries 133

MicroPython Documentation, Release v1.20.0

Methods

I2C.deinit()
Turn off the I2C bus.

I2C.init(mode, *, addr=0x12, baudrate=400000, gencall=False, dma=False)
Initialise the I2C bus with the given parameters:

• mode must be either I2C.CONTROLLER or I2C.PERIPHERAL
• addr is the 7-bit address (only sensible for a peripheral)
• baudrate is the SCL clock rate (only sensible for a controller)
• gencall is whether to support general call mode
• dma is whether to allow the use of DMA for the I2C transfers (note that DMA transfers have more
precise timing but currently do not handle bus errors properly)

The actual clock frequency may be lower than the requested frequency. This is dependant on the plat-
form hardware. The actual rate may be determined by printing the I2C object.

I2C.is_ready(addr)
Check if an I2C device responds to the given address. Only valid when in controller mode.

I2C.mem_read(data, addr, memaddr, *, timeout=5000, addr_size=8)
Read from the memory of an I2C device:

• data can be an integer (number of bytes to read) or a buffer to read into
• addr is the I2C device address
• memaddr is the memory location within the I2C device
• timeout is the timeout in milliseconds to wait for the read
• addr_size selects width of memaddr: 8 or 16 bits

Returns the read data. This is only valid in controller mode.
I2C.mem_write(data, addr, memaddr, *, timeout=5000, addr_size=8)

Write to the memory of an I2C device:
• data can be an integer or a buffer to write from
• addr is the I2C device address
• memaddr is the memory location within the I2C device
• timeout is the timeout in milliseconds to wait for the write
• addr_size selects width of memaddr: 8 or 16 bits

Returns None. This is only valid in controller mode.
I2C.recv(recv, addr=0x00, *, timeout=5000)

Receive data on the bus:
• recv can be an integer, which is the number of bytes to receive, or a mutable buffer, which will be filled
with received bytes

• addr is the address to receive from (only required in controller mode)
• timeout is the timeout in milliseconds to wait for the receive

Return value: if recv is an integer then a new buffer of the bytes received, otherwise the same buffer that was
passed in to recv.

134 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

I2C.send(send, addr=0x00, *, timeout=5000)
Send data on the bus:

• send is the data to send (an integer to send, or a buffer object)
• addr is the address to send to (only required in controller mode)
• timeout is the timeout in milliseconds to wait for the send

Return value: None.
I2C.scan()

Scan all I2C addresses from 0x01 to 0x7f and return a list of those that respond. Only valid when in controller
mode.

Constants

I2C.CONTROLLER
for initialising the bus to controller mode

I2C.PERIPHERAL
for initialising the bus to peripheral mode

class LCD – LCD control for the LCD touch-sensor pyskin

The LCD class is used to control the LCD on the LCD touch-sensor pyskin, LCD32MKv1.0. The LCD is a 128x32 pixel
monochrome screen, part NHD-C12832A1Z.
The pyskin must be connected in either the X or Y positions, and then an LCD object is made using:

lcd = pyb.LCD('X') # if pyskin is in the X position
lcd = pyb.LCD('Y') # if pyskin is in the Y position

Then you can use:

lcd.light(True) # turn the backlight on
lcd.write('Hello world!\n') # print text to the screen

This driver implements a double buffer for setting/getting pixels. For example, to make a bouncing dot, try:

x = y = 0
dx = dy = 1
while True:

update the dot's position
x += dx
y += dy

make the dot bounce of the edges of the screen
if x <= 0 or x >= 127: dx = -dx
if y <= 0 or y >= 31: dy = -dy

lcd.fill(0) # clear the buffer
lcd.pixel(x, y, 1) # draw the dot
lcd.show() # show the buffer
pyb.delay(50) # pause for 50ms

1.3. Port-specific libraries 135

MicroPython Documentation, Release v1.20.0

Constructors

class pyb.LCD(skin_position)
Construct an LCD object in the given skin position. skin_position can be ‘X’ or ‘Y’, and should match the
position where the LCD pyskin is plugged in.

Methods

LCD.command(instr_data, buf)
Send an arbitrary command to the LCD. Pass 0 for instr_data to send an instruction, otherwise pass 1 to send
data. buf is a buffer with the instructions/data to send.

LCD.contrast(value)
Set the contrast of the LCD. Valid values are between 0 and 47.

LCD.fill(colour)
Fill the screen with the given colour (0 or 1 for white or black).
This method writes to the hidden buffer. Use show() to show the buffer.

LCD.get(x, y)
Get the pixel at the position (x, y). Returns 0 or 1.
This method reads from the visible buffer.

LCD.light(value)
Turn the backlight on/off. True or 1 turns it on, False or 0 turns it off.

LCD.pixel(x, y, colour)
Set the pixel at (x, y) to the given colour (0 or 1).
This method writes to the hidden buffer. Use show() to show the buffer.

LCD.show()
Show the hidden buffer on the screen.

LCD.text(str, x, y, colour)
Draw the given text to the position (x, y) using the given colour (0 or 1).
This method writes to the hidden buffer. Use show() to show the buffer.

LCD.write(str)
Write the string str to the screen. It will appear immediately.

class LED – LED object

The LED object controls an individual LED (Light Emitting Diode).

136 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

Constructors

class pyb.LED(id)
Create an LED object associated with the given LED:

• id is the LED number, 1-4.

Methods

LED.intensity([value])
Get or set the LED intensity. Intensity ranges between 0 (off) and 255 (full on). If no argument is given, return the
LED intensity. If an argument is given, set the LED intensity and return None.
Note: Only LED(3) and LED(4) can have a smoothly varying intensity, and they use timer PWM to implement it.
LED(3) uses Timer(2) and LED(4) uses Timer(3). These timers are only configured for PWM if the intensity of
the relevant LED is set to a value between 1 and 254. Otherwise the timers are free for general purpose use.

LED.off()
Turn the LED off.

LED.on()
Turn the LED on, to maximum intensity.

LED.toggle()
Toggle the LED between on (maximum intensity) and off. If the LED is at non-zero intensity then it is considered
“on” and toggle will turn it off.

class Pin – control I/O pins

A pin is the basic object to control I/O pins. It has methods to set the mode of the pin (input, output, etc) and methods
to get and set the digital logic level. For analog control of a pin, see the ADC class.
Usage Model:
All Board Pins are predefined as pyb.Pin.board.Name:

x1_pin = pyb.Pin.board.X1

g = pyb.Pin(pyb.Pin.board.X1, pyb.Pin.IN)

CPU pins which correspond to the board pins are available as pyb.Pin.cpu.Name. For the CPU pins, the names are
the port letter followed by the pin number. On the PYBv1.0, pyb.Pin.board.X1 and pyb.Pin.cpu.A0 are the
same pin.
You can also use strings:

g = pyb.Pin('X1', pyb.Pin.OUT_PP)

Users can add their own names:

MyMapperDict = { 'LeftMotorDir' : pyb.Pin.cpu.C12 }
pyb.Pin.dict(MyMapperDict)
g = pyb.Pin("LeftMotorDir", pyb.Pin.OUT_OD)

and can query mappings:

1.3. Port-specific libraries 137

MicroPython Documentation, Release v1.20.0

pin = pyb.Pin("LeftMotorDir")

Users can also add their own mapping function:

def MyMapper(pin_name):
if pin_name == "LeftMotorDir":

return pyb.Pin.cpu.A0

pyb.Pin.mapper(MyMapper)

So, if you were to call: pyb.Pin("LeftMotorDir", pyb.Pin.OUT_PP) then "LeftMotorDir" is passed
directly to the mapper function.
To summarise, the following order determines how things get mapped into an ordinal pin number:

1. Directly specify a pin object
2. User supplied mapping function
3. User supplied mapping (object must be usable as a dictionary key)
4. Supply a string which matches a board pin
5. Supply a string which matches a CPU port/pin

You can set pyb.Pin.debug(True) to get some debug information about how a particular object gets mapped to a
pin.
All pin objects go through the pin mapper to come up with one of the gpio pins.

Constructors

class pyb.Pin(id, ...)
Create a new Pin object associated with the id. If additional arguments are given, they are used to initialise the pin.
See pin.init().

Class methods

classmethod Pin.debug([state])
Get or set the debugging state (True or False for on or off).

classmethod Pin.dict([dict])
Get or set the pin mapper dictionary.

classmethod Pin.mapper([fun])
Get or set the pin mapper function.

138 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

Methods

Pin.init(mode, pull=Pin.PULL_NONE, *, value=None, alt=- 1)
Initialise the pin:

• mode can be one of:
– Pin.IN - configure the pin for input;
– Pin.OUT_PP - configure the pin for output, with push-pull control;
– Pin.OUT_OD - configure the pin for output, with open-drain control;
– Pin.ALT - configure the pin for alternate function, input or output;
– Pin.AF_PP - configure the pin for alternate function, push-pull;
– Pin.AF_OD - configure the pin for alternate function, open-drain;
– Pin.ANALOG - configure the pin for analog.

• pull can be one of:
– Pin.PULL_NONE - no pull up or down resistors;
– Pin.PULL_UP - enable the pull-up resistor;
– Pin.PULL_DOWN - enable the pull-down resistor.

When a pin has the Pin.PULL_UP or Pin.PULL_DOWN pull-mode enabled, that pin has an effective 40k
Ohm resistor pulling it to 3V3 or GND respectively (except pin Y5 which has 11k Ohm resistors).

• value if not None will set the port output value before enabling the pin.
• alt can be used when mode is Pin.ALT , Pin.AF_PP or Pin.AF_OD to set the index or name of one
of the alternate functions associated with a pin. This arg was previously called af which can still be used if
needed.

Returns: None.
Pin.value([value])

Get or set the digital logic level of the pin:
• With no argument, return 0 or 1 depending on the logic level of the pin.
• With value given, set the logic level of the pin. value can be anything that converts to a boolean. If it
converts to True, the pin is set high, otherwise it is set low.

Pin.__str__()
Return a string describing the pin object.

Pin.af()
Returns the currently configured alternate-function of the pin. The integer returned will match one of the allowed
constants for the af argument to the init function.

Pin.af_list()
Returns an array of alternate functions available for this pin.

Pin.gpio()
Returns the base address of the GPIO block associated with this pin.

Pin.mode()
Returns the currently configured mode of the pin. The integer returned will match one of the allowed constants for
the mode argument to the init function.

1.3. Port-specific libraries 139

MicroPython Documentation, Release v1.20.0

Pin.name()
Get the pin name.

Pin.names()
Returns the cpu and board names for this pin.

Pin.pin()
Get the pin number.

Pin.port()
Get the pin port.

Pin.pull()
Returns the currently configured pull of the pin. The integer returned will match one of the allowed constants for
the pull argument to the init function.

Constants

Pin.ALT
initialise the pin to alternate-function mode for input or output

Pin.AF_OD
initialise the pin to alternate-function mode with an open-drain drive

Pin.AF_PP
initialise the pin to alternate-function mode with a push-pull drive

Pin.ANALOG
initialise the pin to analog mode

Pin.IN
initialise the pin to input mode

Pin.OUT_OD
initialise the pin to output mode with an open-drain drive

Pin.OUT_PP
initialise the pin to output mode with a push-pull drive

Pin.PULL_DOWN
enable the pull-down resistor on the pin

Pin.PULL_NONE
don’t enable any pull up or down resistors on the pin

Pin.PULL_UP
enable the pull-up resistor on the pin

class PinAF – Pin Alternate Functions

A Pin represents a physical pin on the microprocessor. Each pin can have a variety of functions (GPIO, I2C SDA, etc).
Each PinAF object represents a particular function for a pin.
Usage Model:

x3 = pyb.Pin.board.X3
x3_af = x3.af_list()

x3_af will now contain an array of PinAF objects which are available on pin X3.

140 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

For the pyboard, x3_af would contain: [Pin.AF1_TIM2, Pin.AF2_TIM5, Pin.AF3_TIM9, Pin.AF7_USART2]
Normally, each peripheral would configure the alternate function automatically, but sometimes the same function is avail-
able on multiple pins, and having more control is desired.
To configure X3 to expose TIM2_CH3, you could use:

pin = pyb.Pin(pyb.Pin.board.X3, mode=pyb.Pin.ALT, alt=pyb.Pin.AF1_TIM2)

or:

pin = pyb.Pin(pyb.Pin.board.X3, mode=pyb.Pin.ALT, alt=1)

Methods

pinaf.__str__()
Return a string describing the alternate function.

pinaf.index()
Return the alternate function index.

pinaf.name()
Return the name of the alternate function.

pinaf.reg()
Return the base register associated with the peripheral assigned to this alternate function. For example, if the
alternate function were TIM2_CH3 this would return stm.TIM2

class RTC – real time clock

The RTC is an independent clock that keeps track of the date and time.
Example usage:

rtc = pyb.RTC()
rtc.datetime((2014, 5, 1, 4, 13, 0, 0, 0))
print(rtc.datetime())

Constructors

class pyb.RTC
Create an RTC object.

Methods

RTC.datetime([datetimetuple])
Get or set the date and time of the RTC.
With no arguments, this method returns an 8-tuple with the current date and time. With 1 argument (being an
8-tuple) it sets the date and time (and subseconds is reset to 255).
The 8-tuple has the following format:

(year, month, day, weekday, hours, minutes, seconds, subseconds)

1.3. Port-specific libraries 141

MicroPython Documentation, Release v1.20.0

weekday is 1-7 for Monday through Sunday.
subseconds counts down from 255 to 0

RTC.wakeup(timeout, callback=None)
Set the RTCwakeup timer to trigger repeatedly at every timeoutmilliseconds. This trigger can wake the pyboard
from both the sleep states: pyb.stop() and pyb.standby().
If timeout is None then the wakeup timer is disabled.
If callback is given then it is executed at every trigger of the wakeup timer. callback must take exactly one
argument.

RTC.info()
Get information about the startup time and reset source.

• The lower 0xffff are the number of milliseconds the RTC took to start up.
• Bit 0x10000 is set if a power-on reset occurred.
• Bit 0x20000 is set if an external reset occurred

RTC.calibration(cal)
Get or set RTC calibration.
With no arguments, calibration() returns the current calibration value, which is an integer in the range [-511
: 512]. With one argument it sets the RTC calibration.
The RTC Smooth Calibration mechanism adjusts the RTC clock rate by adding or subtracting the given number
of ticks from the 32768 Hz clock over a 32 second period (corresponding to 2^20 clock ticks.) Each tick added
will speed up the clock by 1 part in 2^20, or 0.954 ppm; likewise the RTC clock it slowed by negative values. The
usable calibration range is: (-511 * 0.954) ~= -487.5 ppm up to (512 * 0.954) ~= 488.5 ppm

class Servo – 3-wire hobby servo driver

Servo objects control standard hobby servo motors with 3-wires (ground, power, signal). There are 4 positions on the
pyboard where these motors can be plugged in: pins X1 through X4 are the signal pins, and next to them are 4 sets of
power and ground pins.
Example usage:

import pyb

s1 = pyb.Servo(1) # create a servo object on position X1
s2 = pyb.Servo(2) # create a servo object on position X2

s1.angle(45) # move servo 1 to 45 degrees
s2.angle(0) # move servo 2 to 0 degrees

move servo1 and servo2 synchronously, taking 1500ms
s1.angle(-60, 1500)
s2.angle(30, 1500)

Note: The Servo objects use Timer(5) to produce the PWM output. You can use Timer(5) for Servo control, or your
own purposes, but not both at the same time.

142 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

Constructors

class pyb.Servo(id)
Create a servo object. id is 1-4, and corresponds to pins X1 through X4.

Methods

Servo.angle([angle, time=0])
If no arguments are given, this function returns the current angle.
If arguments are given, this function sets the angle of the servo:

• angle is the angle to move to in degrees.
• time is the number of milliseconds to take to get to the specified angle. If omitted, then the servo moves as
quickly as possible to its new position.

Servo.speed([speed, time=0])
If no arguments are given, this function returns the current speed.
If arguments are given, this function sets the speed of the servo:

• speed is the speed to change to, between -100 and 100.
• time is the number of milliseconds to take to get to the specified speed. If omitted, then the servo accelerates
as quickly as possible.

Servo.pulse_width([value])
If no arguments are given, this function returns the current raw pulse-width value.
If an argument is given, this function sets the raw pulse-width value.

Servo.calibration([pulse_min, pulse_max, pulse_centre[, pulse_angle_90, pulse_speed_100]])
If no arguments are given, this function returns the current calibration data, as a 5-tuple.
If arguments are given, this function sets the timing calibration:

• pulse_min is the minimum allowed pulse width.
• pulse_max is the maximum allowed pulse width.
• pulse_centre is the pulse width corresponding to the centre/zero position.
• pulse_angle_90 is the pulse width corresponding to 90 degrees.
• pulse_speed_100 is the pulse width corresponding to a speed of 100.

class SPI – a controller-driven serial protocol

SPI is a serial protocol that is driven by a controller. At the physical level there are 3 lines: SCK, MOSI, MISO.
See usage model of I2C; SPI is very similar. Main difference is parameters to init the SPI bus:

from pyb import SPI
spi = SPI(1, SPI.CONTROLLER, baudrate=600000, polarity=1, phase=0, crc=0x7)

Only required parameter is mode, SPI.CONTROLLER or SPI.PERIPHERAL. Polarity can be 0 or 1, and is the level
the idle clock line sits at. Phase can be 0 or 1 to sample data on the first or second clock edge respectively. Crc can be
None for no CRC, or a polynomial specifier.
Additional methods for SPI:

1.3. Port-specific libraries 143

MicroPython Documentation, Release v1.20.0

data = spi.send_recv(b'1234') # send 4 bytes and receive 4 bytes
buf = bytearray(4)
spi.send_recv(b'1234', buf) # send 4 bytes and receive 4 into buf
spi.send_recv(buf, buf) # send/recv 4 bytes from/to buf

Constructors

class pyb.SPI(bus, ...)
Construct an SPI object on the given bus. bus can be 1 or 2, or ‘X’ or ‘Y’. With no additional parameters, the
SPI object is created but not initialised (it has the settings from the last initialisation of the bus, if any). If extra
arguments are given, the bus is initialised. See init for parameters of initialisation.
The physical pins of the SPI buses are:

• SPI(1) is on the X position: (NSS, SCK, MISO, MOSI) = (X5, X6, X7, X8) = (PA4,
PA5, PA6, PA7)

• SPI(2) is on the Y position: (NSS, SCK, MISO, MOSI) = (Y5, Y6, Y7, Y8) = (PB12,
PB13, PB14, PB15)

At the moment, the NSS pin is not used by the SPI driver and is free for other use.

Methods

SPI.deinit()
Turn off the SPI bus.

SPI.init(mode, baudrate=328125, *, prescaler=- 1, polarity=1, phase=0, bits=8, firstbit=SPI.MSB, ti=False,
crc=None)

Initialise the SPI bus with the given parameters:
• mode must be either SPI.CONTROLLER or SPI.PERIPHERAL.
• baudrate is the SCK clock rate (only sensible for a controller).
• prescaler is the prescaler to use to derive SCK from the APB bus frequency; use of prescaler over-
rides baudrate.

• polarity can be 0 or 1, and is the level the idle clock line sits at.
• phase can be 0 or 1 to sample data on the first or second clock edge respectively.
• bits can be 8 or 16, and is the number of bits in each transferred word.
• firstbit can be SPI.MSB or SPI.LSB.
• ti True indicates Texas Instruments, as opposed to Motorola, signal conventions.
• crc can be None for no CRC, or a polynomial specifier.

Note that the SPI clock frequency will not always be the requested baudrate. The hardware only supports baudrates
that are the APB bus frequency (see pyb.freq()) divided by a prescaler, which can be 2, 4, 8, 16, 32, 64, 128
or 256. SPI(1) is on AHB2, and SPI(2) is on AHB1. For precise control over the SPI clock frequency, specify
prescaler instead of baudrate.
Printing the SPI object will show you the computed baudrate and the chosen prescaler.

SPI.recv(recv, *, timeout=5000)
Receive data on the bus:

144 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

• recv can be an integer, which is the number of bytes to receive, or a mutable buffer, which will be filled
with received bytes.

• timeout is the timeout in milliseconds to wait for the receive.
Return value: if recv is an integer then a new buffer of the bytes received, otherwise the same buffer that was
passed in to recv.

SPI.send(send, *, timeout=5000)
Send data on the bus:

• send is the data to send (an integer to send, or a buffer object).
• timeout is the timeout in milliseconds to wait for the send.

Return value: None.
SPI.send_recv(send, recv=None, *, timeout=5000)

Send and receive data on the bus at the same time:
• send is the data to send (an integer to send, or a buffer object).
• recv is a mutable buffer which will be filled with received bytes. It can be the same as send, or omitted.
If omitted, a new buffer will be created.

• timeout is the timeout in milliseconds to wait for the receive.
Return value: the buffer with the received bytes.

Constants

SPI.CONTROLLER

SPI.PERIPHERAL
for initialising the SPI bus to controller or peripheral mode

SPI.LSB

SPI.MSB
set the first bit to be the least or most significant bit

class Switch – switch object

A Switch object is used to control a push-button switch.
Usage:

sw = pyb.Switch() # create a switch object
sw.value() # get state (True if pressed, False otherwise)
sw() # shorthand notation to get the switch state
sw.callback(f) # register a callback to be called when the

switch is pressed down
sw.callback(None) # remove the callback

Example:

pyb.Switch().callback(lambda: pyb.LED(1).toggle())

1.3. Port-specific libraries 145

MicroPython Documentation, Release v1.20.0

Constructors

class pyb.Switch
Create and return a switch object.

Methods

Switch.__call__()
Call switch object directly to get its state: True if pressed down, False otherwise.

Switch.value()
Get the switch state. Returns True if pressed down, otherwise False.

Switch.callback(fun)
Register the given function to be called when the switch is pressed down. If fun is None, then it disables the
callback.

class Timer – control internal timers

Timers can be used for a great variety of tasks. At the moment, only the simplest case is implemented: that of calling a
function periodically.
Each timer consists of a counter that counts up at a certain rate. The rate at which it counts is the peripheral clock
frequency (in Hz) divided by the timer prescaler. When the counter reaches the timer period it triggers an event, and the
counter resets back to zero. By using the callback method, the timer event can call a Python function.
Example usage to toggle an LED at a fixed frequency:

tim = pyb.Timer(4) # create a timer object using timer 4
tim.init(freq=2) # trigger at 2Hz
tim.callback(lambda t:pyb.LED(1).toggle())

Example using named function for the callback:

def tick(timer): # we will receive the timer object when being called
print(timer.counter()) # show current timer's counter value

tim = pyb.Timer(4, freq=1) # create a timer object using timer 4 - trigger at 1Hz
tim.callback(tick) # set the callback to our tick function

Further examples:

tim = pyb.Timer(4, freq=100) # freq in Hz
tim = pyb.Timer(4, prescaler=0, period=99)
tim.counter() # get counter (can also set)
tim.prescaler(2) # set prescaler (can also get)
tim.period(199) # set period (can also get)
tim.callback(lambda t: ...) # set callback for update interrupt (t=tim instance)
tim.callback(None) # clear callback

Note: Timer(2) and Timer(3) are used for PWM to set the intensity of LED(3) and LED(4) respectively. But these timers
are only configured for PWM if the intensity of the relevant LED is set to a value between 1 and 254. If the intensity
feature of the LEDs is not used then these timers are free for general purpose use. Similarly, Timer(5) controls the servo
driver, and Timer(6) is used for timed ADC/DAC reading/writing. It is recommended to use the other timers in your
programs.

146 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

Note: Memory can’t be allocated during a callback (an interrupt) and so exceptions raised within a callback don’t givemuch
information. See micropython.alloc_emergency_exception_buf() for how to get around this limitation.

Constructors

class pyb.Timer(id, ...)
Construct a new timer object of the given id. If additional arguments are given, then the timer is initialised by
init(...). id can be 1 to 14.

Methods

Timer.init(*, freq, prescaler, period, mode=Timer.UP, div=1, callback=None, deadtime=0,
brk=Timer.BRK_OFF)

Initialise the timer. Initialisation must be either by frequency (in Hz) or by prescaler and period:

tim.init(freq=100) # set the timer to trigger at 100Hz
tim.init(prescaler=83, period=999) # set the prescaler and period directly

Keyword arguments:
• freq— specifies the periodic frequency of the timer. You might also view this as the frequency
with which the timer goes through one complete cycle.

• prescaler [0-0xffff] - specifies the value to be loaded into the timer’s Prescaler Register (PSC).
The timer clock source is divided by (prescaler + 1) to arrive at the timer clock. Timers 2-7
and 12-14 have a clock source of 84 MHz (pyb.freq()[2] * 2), and Timers 1, and 8-11 have a clock
source of 168 MHz (pyb.freq()[3] * 2).

• period [0-0xffff] for timers 1, 3, 4, and 6-15. [0-0x3fffffff] for timers 2 & 5. Specifies the value
to be loaded into the timer’s AutoReload Register (ARR). This determines the period of the timer
(i.e. when the counter cycles). The timer counter will roll-over after period + 1 timer clock
cycles.

• mode can be one of:
– Timer.UP - configures the timer to count from 0 to ARR (default)
– Timer.DOWN - configures the timer to count from ARR down to 0.
– Timer.CENTER - configures the timer to count from 0 to ARR and then back down to 0.

• div can be one of 1, 2, or 4. Divides the timer clock to determine the sampling clock used by the
digital filters.

• callback - as per Timer.callback()
• deadtime - specifies the amount of “dead” or inactive time between transitions on complimentary
channels (both channels will be inactive) for this time). deadtime may be an integer between 0
and 1008, with the following restrictions: 0-128 in steps of 1. 128-256 in steps of 2, 256-512 in
steps of 8, and 512-1008 in steps of 16. deadtime measures ticks of source_freq divided
by div clock ticks. deadtime is only available on timers 1 and 8.

• brk - specifies if the break mode is used to kill the output of the PWM when the BRK_IN input
is asserted. The value of this argument determines if break is enabled and what the polarity is,
and can be one of Timer.BRK_OFF, Timer.BRK_LOW or Timer.BRK_HIGH. To select the
BRK_IN pin construct a Pin object with mode=Pin.ALT, alt=Pin.AFn_TIMx. The pin’s
GPIO input features are available in alt mode - pull= , value() and irq().

1.3. Port-specific libraries 147

MicroPython Documentation, Release v1.20.0

You must either specify freq or both of period and prescaler.
Timer.deinit()

Deinitialises the timer.
Disables the callback (and the associated irq).
Disables any channel callbacks (and the associated irq). Stops the timer, and disables the timer peripheral.

Timer.callback(fun)
Set the function to be called when the timer triggers. fun is passed 1 argument, the timer object. If fun is None
then the callback will be disabled.

Timer.channel(channel, mode, ...)
If only a channel number is passed, then a previously initialized channel object is returned (or None if there is no
previous channel).
Otherwise, a TimerChannel object is initialized and returned.
Each channel can be configured to perform pwm, output compare, or input capture. All channels share the same
underlying timer, which means that they share the same timer clock.
Keyword arguments:

• mode can be one of:
– Timer.PWM— configure the timer in PWM mode (active high).
– Timer.PWM_INVERTED— configure the timer in PWM mode (active low).
– Timer.OC_TIMING— indicates that no pin is driven.
– Timer.OC_ACTIVE—the pin will bemade active when a comparematch occurs (active is determined
by polarity)

– Timer.OC_INACTIVE— the pin will be made inactive when a compare match occurs.
– Timer.OC_TOGGLE— the pin will be toggled when an compare match occurs.
– Timer.OC_FORCED_ACTIVE— the pin is forced active (compare match is ignored).
– Timer.OC_FORCED_INACTIVE— the pin is forced inactive (compare match is ignored).
– Timer.IC— configure the timer in Input Capture mode.
– Timer.ENC_A—configure the timer in Encoder mode. The counter only changes when CH1 changes.
– Timer.ENC_B—configure the timer in Encoder mode. The counter only changes when CH2 changes.
– Timer.ENC_AB — configure the timer in Encoder mode. The counter changes when CH1 or CH2
changes.

• callback - as per TimerChannel.callback()
• pin None (the default) or a Pin object. If specified (and not None) this will cause the alternate function of
the the indicated pin to be configured for this timer channel. An error will be raised if the pin doesn’t support
any alternate functions for this timer channel.

Keyword arguments for Timer.PWM modes:
• pulse_width - determines the initial pulse width value to use.
• pulse_width_percent - determines the initial pulse width percentage to use.

Keyword arguments for Timer.OC modes:
• compare - determines the initial value of the compare register.

148 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

• polarity can be one of:
– Timer.HIGH - output is active high
– Timer.LOW - output is active low

Optional keyword arguments for Timer.IC modes:
• polarity can be one of:

– Timer.RISING - captures on rising edge.
– Timer.FALLING - captures on falling edge.
– Timer.BOTH - captures on both edges.

Note that capture only works on the primary channel, and not on the complimentary channels.
Notes for Timer.ENC modes:

• Requires 2 pins, so one or both pins will need to be configured to use the appropriate timer AF using the Pin
API.

• Read the encoder value using the timer.counter() method.
• Only works on CH1 and CH2 (and not on CH1N or CH2N)
• The channel number is ignored when setting the encoder mode.

PWM Example:

timer = pyb.Timer(2, freq=1000)
ch2 = timer.channel(2, pyb.Timer.PWM, pin=pyb.Pin.board.X2, pulse_width=8000)
ch3 = timer.channel(3, pyb.Timer.PWM, pin=pyb.Pin.board.X3, pulse_width=16000)

PWMMotor Example with complementary outputs, dead time, break input and break callback:

from pyb import Timer
from machine import Pin # machine.Pin supports alt mode and irq on the same pin.
pin_t8_1 = Pin(Pin.board.Y1, mode=Pin.ALT, af=Pin.AF3_TIM8) # Pin PC6, TIM8_CH1
pin_t8_1n = Pin(Pin.board.X8, mode=Pin.ALT, af=Pin.AF3_TIM8) # Pin PA7, TIM8_CH1N
pin_bkin = Pin(Pin.board.X7, mode=Pin.ALT, af=Pin.AF3_TIM8) # Pin PA6, TIM8_BKIN
pin_bkin.irq(handler=break_callabck, trigger=Pin.IRQ_FALLING)
timer = pyb.Timer(8, freq=1000, deadtime=1008, brk=Timer.BRK_LOW)
ch1 = timer.channel(1, pyb.Timer.PWM, pulse_width_percent=30)

Timer.counter([value])
Get or set the timer counter.

Timer.freq([value])
Get or set the frequency for the timer (changes prescaler and period if set).

Timer.period([value])
Get or set the period of the timer.

Timer.prescaler([value])
Get or set the prescaler for the timer.

Timer.source_freq()
Get the frequency of the source of the timer.

1.3. Port-specific libraries 149

MicroPython Documentation, Release v1.20.0

class TimerChannel — setup a channel for a timer

Timer channels are used to generate/capture a signal using a timer.
TimerChannel objects are created using the Timer.channel() method.

Methods

timerchannel.callback(fun)
Set the function to be called when the timer channel triggers. fun is passed 1 argument, the timer object. If fun
is None then the callback will be disabled.

timerchannel.capture([value])
Get or set the capture value associated with a channel. capture, compare, and pulse_width are all aliases for the
same function. capture is the logical name to use when the channel is in input capture mode.

timerchannel.compare([value])
Get or set the compare value associated with a channel. capture, compare, and pulse_width are all aliases for the
same function. compare is the logical name to use when the channel is in output compare mode.

timerchannel.pulse_width([value])
Get or set the pulse width value associated with a channel. capture, compare, and pulse_width are all aliases for
the same function. pulse_width is the logical name to use when the channel is in PWM mode.
In edge aligned mode, a pulse_width of period + 1 corresponds to a duty cycle of 100% In center aligned
mode, a pulse width of period corresponds to a duty cycle of 100%

timerchannel.pulse_width_percent([value])
Get or set the pulse width percentage associated with a channel. The value is a number between 0 and 100 and
sets the percentage of the timer period for which the pulse is active. The value can be an integer or floating-point
number for more accuracy. For example, a value of 25 gives a duty cycle of 25%.

Constants

Timer.UP
Timer.DOWN
Timer.CENTER

Configures the timer to count Up, Down, or from 0 to ARR and then back down to 0.
Timer.BRK_OFF
Timer.BRK_LOW
Timer.BRK_HIGH

Configures the break mode when passed to the brk keyword argument.

class UART – duplex serial communication bus

UART implements the standard UART/USART duplex serial communications protocol. At the physical level it consists
of 2 lines: RX and TX. The unit of communication is a character (not to be confused with a string character) which can
be 8 or 9 bits wide.
UART objects can be created and initialised using:

150 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

from pyb import UART

uart = UART(1, 9600) # init with given baudrate
uart.init(9600, bits=8, parity=None, stop=1) # init with given parameters

Bits can be 7, 8 or 9. Parity can be None, 0 (even) or 1 (odd). Stop can be 1 or 2.
Note: with parity=None, only 8 and 9 bits are supported. With parity enabled, only 7 and 8 bits are supported.
A UART object acts like a stream object and reading and writing is done using the standard stream methods:

uart.read(10) # read 10 characters, returns a bytes object
uart.read() # read all available characters
uart.readline() # read a line
uart.readinto(buf) # read and store into the given buffer
uart.write('abc') # write the 3 characters

Individual characters can be read/written using:

uart.readchar() # read 1 character and returns it as an integer
uart.writechar(42) # write 1 character

To check if there is anything to be read, use:

uart.any() # returns the number of characters waiting

Note: The stream functions read, write, etc. are new in MicroPython v1.3.4. Earlier versions use uart.send and
uart.recv.

Constructors

class pyb.UART(bus, ...)
Construct a UART object on the given bus. For Pyboard bus can be 1-4, 6, ‘XA’, ‘XB’, ‘YA’, or ‘YB’. For Pyboard
Lite bus can be 1, 2, 6, ‘XB’, or ‘YA’. For Pyboard D bus can be 1-4, ‘XA’, ‘YA’ or ‘YB’. With no additional
parameters, the UART object is created but not initialised (it has the settings from the last initialisation of the bus,
if any). If extra arguments are given, the bus is initialised. See init for parameters of initialisation.
The physical pins of the UART buses on Pyboard are:

• UART(4) is on XA: (TX, RX) = (X1, X2) = (PA0, PA1)

• UART(1) is on XB: (TX, RX) = (X9, X10) = (PB6, PB7)

• UART(6) is on YA: (TX, RX) = (Y1, Y2) = (PC6, PC7)

• UART(3) is on YB: (TX, RX) = (Y9, Y10) = (PB10, PB11)

• UART(2) is on: (TX, RX) = (X3, X4) = (PA2, PA3)

The Pyboard Lite supports UART(1), UART(2) and UART(6) only, pins are:
• UART(1) is on XB: (TX, RX) = (X9, X10) = (PB6, PB7)

• UART(6) is on YA: (TX, RX) = (Y1, Y2) = (PC6, PC7)

• UART(2) is on: (TX, RX) = (X1, X2) = (PA2, PA3)

The Pyboard D supports UART(1), UART(2), UART(3) and UART(4) only, pins are:
• UART(4) is on XA: (TX, RX) = (X1, X2) = (PA0, PA1)

1.3. Port-specific libraries 151

MicroPython Documentation, Release v1.20.0

• UART(1) is on YA: (TX, RX) = (Y1, Y2) = (PA9, PA10)

• UART(3) is on YB: (TX, RX) = (Y9, Y10) = (PB10, PB11)

• UART(2) is on: (TX, RX) = (X3, X4) = (PA2, PA3)

Note: Pyboard D has UART(1) on YA, unlike Pyboard and Pyboard Lite that both have UART(1) on XB and
UART(6) on YA.

Methods

UART.init(baudrate, bits=8, parity=None, stop=1, *, timeout=0, flow=0, timeout_char=0, read_buf_len=64)
Initialise the UART bus with the given parameters:

• baudrate is the clock rate.
• bits is the number of bits per character, 7, 8 or 9.
• parity is the parity, None, 0 (even) or 1 (odd).
• stop is the number of stop bits, 1 or 2.
• flow sets the flow control type. Can be 0, UART.RTS, UART.CTS or UART.RTS | UART.CTS.
• timeout is the timeout in milliseconds to wait for writing/reading the first character.
• timeout_char is the timeout in milliseconds to wait between characters while writing or reading.
• read_buf_len is the character length of the read buffer (0 to disable).

This method will raise an exception if the baudrate could not be set within 5% of the desired value. The minimum
baudrate is dictated by the frequency of the bus that the UART is on; UART(1) and UART(6) are APB2, the rest
are on APB1. The default bus frequencies give a minimum baudrate of 1300 for UART(1) and UART(6) and 650
for the others. Use pyb.freq to reduce the bus frequencies to get lower baudrates.
Note: with parity=None, only 8 and 9 bits are supported. With parity enabled, only 7 and 8 bits are supported.

UART.deinit()
Turn off the UART bus.

UART.any()
Returns the number of bytes waiting (may be 0).

UART.read([nbytes])
Read characters. If nbytes is specified then read at most that many bytes. If nbytes are available in the buffer,
returns immediately, otherwise returns when sufficient characters arrive or the timeout elapses.
If nbytes is not given then the method reads as much data as possible. It returns after the timeout has elapsed.
Note: for 9 bit characters each character takes two bytes, nbytes must be even, and the number of characters is
nbytes/2.
Return value: a bytes object containing the bytes read in. Returns None on timeout.

UART.readchar()
Receive a single character on the bus.
Return value: The character read, as an integer. Returns -1 on timeout.

UART.readinto(buf[, nbytes])
Read bytes into the buf. If nbytes is specified then read at most that many bytes. Otherwise, read at most
len(buf) bytes.
Return value: number of bytes read and stored into buf or None on timeout.

152 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

UART.readline()
Read a line, ending in a newline character. If such a line exists, return is immediate. If the timeout elapses, all
available data is returned regardless of whether a newline exists.
Return value: the line read or None on timeout if no data is available.

UART.write(buf)
Write the buffer of bytes to the bus. If characters are 7 or 8 bits wide then each byte is one character. If characters
are 9 bits wide then two bytes are used for each character (little endian), and buf must contain an even number of
bytes.
Return value: number of bytes written. If a timeout occurs and no bytes were written returns None.

UART.writechar(char)
Write a single character on the bus. char is an integer to write. Return value: None. See note below if CTS flow
control is used.

UART.sendbreak()
Send a break condition on the bus. This drives the bus low for a duration of 13 bits. Return value: None.

Constants

UART.RTS
UART.CTS

to select the flow control type.

Flow Control

On Pyboards V1 and V1.1 UART(2) and UART(3) support RTS/CTS hardware flow control using the following pins:
• UART(2) is on: (TX, RX, nRTS, nCTS) = (X3, X4, X2, X1) = (PA2, PA3, PA1, PA0)

• UART(3) is on :(TX, RX, nRTS, nCTS) = (Y9, Y10, Y7, Y6) = (PB10, PB11, PB14,
PB13)

On the Pyboard Lite only UART(2) supports flow control on these pins:
(TX, RX, nRTS, nCTS) = (X1, X2, X4, X3) = (PA2, PA3, PA1, PA0)

In the following paragraphs the term “target” refers to the device connected to the UART.
When the UART’s init() method is called with flow set to one or both of UART.RTS and UART.CTS the relevant
flow control pins are configured. nRTS is an active low output, nCTS is an active low input with pullup enabled. To
achieve flow control the Pyboard’s nCTS signal should be connected to the target’s nRTS and the Pyboard’s nRTS to the
target’s nCTS.

CTS: target controls Pyboard transmitter

If CTS flow control is enabled the write behaviour is as follows:
If the Pyboard’s UART.write(buf) method is called, transmission will stall for any periods when nCTS is False.
This will result in a timeout if the entire buffer was not transmitted in the timeout period. The method returns the number
of bytes written, enabling the user to write the remainder of the data if required. In the event of a timeout, a character
will remain in the UART pending nCTS. The number of bytes composing this character will be included in the return
value.

1.3. Port-specific libraries 153

MicroPython Documentation, Release v1.20.0

If UART.writechar() is called when nCTS is False the method will time out unless the target asserts nCTS in
time. If it times out OSError 116 will be raised. The character will be transmitted as soon as the target asserts nCTS.

RTS: Pyboard controls target’s transmitter

If RTS flow control is enabled, behaviour is as follows:
If buffered input is used (read_buf_len > 0), incoming characters are buffered. If the buffer becomes full, the next
character to arrive will cause nRTS to go False: the target should cease transmission. nRTS will go True when
characters are read from the buffer.
Note that the any() method returns the number of bytes in the buffer. Assume a buffer length of N bytes. If the buffer
becomes full, and another character arrives, nRTS will be set False, and any() will return the count N. When characters
are read the additional character will be placed in the buffer and will be included in the result of a subsequent any()
call.
If buffered input is not used (read_buf_len == 0) the arrival of a character will cause nRTS to go False until the
character is read.

class USB_HID – USB Human Interface Device (HID)

The USB_HID class allows creation of an object representing the USB Human Interface Device (HID) interface. It can
be used to emulate a peripheral such as a mouse or keyboard.
Before you can use this class, you need to use pyb.usb_mode() to set the USB mode to include the HID interface.

Constructors

class pyb.USB_HID
Create a new USB_HID object.

Methods

USB_HID.recv(data, *, timeout=5000)
Receive data on the bus:

• data can be an integer, which is the number of bytes to receive, or a mutable buffer, which will be filled
with received bytes.

• timeout is the timeout in milliseconds to wait for the receive.
Return value: if data is an integer then a new buffer of the bytes received, otherwise the number of bytes read
into data is returned.

USB_HID.send(data)
Send data over the USB HID interface:

• data is the data to send (a tuple/list of integers, or a bytearray).

154 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

class USB_VCP – USB virtual comm port

The USB_VCP class allows creation of a stream-like object representing the USB virtual comm port. It can be used
to read and write data over USB to the connected host.

Constructors

class pyb.USB_VCP(id=0)
Create a new USB_VCP object. The id argument specifies which USB VCP port to use.

Methods

USB_VCP.init(*, flow=- 1)
Configure the USB VCP port. If the flow argument is not -1 then the value sets the flow control, which can be a
bitwise-or of USB_VCP.RTS and USB_VCP.CTS. RTS is used to control read behaviour and CTS, to control
write behaviour.

USB_VCP.setinterrupt(chr)
Set the character which interrupts running Python code. This is set to 3 (CTRL-C) by default, and when a CTRL-C
character is received over the USB VCP port, a KeyboardInterrupt exception is raised.
Set to -1 to disable this interrupt feature. This is useful when you want to send raw bytes over the USB VCP port.

USB_VCP.isconnected()
Return True if USB is connected as a serial device, else False.

USB_VCP.any()
Return True if any characters waiting, else False.

USB_VCP.close()
This method does nothing. It exists so the USB_VCP object can act as a file.

USB_VCP.read([nbytes])
Read at most nbytes from the serial device and return them as a bytes object. If nbytes is not specified then
the method reads all available bytes from the serial device. USB_VCP stream implicitly works in non-blocking
mode, so if no pending data available, this method will return immediately with None value.

USB_VCP.readinto(buf[, maxlen])
Read bytes from the serial device and store them into buf, which should be a buffer-like object. At most
len(buf) bytes are read. If maxlen is given and then at most min(maxlen, len(buf)) bytes are read.
Returns the number of bytes read and stored into buf or None if no pending data available.

USB_VCP.readline()
Read a whole line from the serial device.
Returns a bytes object containing the data, including the trailing newline character or None if no pending data
available.

USB_VCP.readlines()
Read as much data as possible from the serial device, breaking it into lines.
Returns a list of bytes objects, each object being one of the lines. Each line will include the newline character.

USB_VCP.write(buf)
Write the bytes from buf to the serial device.
Returns the number of bytes written.

1.3. Port-specific libraries 155

MicroPython Documentation, Release v1.20.0

USB_VCP.recv(data, *, timeout=5000)
Receive data on the bus:

• data can be an integer, which is the number of bytes to receive, or a mutable buffer, which will be filled
with received bytes.

• timeout is the timeout in milliseconds to wait for the receive.
Return value: if data is an integer then a new buffer of the bytes received, otherwise the number of bytes read
into data is returned.

USB_VCP.send(data, *, timeout=5000)
Send data over the USB VCP:

• data is the data to send (an integer to send, or a buffer object).
• timeout is the timeout in milliseconds to wait for the send.

Return value: number of bytes sent.
USB_VCP.irq(handler=None, trigger=IRQ_RX, hard=False)

Register handler to be called whenever an event specified by trigger occurs. The handler function must take exactly
one argument, which will be the USB VCP object. Pass in None to disable the callback.
Valid values for trigger are:

• USB_VCP.IRQ_RX: new data is available for reading from the USB VCP object.

Constants

USB_VCP.RTS
USB_VCP.CTS

to select the flow control type.
USB_VCP.IRQ_RX

IRQ trigger values for USB_VCP.irq().

stm — functionality specific to STM32 MCUs

This module provides functionality specific to STM32 microcontrollers, including direct access to peripheral registers.

Memory access

The module exposes three objects used for raw memory access.
stm.mem8

Read/write 8 bits of memory.
stm.mem16

Read/write 16 bits of memory.
stm.mem32

Read/write 32 bits of memory.
Use subscript notation [...] to index these objects with the address of interest.
These memory objects can be used in combination with the peripheral register constants to read and write registers of the
MCU hardware peripherals, as well as all other areas of address space.

156 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

Peripheral register constants

The module defines constants for registers which are generated from CMSIS header files, and the constants available
depend on the microcontroller series that is being compiled for. Examples of some constants include:
stm.GPIOA

Base address of the GPIOA peripheral.
stm.GPIOB

Base address of the GPIOB peripheral.
stm.GPIO_BSRR

Offset of the GPIO bit set/reset register.
stm.GPIO_IDR

Offset of the GPIO input data register.
stm.GPIO_ODR

Offset of the GPIO output data register.
Constants that are named after a peripheral, like GPIOA, are the absolute address of that peripheral. Constants that have
a prefix which is the name of a peripheral, like GPIO_BSRR, are relative offsets of the register. Accessing peripheral
registers requires adding the absolute base address of the peripheral and the relative register offset. For example GPIOA
+ GPIO_BSRR is the full, absolute address of the GPIOA->BSRR register.
Example use:

set PA2 high
stm.mem32[stm.GPIOA + stm.GPIO_BSRR] = 1 << 2

read PA3
value = (stm.mem32[stm.GPIOA + stm.GPIO_IDR] >> 3) & 1

Functions specific to STM32WBxx MCUs

These functions are available on STM32WBxx microcontrollers, and interact with the second CPU, the RF core.
stm.rfcore_status()

Returns the status of the second CPU as an integer (the first word of device info table).
stm.rfcore_fw_version(id)

Get the version of the firmware running on the second CPU. Pass in 0 for id to get the FUS version, and 1 to get
the WS version.
Returns a 5-tuple with the full version number.

stm.rfcore_sys_hci(ogf, ocf, data, timeout_ms=0)
Execute a HCI command on the SYS channel. The execution is synchronous.
Returns a bytes object with the result of the SYS command.

1.3. Port-specific libraries 157

MicroPython Documentation, Release v1.20.0

lcd160cr— control of LCD160CR display

This module provides control of the MicroPython LCD160CR display.

Further resources are available via the following links:
• LCD160CRv1.0 reference manual (100KiB PDF)
• LCD160CRv1.0 schematics (1.6MiB PDF)

class LCD160CR

The LCD160CR class provides an interface to the display. Create an instance of this class and use its methods to draw
to the LCD and get the status of the touch panel.
For example:

import lcd160cr

lcd = lcd160cr.LCD160CR('X')
lcd.set_orient(lcd160cr.PORTRAIT)
lcd.set_pos(0, 0)

(continues on next page)

158 Chapter 1. MicroPython libraries

http://micropython.org/resources/LCD160CRv10-refmanual.pdf
http://micropython.org/resources/LCD160CRv10-schematics.pdf

MicroPython Documentation, Release v1.20.0

(continued from previous page)
lcd.set_text_color(lcd.rgb(255, 0, 0), lcd.rgb(0, 0, 0))
lcd.set_font(1)
lcd.write('Hello MicroPython!')
print('touch:', lcd.get_touch())

Constructors

class lcd160cr.LCD160CR(connect=None, *, pwr=None, i2c=None, spi=None, i2c_addr=98)
Construct an LCD160CR object. The parameters are:

• connect is a string specifying the physical connection of the LCD display to the board; valid values are “X”,
“Y”, “XY”, “YX”. Use “X” when the display is connected to a pyboard in the X-skin position, and “Y” when
connected in the Y-skin position. “XY” and “YX” are used when the display is connected to the right or left
side of the pyboard, respectively.

• pwr is a Pin object connected to the LCD’s power/enabled pin.
• i2c is an I2C object connected to the LCD’s I2C interface.
• spi is an SPI object connected to the LCD’s SPI interface.
• i2c_addr is the I2C address of the display.

One must specify either a valid connect or all of pwr, i2c and spi. If a valid connect is given then any of pwr, i2c
or spi which are not passed as parameters (i.e. they are None) will be created based on the value of connect. This
allows to override the default interface to the display if needed.
The default values are:

• “X” is for the X-skin and uses: pwr=Pin("X4"), i2c=I2C("X"), spi=SPI("X")
• “Y” is for the Y-skin and uses: pwr=Pin("Y4"), i2c=I2C("Y"), spi=SPI("Y")
• “XY” is for the right-side and uses: pwr=Pin("X4"), i2c=I2C("Y"), spi=SPI("X")
• “YX” is for the left-side and uses: pwr=Pin("Y4"), i2c=I2C("X"), spi=SPI("Y")

See this image for how the display can be connected to the pyboard.

Static methods

static LCD160CR.rgb(r, g, b)
Return a 16-bit integer representing the given rgb color values. The 16-bit value can be used to set the font color
(see LCD160CR.set_text_color()) pen color (see LCD160CR.set_pen()) and draw individual pixels.

LCD160CR.clip_line(data, w, h):
Clip the given line data. This is for internal use.

1.3. Port-specific libraries 159

http://micropython.org/resources/LCD160CRv10-positions.jpg

MicroPython Documentation, Release v1.20.0

Instance members

The following instance members are publicly accessible.
LCD160CR.w

LCD160CR.h
The width and height of the display, respectively, in pixels. These members are updated when calling LCD160CR.
set_orient() and should be considered read-only.

Setup commands

LCD160CR.set_power(on)
Turn the display on or off, depending on the given value of on: 0 or False will turn the display off, and 1 or True
will turn it on.

LCD160CR.set_orient(orient)
Set the orientation of the display. The orient parameter can be one of PORTRAIT, LANDSCAPE, POR-
TRAIT_UPSIDEDOWN , LANDSCAPE_UPSIDEDOWN .

LCD160CR.set_brightness(value)
Set the brightness of the display, between 0 and 31.

LCD160CR.set_i2c_addr(addr)
Set the I2C address of the display. The addr value must have the lower 2 bits cleared.

LCD160CR.set_uart_baudrate(baudrate)
Set the baudrate of the UART interface.

LCD160CR.set_startup_deco(value)
Set the start-up decoration of the display. The value parameter can be a logical or of STARTUP_DECO_NONE,
STARTUP_DECO_MLOGO, STARTUP_DECO_INFO.

LCD160CR.save_to_flash()
Save the following parameters to flash so they persist on restart and power up: initial decoration, orientation,
brightness, UART baud rate, I2C address.

Pixel access methods

The following methods manipulate individual pixels on the display.
LCD160CR.set_pixel(x, y, c)

Set the specified pixel to the given color. The color should be a 16-bit integer and can be created by LCD160CR.
rgb().

LCD160CR.get_pixel(x, y)
Get the 16-bit value of the specified pixel.

LCD160CR.get_line(x, y, buf)
Low-level method to get a line of pixels into the given buffer. To read n pixels buf should be 2*n+1 bytes in length.
The first byte is a dummy byte and should be ignored, and subsequent bytes represent the pixels in the line starting
at coordinate (x, y).

LCD160CR.screen_dump(buf, x=0, y=0, w=None, h=None)
Dump the contents of the screen to the given buffer. The parameters x and y specify the starting coordinate, and w
and h the size of the region. If w or h are None then they will take on their maximum values, set by the size of the
screen minus the given x and y values. buf should be large enough to hold 2*w*h bytes. If it’s smaller then only
the initial horizontal lines will be stored.

160 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

LCD160CR.screen_load(buf)
Load the entire screen from the given buffer.

Drawing text

To draw text one sets the position, color and font, and then uses LCD160CR.write to draw the text.
LCD160CR.set_pos(x, y)

Set the position for text output using LCD160CR.write(). The position is the upper-left corner of the text.
LCD160CR.set_text_color(fg, bg)

Set the foreground and background color of the text.
LCD160CR.set_font(font, scale=0, bold=0, trans=0, scroll=0)

Set the font for the text. Subsequent calls to write will use the newly configured font. The parameters are:
• font is the font family to use, valid values are 0, 1, 2, 3.
• scale is a scaling value for each character pixel, where the pixels are drawn as a square with side length equal
to scale + 1. The value can be between 0 and 63.

• bold controls the number of pixels to overdraw each character pixel, making a bold effect. The lower 2 bits of
bold are the number of pixels to overdraw in the horizontal direction, and the next 2 bits are for the vertical
direction. For example, a bold value of 5 will overdraw 1 pixel in both the horizontal and vertical directions.

• trans can be either 0 or 1 and if set to 1 the characters will be drawn with a transparent background.
• scroll can be either 0 or 1 and if set to 1 the display will do a soft scroll if the text moves to the next line.

LCD160CR.write(s)
Write text to the display, using the current position, color and font. As text is written the position is automatically
incremented. The display supports basic VT100 control codes such as newline and backspace.

Drawing primitive shapes

Primitive drawing commands use a foreground and background color set by the set_pen method.
LCD160CR.set_pen(line, fill)

Set the line and fill color for primitive shapes.
LCD160CR.erase()

Erase the entire display to the pen fill color.
LCD160CR.dot(x, y)

Draw a single pixel at the given location using the pen line color.
LCD160CR.rect(x, y, w, h)
LCD160CR.rect_outline(x, y, w, h)
LCD160CR.rect_interior(x, y, w, h)

Draw a rectangle at the given location and size using the pen line color for the outline, and the pen fill color for the
interior. The rect method draws the outline and interior, while the other methods just draw one or the other.

LCD160CR.line(x1, y1, x2, y2)
Draw a line between the given coordinates using the pen line color.

LCD160CR.dot_no_clip(x, y)
LCD160CR.rect_no_clip(x, y, w, h)

1.3. Port-specific libraries 161

MicroPython Documentation, Release v1.20.0

LCD160CR.rect_outline_no_clip(x, y, w, h)
LCD160CR.rect_interior_no_clip(x, y, w, h)
LCD160CR.line_no_clip(x1, y1, x2, y2)

These methods are as above but don’t do any clipping on the input coordinates. They are faster than the clipping
versions and can be used when you know that the coordinates are within the display.

LCD160CR.poly_dot(data)
Draw a sequence of dots using the pen line color. The data should be a buffer of bytes, with each successive pair
of bytes corresponding to coordinate pairs (x, y).

LCD160CR.poly_line(data)
Similar to LCD160CR.poly_dot() but draws lines between the dots.

Touch screen methods

LCD160CR.touch_config(calib=False, save=False, irq=None)
Configure the touch panel:

• If calib is True then the call will trigger a touch calibration of the resistive touch sensor. This requires the
user to touch various parts of the screen.

• If save is True then the touch parameters will be saved to NVRAM to persist across reset/power up.
• If irq is True then the display will be configured to pull the IRQ line low when a touch force is detected. If

irq is False then this feature is disabled. If irq is None (the default value) then no change is made to this
setting.

LCD160CR.is_touched()
Returns a boolean: True if there is currently a touch force on the screen, False otherwise.

LCD160CR.get_touch()
Returns a 3-tuple of: (active, x, y). If there is currently a touch force on the screen then active is 1, otherwise it is
0. The x and y values indicate the position of the current or most recent touch.

Advanced commands

LCD160CR.set_spi_win(x, y, w, h)
Set the window that SPI data is written to.

LCD160CR.fast_spi(flush=True)
Ready the display to accept RGB pixel data on the SPI bus, resetting the location of the first byte to go to the
top-left corner of the window set by LCD160CR.set_spi_win(). The method returns an SPI object which
can be used to write the pixel data.
Pixels should be sent as 16-bit RGB values in the 5-6-5 format. The destination counter will increase as data is
sent, and data can be sent in arbitrary sized chunks. Once the destination counter reaches the end of the window
specified by LCD160CR.set_spi_win() it will wrap around to the top-left corner of that window.

LCD160CR.show_framebuf(buf)
Show the given buffer on the display. buf should be an array of bytes containing the 16-bit RGB values for the
pixels, and they will be written to the area specified by LCD160CR.set_spi_win(), starting from the top-left
corner.
The framebuf module can be used to construct frame buffers and provides drawing primitives. Using a frame buffer
will improve performance of animations when compared to drawing directly to the screen.

162 Chapter 1. MicroPython libraries

framebuf.html

MicroPython Documentation, Release v1.20.0

LCD160CR.set_scroll(on)
Turn scrolling on or off. This controls globally whether any window regions will scroll.

LCD160CR.set_scroll_win(win, x=- 1, y=0, w=0, h=0, vec=0, pat=0, fill=0x07e0, color=0)
Configure a window region for scrolling:

• win is the window id to configure. There are 0..7 standard windows for general purpose use. Window 8 is the
text scroll window (the ticker).

• x, y, w, h specify the location of the window in the display.
• vec specifies the direction and speed of scroll: it is a 16-bit value of the form 0bF.ddSSSSSSSSSSSS. dd
is 0, 1, 2, 3 for +x, +y, -x, -y scrolling. F sets the speed format, with 0 meaning that the window is shifted S
% 256 pixel every frame, and 1 meaning that the window is shifted 1 pixel every S frames.

• pat is a 16-bit pattern mask for the background.
• fill is the fill color.
• color is the extra color, either of the text or pattern foreground.

LCD160CR.set_scroll_win_param(win, param, value)
Set a single parameter of a scrolling window region:

• win is the window id, 0..8.
• param is the parameter number to configure, 0..7, and corresponds to the parameters in the
set_scroll_win method.

• value is the value to set.
LCD160CR.set_scroll_buf(s)

Set the string for scrolling in window 8. The parameter s must be a string with length 32 or less.
LCD160CR.jpeg(buf)

Display a JPEG. buf should contain the entire JPEG data. JPEG data should not include EXIF information.
The following encodings are supported: Baseline DCT, Huffman coding, 8 bits per sample, 3 color components,
YCbCr4:2:2. The origin of the JPEG is set by LCD160CR.set_pos().

LCD160CR.jpeg_start(total_len)

LCD160CR.jpeg_data(buf)
Display a JPEG with the data split across multiple buffers. There must be a single call to jpeg_start to begin
with, specifying the total number of bytes in the JPEG. Then this number of bytes must be transferred to the display
using one or more calls to the jpeg_data command.

LCD160CR.feed_wdt()
The first call to this method will start the display’s internal watchdog timer. Subsequent calls will feed the watchdog.
The timeout is roughly 30 seconds.

LCD160CR.reset()
Reset the display.

1.3. Port-specific libraries 163

MicroPython Documentation, Release v1.20.0

Constants

lcd160cr.PORTRAIT
lcd160cr.LANDSCAPE
lcd160cr.PORTRAIT_UPSIDEDOWN
lcd160cr.LANDSCAPE_UPSIDEDOWN

Orientations of the display, used by LCD160CR.set_orient().
lcd160cr.STARTUP_DECO_NONE
lcd160cr.STARTUP_DECO_MLOGO
lcd160cr.STARTUP_DECO_INFO

Types of start-up decoration, can be OR’ed together, used by LCD160CR.set_startup_deco().

1.3.2 Libraries specific to the WiPy

The following libraries and classes are specific to the WiPy.

wipy – WiPy specific features

The wipy module contains functions to control specific features of the WiPy, such as the heartbeat LED.

Functions

wipy.heartbeat([enable])
Get or set the state (enabled or disabled) of the heartbeat LED. Accepts and returns boolean values (True or
False).

class ADCWiPy – analog to digital conversion

Note: This class is a non-standard ADC implementation for the WiPy. It is available simply as machine.ADC on
the WiPy but is named in the documentation below as machine.ADCWiPy to distinguish it from the more general
machine.ADC class.

Usage:

import machine

adc = machine.ADC() # create an ADC object
apin = adc.channel(pin='GP3') # create an analog pin on GP3
val = apin() # read an analog value

164 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

Constructors

class machine.ADCWiPy(id=0, *, bits=12)
Create an ADC object associated with the given pin. This allows you to then read analog values on that pin. For
more info check the pinout and alternate functions table.

Warning: ADC pin input range is 0-1.4V (being 1.8V the absolute maximum that it can withstand). When
GP2, GP3, GP4 or GP5 are remapped to the ADC block, 1.8 V is the maximum. If these pins are used in
digital mode, then the maximum allowed input is 3.6V.

Methods

ADCWiPy.channel(id, *, pin)
Create an analog pin. If only channel ID is given, the correct pin will be selected. Alternatively, only the pin can
be passed and the correct channel will be selected. Examples:

all of these are equivalent and enable ADC channel 1 on GP3
apin = adc.channel(1)
apin = adc.channel(pin='GP3')
apin = adc.channel(id=1, pin='GP3')

ADCWiPy.init()
Enable the ADC block.

ADCWiPy.deinit()
Disable the ADC block.

class ADCChannel — read analog values from internal or external sources

ADC channels can be connected to internal points of the MCU or to GPIO pins. ADC channels are created using the
ADC.channel method.
machine.adcchannel()

Fast method to read the channel value.
adcchannel.value()

Read the channel value.
adcchannel.init()

Re-init (and effectively enable) the ADC channel.
adcchannel.deinit()

Disable the ADC channel.

1.3. Port-specific libraries 165

https://raw.githubusercontent.com/wipy/wipy/master/docs/PinOUT.png

MicroPython Documentation, Release v1.20.0

class TimerWiPy – control hardware timers

Note: This class is a non-standard Timer implementation for the WiPy. It is available simply as machine.Timer on
the WiPy but is named in the documentation below as machine.TimerWiPy to distinguish it from the more general
machine.Timer class.

Hardware timers deal with timing of periods and events. Timers are perhaps the most flexible and heterogeneous kind of
hardware in MCUs and SoCs, differently greatly from a model to a model. MicroPython’s Timer class defines a baseline
operation of executing a callback with a given period (or once after some delay), and allow specific boards to define more
non-standard behaviour (which thus won’t be portable to other boards).
See discussion of important constraints on Timer callbacks.

Note: Memory can’t be allocated inside irq handlers (an interrupt) and so exceptions raised within a handler don’t
give much information. See micropython.alloc_emergency_exception_buf() for how to get around this
limitation.

Constructors

class machine.TimerWiPy(id, ...)
Construct a new timer object of the given id. Id of -1 constructs a virtual timer (if supported by a board).

Methods

TimerWiPy.init(mode, *, width=16)
Initialise the timer. Example:

tim.init(Timer.PERIODIC) # periodic 16-bit timer
tim.init(Timer.ONE_SHOT, width=32) # one shot 32-bit timer

Keyword arguments:
• mode can be one of:

– TimerWiPy.ONE_SHOT - The timer runs once until the configured period of the channel expires.
– TimerWiPy.PERIODIC - The timer runs periodically at the configured frequency of the channel.
– TimerWiPy.PWM - Output a PWM signal on a pin.

• width must be either 16 or 32 (bits). For really low frequencies < 5Hz (or large periods), 32-bit timers
should be used. 32-bit mode is only available for ONE_SHOT AND PERIODIC modes.

TimerWiPy.deinit()
Deinitialises the timer. Stops the timer, and disables the timer peripheral.

TimerWiPy.channel(channel, **, freq, period, polarity=TimerWiPy.POSITIVE, duty_cycle=0)
If only a channel identifier passed, then a previously initialized channel object is returned (or None if there is no
previous channel).
Otherwise, a TimerChannel object is initialized and returned.
The operating mode is is the one configured to the Timer object that was used to create the channel.

166 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

• channel if the width of the timer is 16-bit, then must be either TIMER.A, TIMER.B. If the width is 32-bit
then itmust be TIMER.A | TIMER.B.

Keyword only arguments:
• freq sets the frequency in Hz.
• period sets the period in microseconds.

Note: Either freq or period must be given, never both.

• polarity this is applicable for PWM, and defines the polarity of the duty cycle
• duty_cycle only applicable to PWM. It’s a percentage (0.00-100.00). Since the WiPy doesn’t
support floating point numbers the duty cycle must be specified in the range 0-10000, where 10000
would represent 100.00, 5050 represents 50.50, and so on.

Note: When the channel is in PWM mode, the corresponding pin is assigned automatically, therefore there’s no
need to assign the alternate function of the pin via the Pin class. The pins which support PWM functionality are
the following:

• GP24 on Timer 0 channel A.
• GP25 on Timer 1 channel A.
• GP9 on Timer 2 channel B.
• GP10 on Timer 3 channel A.
• GP11 on Timer 3 channel B.

class TimerChannel — setup a channel for a timer

Timer channels are used to generate/capture a signal using a timer.
TimerChannel objects are created using the Timer.channel() method.

Methods

timerchannel.irq(*, trigger, priority=1, handler=None)
The behaviour of this callback is heavily dependent on the operating mode of the timer channel:

• If mode is TimerWiPy.PERIODIC the callback is executed periodically with the configured frequency or
period.

• If mode is TimerWiPy.ONE_SHOT the callback is executed once when the configured timer expires.
• If mode is TimerWiPy.PWM the callback is executed when reaching the duty cycle value.

The accepted params are:
• priority level of the interrupt. Can take values in the range 1-7. Higher values represent higher priorities.
• handler is an optional function to be called when the interrupt is triggered.

1.3. Port-specific libraries 167

MicroPython Documentation, Release v1.20.0

• triggermust be TimerWiPy.TIMEOUT when the operating mode is either TimerWiPy.PERIODIC
or TimerWiPy.ONE_SHOT. In the case that mode is TimerWiPy.PWM then trigger must be equal to
TimerWiPy.MATCH.

Returns a callback object.
timerchannel.freq([value])

Get or set the timer channel frequency (in Hz).
timerchannel.period([value])

Get or set the timer channel period (in microseconds).
timerchannel.duty_cycle([value])

Get or set the duty cycle of the PWM signal. It’s a percentage (0.00-100.00). Since the WiPy doesn’t support
floating point numbers the duty cycle must be specified in the range 0-10000, where 10000 would represent 100.00,
5050 represents 50.50, and so on.

Constants

TimerWiPy.ONE_SHOT

TimerWiPy.PERIODIC
Timer operating mode.

1.3.3 Libraries specific to the ESP8266 and ESP32

The following libraries are specific to the ESP8266 and ESP32.

esp— functions related to the ESP8266 and ESP32

The esp module contains specific functions related to both the ESP8266 and ESP32 modules. Some functions are only
available on one or the other of these ports.

Functions

esp.sleep_type([sleep_type])
Note: ESP8266 only
Get or set the sleep type.
If the sleep_type parameter is provided, sets the sleep type to its value. If the function is called without parameters,
returns the current sleep type.
The possible sleep types are defined as constants:

• SLEEP_NONE – all functions enabled,
• SLEEP_MODEM – modem sleep, shuts down the WiFi Modem circuit.
• SLEEP_LIGHT – light sleep, shuts down the WiFi Modem circuit and suspends the processor periodically.

The system enters the set sleep mode automatically when possible.
esp.deepsleep(time_us=0, /)

Note: ESP8266 only - use machine.deepsleep() on ESP32
Enter deep sleep.

168 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

The whole module powers down, except for the RTC clock circuit, which can be used to restart the module after
the specified time if the pin 16 is connected to the reset pin. Otherwise the module will sleep until manually reset.

esp.flash_id()
Note: ESP8266 only
Read the device ID of the flash memory.

esp.flash_size()
Read the total size of the flash memory.

esp.flash_user_start()
Read the memory offset at which the user flash space begins.

esp.flash_read(byte_offset, length_or_buffer)
esp.flash_write(byte_offset, bytes)
esp.flash_erase(sector_no)

esp.osdebug(level)
Turn esp os debugging messages on or off.
The level parameter sets the threshold for the log messages for all esp components. The log levels are defined as
constants:

• LOG_NONE – No log output
• LOG_ERROR – Critical errors, software module can not recover on its own
• LOG_WARN – Error conditions from which recovery measures have been taken
• LOG_INFO – Information messages which describe normal flow of events
• LOG_DEBUG – Extra information which is not necessary for normal use (values, pointers, sizes, etc)
• LOG_VERBOSE – Bigger chunks of debugging information, or frequent messages which can potentially flood
the output

esp.set_native_code_location(start, length)
Note: ESP8266 only
Set the location that native code will be placed for execution after it is compiled. Native code is emitted when the
@micropython.native, @micropython.viper and @micropython.asm_xtensa decorators are
applied to a function. The ESP8266 must execute code from either iRAM or the lower 1MByte of flash (which is
memory mapped), and this function controls the location.
If start and length are both None then the native code location is set to the unused portion of memory at the end
of the iRAM1 region. The size of this unused portion depends on the firmware and is typically quite small (around
500 bytes), and is enough to store a few very small functions. The advantage of using this iRAM1 region is that it
does not get worn out by writing to it.
If neither start nor length are None then they should be integers. start should specify the byte offset from the
beginning of the flash at which native code should be stored. length specifies how many bytes of flash from start
can be used to store native code. start and length should be multiples of the sector size (being 4096 bytes). The
flash will be automatically erased before writing to it so be sure to use a region of flash that is not otherwise used,
for example by the firmware or the filesystem.
When using the flash to store native code start+length must be less than or equal to 1MByte. Note that the flash
can be worn out if repeated erasures (and writes) are made so use this feature sparingly. In particular, native code
needs to be recompiled and rewritten to flash on each boot (including wake from deepsleep).

1.3. Port-specific libraries 169

MicroPython Documentation, Release v1.20.0

In both cases above, using iRAM1 or flash, if there is no more room left in the specified region then the use of
a native decorator on a function will lead to MemoryError exception being raised during compilation of that
function.

esp32— functionality specific to the ESP32

The esp32 module contains functions and classes specifically aimed at controlling ESP32 modules.

Functions

esp32.wake_on_touch(wake)
Configure whether or not a touch will wake the device from sleep. wake should be a boolean value.

esp32.wake_on_ulp(wake)
Configure whether or not the Ultra-Low-Power co-processor can wake the device from sleep. wake should be a
boolean value.

esp32.wake_on_ext0(pin, level)
Configure how EXT0 wakes the device from sleep. pin can be None or a valid Pin object. level should be esp32.
WAKEUP_ALL_LOW or esp32.WAKEUP_ANY_HIGH.

esp32.wake_on_ext1(pins, level)
Configure how EXT1 wakes the device from sleep. pins can be None or a tuple/list of valid Pin objects. level
should be esp32.WAKEUP_ALL_LOW or esp32.WAKEUP_ANY_HIGH.

esp32.gpio_deep_sleep_hold(enable)
Configure whether non-RTC GPIO pin configuration is retained during deep-sleep mode for held pads. enable
should be a boolean value.

esp32.raw_temperature()
Read the raw value of the internal temperature sensor, returning an integer.

esp32.hall_sensor()
Read the raw value of the internal Hall sensor, returning an integer.

esp32.idf_heap_info(capabilities)
Returns information about the ESP-IDF heap memory regions. One of them contains the MicroPython heap and
the others are used by ESP-IDF, e.g., for network buffers and other data. This data is useful to get a sense of how
much memory is available to ESP-IDF and the networking stack in particular. It may shed some light on situations
where ESP-IDF operations fail due to allocation failures. The information returned is not useful to troubleshoot
Python allocation failures, use micropython.mem_info() instead.
The capabilities parameter corresponds to ESP-IDF’s MALLOC_CAP_XXX values but the two most useful ones
are predefined as esp32.HEAP_DATA for data heap regions and esp32.HEAP_EXEC for executable regions
as used by the native code emitter.
The return value is a list of 4-tuples, where each 4-tuple corresponds to one heap and contains: the total bytes, the
free bytes, the largest free block, and the minimum free seen over time.
Example after booting:

>>> import esp32; esp32.idf_heap_info(esp32.HEAP_DATA)
[(240, 0, 0, 0), (7288, 0, 0, 0), (16648, 4, 4, 4), (79912, 35712, 35512, 35108),
(15072, 15036, 15036, 15036), (113840, 0, 0, 0)]

170 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

Flash partitions

This class gives access to the partitions in the device’s flash memory and includes methods to enable over-the-air (OTA)
updates.
class esp32.Partition(id, block_size=4096, /)

Create an object representing a partition. id can be a string which is the label of the partition to retrieve, or one of
the constants: BOOT or RUNNING. block_size specifies the byte size of an individual block.

classmethod Partition.find(type=TYPE_APP, subtype=0xff, label=None, block_size=4096)
Find a partition specified by type, subtype and label. Returns a (possibly empty) list of Partition objects. Note:
subtype=0xff matches any subtype and label=None matches any label.
block_size specifies the byte size of an individual block used by the returned objects.

Partition.info()
Returns a 6-tuple (type, subtype, addr, size, label, encrypted).

Partition.readblocks(block_num, buf)
Partition.readblocks(block_num, buf, offset)
Partition.writeblocks(block_num, buf)
Partition.writeblocks(block_num, buf, offset)
Partition.ioctl(cmd, arg)

These methods implement the simple and extended block protocol defined by os.AbstractBlockDev.
Partition.set_boot()

Sets the partition as the boot partition.
Partition.get_next_update()

Gets the next update partition after this one, and returns a new Partition object. Typical usage is
Partition(Partition.RUNNING).get_next_update() which returns the next partition to update
given the current running one.

classmethod Partition.mark_app_valid_cancel_rollback()
Signals that the current boot is considered successful. Calling mark_app_valid_cancel_rollback
is required on the first boot of a new partition to avoid an automatic rollback at the next boot. This uses
the ESP-IDF “app rollback” feature with “CONFIG_BOOTLOADER_APP_ROLLBACK_ENABLE” and an
OSError(-261) is raised if called on firmware that doesn’t have the feature enabled. It is OK to call
mark_app_valid_cancel_rollback on every boot and it is not necessary when booting firmare that was
loaded using esptool.

Constants

Partition.BOOT
Partition.RUNNING

Used in the Partition constructor to fetch various partitions: BOOT is the partition that will be booted at the
next reset and RUNNING is the currently running partition.

Partition.TYPE_APP
Partition.TYPE_DATA

Used in Partition.find to specify the partition type: APP is for bootable firmware partitions (typically
labelled factory, ota_0, ota_1), and DATA is for other partitions, e.g. nvs, otadata, phy_init, vfs.

esp32.HEAP_DATA
esp32.HEAP_EXEC

Used in idf_heap_info.

1.3. Port-specific libraries 171

MicroPython Documentation, Release v1.20.0

RMT

The RMT (Remote Control) module, specific to the ESP32, was originally designed to send and receive infrared remote
control signals. However, due to a flexible design and very accurate (as low as 12.5ns) pulse generation, it can also be
used to transmit or receive many other types of digital signals:

import esp32
from machine import Pin

r = esp32.RMT(0, pin=Pin(18), clock_div=8)
r # RMT(channel=0, pin=18, source_freq=80000000, clock_div=8, idle_level=0)

To apply a carrier frequency to the high output
r = esp32.RMT(0, pin=Pin(18), clock_div=8, tx_carrier=(38000, 50, 1))

The channel resolution is 100ns (1/(source_freq/clock_div)).
r.write_pulses((1, 20, 2, 40), 0) # Send 0 for 100ns, 1 for 2000ns, 0 for 200ns, 1␣
↪→for 4000ns

The input to the RMT module is an 80MHz clock (in the future it may be able to configure the input clock but, for now,
it’s fixed). clock_div divides the clock input which determines the resolution of the RMT channel. The numbers
specified in write_pulses are multiplied by the resolution to define the pulses.
clock_div is an 8-bit divider (0-255) and each pulse can be defined bymultiplying the resolution by a 15-bit (0-32,768)
number. There are eight channels (0-7) and each can have a different clock divider.
So, in the example above, the 80MHz clock is divided by 8. Thus the resolution is (1/(80Mhz/8)) 100ns. Since the start
level is 0 and toggles with each number, the bitstream is 0101 with durations of [100ns, 2000ns, 100ns, 4000ns].
For more details see Espressif’s ESP-IDF RMT documentation..

Warning: The current MicroPython RMT implementation lacks some features, most notably receiving pulses. RMT
should be considered a beta feature and the interface may change in the future.

class esp32.RMT(channel, *, pin=None, clock_div=8, idle_level=False, tx_carrier=None)
This class provides access to one of the eight RMT channels. channel is required and identifies which RMT channel
(0-7) will be configured. pin, also required, configures which Pin is bound to the RMT channel. clock_div is an 8-bit
clock divider that divides the source clock (80MHz) to the RMT channel allowing the resolution to be specified.
idle_level specifies what level the output will be when no transmission is in progress and can be any value that
converts to a boolean, with True representing high voltage and False representing low.
To enable the transmission carrier feature, tx_carrier should be a tuple of three positive integers: carrier frequency,
duty percent (0 to 100) and the output level to apply the carrier to (a boolean as per idle_level).

RMT.source_freq()
Returns the source clock frequency. Currently the source clock is not configurable so this will always return 80MHz.

RMT.clock_div()
Return the clock divider. Note that the channel resolution is 1 / (source_freq / clock_div).

RMT.wait_done(*, timeout=0)
Returns True if the channel is idle or False if a sequence of pulses started with RMT.write_pulses is being
transmitted. If the timeout keyword argument is given then block for up to this many milliseconds for transmission
to complete.

RMT.loop(enable_loop)
Configure looping on the channel. enable_loop is bool, set to True to enable looping on the next call to RMT.

172 Chapter 1. MicroPython libraries

https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/peripherals/rmt.html

MicroPython Documentation, Release v1.20.0

write_pulses. If called with False while a looping sequence is currently being transmitted then the current
loop iteration will be completed and then transmission will stop.

RMT.write_pulses(duration, data=True)
Begin transmitting a sequence. There are three ways to specify this:
Mode 1: duration is a list or tuple of durations. The optional data argument specifies the initial output level. The
output level will toggle after each duration.
Mode 2: duration is a positive integer and data is a list or tuple of output levels. duration specifies a fixed duration
for each.
Mode 3: duration and data are lists or tuples of equal length, specifying individual durations and the output level
for each.
Durations are in integer units of the channel resolution (as described above), between 1 and 32767 units. Out-
put levels are any value that can be converted to a boolean, with True representing high voltage and False
representing low.
If transmission of an earlier sequence is in progress then this method will block until that transmission is complete
before beginning the new sequence.
If looping has been enabled with RMT.loop, the sequence will be repeated indefinitely. Further calls to this
method will block until the end of the current loop iteration before immediately beginning to loop the new sequence
of pulses. Looping sequences longer than 126 pulses is not supported by the hardware.

static RMT.bitstream_channel([value])
Select which RMT channel is used by the machine.bitstream implementation. value can be None or a valid
RMT channel number. The default RMT channel is the highest numbered one.
Passing in None disables the use of RMT and instead selects a bit-banging implementation for machine.
bitstream.
Passing in no argument will not change the channel. This function returns the current channel number.

Ultra-Low-Power co-processor

class esp32.ULP
This class provides access to the Ultra-Low-Power co-processor.

ULP.set_wakeup_period(period_index, period_us)
Set the wake-up period.

ULP.load_binary(load_addr, program_binary)
Load a program_binary into the ULP at the given load_addr.

ULP.run(entry_point)
Start the ULP running at the given entry_point.

1.3. Port-specific libraries 173

MicroPython Documentation, Release v1.20.0

Constants

esp32.WAKEUP_ALL_LOW
esp32.WAKEUP_ANY_HIGH

Selects the wake level for pins.

Non-Volatile Storage

This class gives access to the Non-Volatile storage managed by ESP-IDF. The NVS is partitioned into namespaces and
each namespace contains typed key-value pairs. The keys are strings and the values may be various integer types, strings,
and binary blobs. The driver currently only supports 32-bit signed integers and blobs.

Warning: Changes to NVS need to be committed to flash by calling the commit method. Failure to call commit
results in changes being lost at the next reset.

class esp32.NVS(namespace)
Create an object providing access to a namespace (which is automatically created if not present).

NVS.set_i32(key, value)
Sets a 32-bit signed integer value for the specified key. Remember to call commit!

NVS.get_i32(key)
Returns the signed integer value for the specified key. Raises an OSError if the key does not exist or has a different
type.

NVS.set_blob(key, value)
Sets a binary blob value for the specified key. The value passed in must support the buffer protocol, e.g. bytes,
bytearray, str. (Note that esp-idf distinguishes blobs and strings, this method always writes a blob even if a string
is passed in as value.) Remember to call commit!

NVS.get_blob(key, buffer)
Reads the value of the blob for the specified key into the buffer, which must be a bytearray. Returns the actual
length read. Raises an OSError if the key does not exist, has a different type, or if the buffer is too small.

NVS.erase_key(key)
Erases a key-value pair.

NVS.commit()
Commits changes made by set_xxx methods to flash.

1.3.4 Libraries specific to the RP2040

The following libraries are specific to the RP2040, as used in the Raspberry Pi Pico.

174 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

rp2— functionality specific to the RP2040

The rp2 module contains functions and classes specific to the RP2040, as used in the Raspberry Pi Pico.
See the RP2040 Python datasheet for more information, and pico-micropython-examples for example code.

PIO related functions

The rp2 module includes functions for assembling PIO programs.
For running PIO programs, see rp2.StateMachine.
rp2.asm_pio(*, out_init=None, set_init=None, sideset_init=None, in_shiftdir=0, out_shiftdir=0, autopush=False,

autopull=False, push_thresh=32, pull_thresh=32, fifo_join=PIO.JOIN_NONE)
Assemble a PIO program.
The following parameters control the initial state of the GPIO pins, as one of PIO.IN_LOW , PIO.
IN_HIGH, PIO.OUT_LOW or PIO.OUT_HIGH. If the program uses more than one pin, provide a tuple, e.g.
out_init=(PIO.OUT_LOW, PIO.OUT_LOW).

• out_init configures the pins used for out() instructions.
• set_init configures the pins used for set() instructions. There can be at most 5.
• sideset_init configures the pins used side-setting. There can be at most 5.

The following parameters are used by default, but can be overridden in StateMachine.init():
• in_shiftdir is the default direction the ISR will shift, either PIO.SHIFT_LEFT or PIO.SHIFT_RIGHT.
• out_shiftdir is the default direction the OSR will shift, either PIO.SHIFT_LEFT or PIO.SHIFT_RIGHT.
• push_thresh is the threshold in bits before auto-push or conditional re-pushing is triggered.
• pull_thresh is the threshold in bits before auto-pull or conditional re-pulling is triggered.

The remaining parameters are:
• autopush configures whether auto-push is enabled.
• autopull configures whether auto-pull is enabled.
• fifo_join configures whether the 4-word TX and RX FIFOs should be combined into a single 8-word FIFO
for one direction only. The options are PIO.JOIN_NONE, PIO.JOIN_RX and PIO.JOIN_TX.

rp2.asm_pio_encode(instr, sideset_count, sideset_opt=False)
Assemble a single PIO instruction. You usually want to use asm_pio() instead.

>>> rp2.asm_pio_encode("set(0, 1)", 0)
57345

rp2.bootsel_button()
Temporarily turns the QSPI_SS pin into an input and reads its value, returning 1 for low and 0 for high. On a
typical RP2040 board with a BOOTSEL button, a return value of 1 indicates that the button is pressed.
Since this function temporarily disables access to the external flash memory, it also temporarily disables interrupts
and the other core to prevent them from trying to execute code from flash.

class rp2.PIOASMError
This exception is raised from asm_pio() or asm_pio_encode() if there is an error assembling a PIO pro-
gram.

1.3. Port-specific libraries 175

https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-python-sdk.pdf
https://github.com/raspberrypi/pico-micropython-examples/tree/master/pio

MicroPython Documentation, Release v1.20.0

PIO assembly language instructions

PIO state machines are programmed in a custom assembly language with nine core PIO-machine instructions. In Mi-
croPython, PIO assembly routines are written as a Python function with the decorator @rp2.asm_pio(), and they use
Python syntax. Such routines support standard Python variables and arithmetic, as well as the following custom functions
that encode PIO instructions and direct the assembler. See sec 3.4 of the RP2040 datasheet for further details.
wrap_target() Specify the location where execution continues after program wrapping. By default this is the start of the

PIO routine.
wrap() Specify the location where the program finishes and wraps around. If this directive is not used then it is added

automatically at the end of the PIO routine. Wrapping does not cost any execution cycles.
label(label) Define a label called label at the current location. label can be a string or integer.
word(instr, label=None) Insert an arbitrary 16-bit word in the assembled output.

• instr: the 16-bit value
• label: if given, look up the label and logical-or the label’s value with instr

jmp(…) This instruction takes two forms:
jmp(label)

• label: label to jump to unconditionally
jmp(cond, label)

• cond: the condition to check, one of:
– not_x, not_y: true if register is zero
– x_dec, y_dec: true if register is non-zero, and do post decrement
– x_not_y: true if X is not equal to Y
– pin: true if the input pin is set
– not_osre: true if OSR is not empty (hasn’t reached its threshold)

• label: label to jump to if condition is true
wait(polarity, src, index) Block, waiting for high/low on a pin or IRQ line.

• polarity: 0 or 1, whether to wait for a low or high value
• src: one of: gpio (absolute pin), pin (pin relative to StateMachine’s in_base argument), irq
• index: 0-31, the index for src

in_(src, bit_count) Shift data in from src to ISR.
• src: one of: pins, x, y, null, isr, osr
• bit_count: number of bits to shift in (1-32)

out(dest, bit_count) Shift data out from OSR to dest.
• dest: one of: pins, x, y, pindirs, pc, isr, exec
• bit_count: number of bits to shift out (1-32)

push(…) Push ISR to the RX FIFO, then clear ISR to zero. This instruction takes the following forms:
• push()
• push(block)

176 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

• push(noblock)
• push(iffull)
• push(iffull, block)
• push(iffull, noblock)

If block is used then the instruction stalls if the RX FIFO is full. The default is to block. If iffull is used then
it only pushes if the input shift count has reached its threshold.

pull(…) Pull from the TX FIFO into OSR. This instruction takes the following forms:
• pull()
• pull(block)
• pull(noblock)
• pull(ifempty)
• pull(ifempty, block)
• pull(ifempty, noblock)

If block is used then the instruction stalls if the TX FIFO is empty. The default is to block. If ifempty is used
then it only pulls if the output shift count has reached its threshold.

mov(dest, src) Move into dest the value from src.
• dest: one of: pins, x, y, exec, pc, isr, osr
• src: one of: pins, x, y, null, status, isr, osr; this argument can be optionally modified by wrapping
it in invert() or reverse() (but not both together)

irq(…) Set or clear an IRQ flag. This instruction takes two forms:
irq(index)

• index: 0-7, or rel(0) to rel(7)
irq(mode, index)

• mode: one of: block, clear
• index: 0-7, or rel(0) to rel(7)

If block is used then the instruction stalls until the flag is cleared by another entity. If clear is used then the
flag is cleared instead of being set. Relative IRQ indices add the state machine ID to the IRQ index with modulo-4
addition. IRQs 0-3 are visible from to the processor, 4-7 are internal to the state machines.

set(dest, data) Set dest with the value data.
• dest: pins, x, y, pindirs
• data: value (0-31)

nop() This is a pseudoinstruction that assembles to mov(y, y) and has no side effect.
.side(value) This is a modifier which can be applied to any instruction, and is used to control side-set pin values.

• value: the value (bits) to output on the side-set pins
.delay(value) This is a modifier which can be applied to any instruction, and specifies how many cycles to delay for after

the instruction executes.
• value: cycles to delay, 0-31 (maximum value reduced if side-set pins are used)

[value] This is a modifier and is equivalent to .delay(value).

1.3. Port-specific libraries 177

MicroPython Documentation, Release v1.20.0

Classes

class Flash – access to built-in flash storage

This class gives access to the SPI flash memory.
In most cases, to store persistent data on the device, you’ll want to use a higher-level abstraction, for example the filesystem
via Python’s standard file API, but this interface is useful to customise the filesystem configuration or implement a low-level
storage system for your application.

Constructors

class rp2.Flash
Gets the singleton object for accessing the SPI flash memory.

Methods

Flash.readblocks(block_num, buf)
Flash.readblocks(block_num, buf, offset)
Flash.writeblocks(block_num, buf)
Flash.writeblocks(block_num, buf, offset)
Flash.ioctl(cmd, arg)

These methods implement the simple and extended block protocol defined by os.AbstractBlockDev.

class PIO – advanced PIO usage

The PIO class gives access to an instance of the RP2040’s PIO (programmable I/O) interface.
The preferred way to interact with PIO is using rp2.StateMachine, the PIO class is for advanced use.
For assembling PIO programs, see rp2.asm_pio().

Constructors

class rp2.PIO(id)
Gets the PIO instance numbered id. The RP2040 has two PIO instances, numbered 0 and 1.
Raises a ValueError if any other argument is provided.

Methods

PIO.add_program(program)
Add the program to the instruction memory of this PIO instance.
The amount of memory available for programs on each PIO instance is limited. If there isn’t enough space left in
the PIO’s program memory this method will raise OSError(ENOMEM).

178 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

PIO.remove_program([program])
Remove program from the instruction memory of this PIO instance.
If no program is provided, it removes all programs.
It is not an error to remove a program which has already been removed.

PIO.state_machine(id[, program, ...])
Gets the state machine numbered id. On the RP2040, each PIO instance has four state machines, numbered 0 to
3.
Optionally initialize it with a program: see StateMachine.init.

>>> rp2.PIO(1).state_machine(3)
StateMachine(7)

PIO.irq(handler=None, trigger=IRQ_SM0 | IRQ_SM1 | IRQ_SM2 | IRQ_SM3, hard=False)
Returns the IRQ object for this PIO instance.
MicroPython only uses IRQ 0 on each PIO instance. IRQ 1 is not available.
Optionally configure it.

Constants

PIO.IN_LOW
PIO.IN_HIGH
PIO.OUT_LOW
PIO.OUT_HIGH

These constants are used for the out_init, set_init, and sideset_init arguments to asm_pio.
PIO.SHIFT_LEFT
PIO.SHIFT_RIGHT

These constants are used for the in_shiftdir and out_shiftdir arguments to asm_pio or StateMachine.init.
PIO.JOIN_NONE
PIO.JOIN_TX
PIO.JOIN_RX

These constants are used for the fifo_join argument to asm_pio.
PIO.IRQ_SM0
PIO.IRQ_SM1
PIO.IRQ_SM2
PIO.IRQ_SM3

These constants are used for the trigger argument to PIO.irq.

class StateMachine – access to the RP2040’s programmable I/O interface

The StateMachine class gives access to the RP2040’s PIO (programmable I/O) interface.
For assembling PIO programs, see rp2.asm_pio().

1.3. Port-specific libraries 179

MicroPython Documentation, Release v1.20.0

Constructors

class rp2.StateMachine(id[, program, ...])
Get the state machine numbered id. The RP2040 has two identical PIO instances, each with 4 state machines: so
there are 8 state machines in total, numbered 0 to 7.
Optionally initialize it with the given program program: see StateMachine.init.

Methods

StateMachine.init(program, freq=- 1, *, in_base=None, out_base=None, set_base=None, jmp_pin=None,
sideset_base=None, in_shiftdir=None, out_shiftdir=None, push_thresh=None,
pull_thresh=None)

Configure the state machine instance to run the given program.
The program is added to the instruction memory of this PIO instance. If the instruction memory already contains
this program, then its offset is re-used so as to save on instruction memory.

• freq is the frequency in Hz to run the state machine at. Defaults to the system clock frequency.
The clock divider is computed as system clock frequency / freq, so there can be slight rounding
errors.
The minimum possible clock divider is one 65536th of the system clock: so at the default system clock
frequency of 125MHz, the minimum value of freq is 1908. To run state machines at slower frequencies,
you’ll need to reduce the system clock speed with machine.freq().

• in_base is the first pin to use for in() instructions.
• out_base is the first pin to use for out() instructions.
• set_base is the first pin to use for set() instructions.
• jmp_pin is the first pin to use for jmp(pin, ...) instructions.
• sideset_base is the first pin to use for side-setting.
• in_shiftdir is the direction the ISR will shift, either PIO.SHIFT_LEFT or PIO.SHIFT_RIGHT.
• out_shiftdir is the direction the OSR will shift, either PIO.SHIFT_LEFT or PIO.SHIFT_RIGHT.
• push_thresh is the threshold in bits before auto-push or conditional re-pushing is triggered.
• pull_thresh is the threshold in bits before auto-pull or conditional re-pulling is triggered.

StateMachine.active([value])
Gets or sets whether the state machine is currently running.

>>> sm.active()
True
>>> sm.active(0)
False

StateMachine.restart()
Restarts the state machine and jumps to the beginning of the program.
This method clears the state machine’s internal state using the RP2040’s SM_RESTART register. This includes:

• input and output shift counters
• the contents of the input shift register

180 Chapter 1. MicroPython libraries

MicroPython Documentation, Release v1.20.0

• the delay counter
• the waiting-on-IRQ state
• a stalled instruction run using StateMachine.exec()

StateMachine.exec(instr)
Execute a single PIO instruction. Uses asm_pio_encode to encode the instruction from the given string instr.

>>> sm.exec("set(0, 1)")

StateMachine.get(buf=None, shift=0)
Pull a word from the state machine’s RX FIFO.
If the FIFO is empty, it blocks until data arrives (i.e. the state machine pushes a word).
The value is shifted right by shift bits before returning, i.e. the return value is word >> shift.

StateMachine.put(value, shift=0)
Push words onto the state machine’s TX FIFO.
value can be an integer, an array of type B, H or I, or a bytearray.
This method will block until all words have been written to the FIFO. If the FIFO is, or becomes, full, the method
will block until the state machine pulls enough words to complete the write.
Each word is first shifted left by shift bits, i.e. the state machine receives word << shift.

StateMachine.rx_fifo()
Returns the number of words in the state machine’s RX FIFO. A value of 0 indicates the FIFO is empty.
Useful for checking if data is waiting to be read, before calling StateMachine.get().

StateMachine.tx_fifo()
Returns the number of words in the state machine’s TX FIFO. A value of 0 indicates the FIFO is empty.
Useful for checking if there is space to push another word using StateMachine.put().

StateMachine.irq(handler=None, trigger=0 | 1, hard=False)
Returns the IRQ object for the given StateMachine.
Optionally configure it.

1.3.5 Libraries specific to Zephyr

The following libraries are specific to the Zephyr port.

zephyr— functionality specific to the Zephyr port

The zephyr module contains functions and classes specific to the Zephyr port.

1.3. Port-specific libraries 181

MicroPython Documentation, Release v1.20.0

Functions

zephyr.is_preempt_thread()
Returns true if the current thread is a preemptible thread.
Zephyr preemptible threads are those with non-negative priority values (low priority levels), which therefore, can
be supplanted as soon as a higher or equal priority thread becomes ready.

zephyr.current_tid()
Returns the thread id of the current thread, which is used to reference the thread.

zephyr.thread_analyze()
Runs the Zephyr debug thread analyzer on the current thread and prints stack size statistics in the format:

“thread_name-20s: STACK: unused available_stack_space usage
stack_space_used / stack_size (percent_stack_space_used %); CPU:
cpu_utilization %”
• CPU utilization is only printed if runtime statistics are configured via the ``CON-

FIG_THREAD_RUNTIME_STATS`` kconfig

This function can only be accessed if CONFIG_THREAD_ANALYZER is configured for the port in zephyr/
prj.conf. For more infomation, see documentation for Zephyr thread analyzer.

zephyr.shell_exec(cmd_in)
Executes the given command on an UART backend. This function can only be accessed if CON-
FIG_SHELL_BACKEND_SERIAL is configured for the port in zephyr/prj.conf.
A list of possible commands can be found in the documentation for Zephyr shell commands.

Classes

class DiskAccess – access to disk storage

Uses Zephyr Disk Access API.
This class allows access to storage devices on the board, such as support for SD card controllers and interfacing with SD
cards via SPI. Disk devices are automatically detected and initialized on boot using Zephyr devicetree data.
The Zephyr disk access class enables the transfer of data between a disk device and an accessible memory buffer given a
disk name, buffer, starting disk block, and number of sectors to read. MicroPython reads as many blocks as necessary to
fill the buffer, so the number of sectors to read is found by dividing the buffer length by block size of the disk.

Constructors

class zephyr.DiskAccess(disk_name)
Gets an object for accessing disk memory of the specific disk. For accessing an SD card on the mimxrt1050_evk,
disk_name would be SDHC. See board documentation and devicetree for usable disk names for your board (ex.
RT boards use style USDHC#).

182 Chapter 1. MicroPython libraries

https://docs.zephyrproject.org/latest/guides/debug_tools/thread-analyzer.html#thread-analyzer
https://docs.zephyrproject.org/latest/reference/shell/index.html?highlight=shell_execute_cmd#commands
https://docs.zephyrproject.org/latest/reference/storage/disk/access.html

MicroPython Documentation, Release v1.20.0

Methods

DiskAccess.readblocks(block_num, buf)
DiskAccess.readblocks(block_num, buf, offset)
DiskAccess.writeblocks(block_num, buf)
DiskAccess.writeblocks(block_num, buf, offset)
DiskAccess.ioctl(cmd, arg)

These methods implement the simple and extended block protocol defined by uos.AbstractBlockDev.

class FlashArea – access to built-in flash storage

Uses Zephyr flash map API.
This class allows access to device flash partition data. Flash area structs consist of a globally unique ID number, the name
of the flash device the partition is in, the start offset (expressed in relation to the flash memory beginning address per
partition), and the size of the partition that the device represents. For fixed flash partitions, data from the device tree is
used; however, fixed flash partitioning is not enforced in MicroPython because MCUBoot is not enabled.

Constructors

class zephyr.FlashArea(id, block_size)
Gets an object for accessing flash memory at partition specified by id and with block size of block_size.
id values are integers correlating to fixed flash partitions defined in the devicetree. A com-
monly used partition is the designated flash storage area defined as FlashArea.STORAGE if
FLASH_AREA_LABEL_EXISTS(storage) returns true at boot. Zephyr devicetree fixed flash parti-
tions are boot_partition, slot0_partition, slot1_partition, and scratch_partition.
Because MCUBoot is not enabled by default for MicroPython, these fixed partitions can be accessed by ID integer
values 1, 2, 3, and 4, respectively.

Methods

FlashArea.readblocks(block_num, buf)
FlashArea.readblocks(block_num, buf, offset)
FlashArea.writeblocks(block_num, buf)
FlashArea.writeblocks(block_num, buf, offset)
FlashArea.ioctl(cmd, arg)

These methods implement the simple and extended block protocol defined by uos.AbstractBlockDev.

1.3. Port-specific libraries 183

https://docs.zephyrproject.org/latest/reference/storage/flash_map/flash_map.html#flash-map

MicroPython Documentation, Release v1.20.0

Additional Modules

zsensor— Zephyr sensor bindings

The zsensor module contains a class for using sensors with Zephyr.

class Sensor — sensor control for the Zephyr port

Use this class to access data from sensors on your board. See Zephyr documentation for sensor usage here: Sensors.
Sensors are defined in the Zephyr devicetree for each board. The quantities that a given sensor can measure are called a
sensor channels. Sensors can have multiple channels to represent different axes of one property or different properties a
sensor can measure. See Channels below for defined sensor channels.

Constructor

class zsensor.Sensor(device_name)
Device names are defined in the devicetree for your board. For example, the device name for the accelerometer in
the FRDM-k64f board is “FXOS8700”.

Methods

Sensor.measure()
Obtains a measurement sample from the sensor device using Zephyr sensor_sample_fetch and stores it in an internal
driver buffer as a useful value, a pair of (integer part of value, fractional part of value in 1-millionths). Returns
none if successful or OSError value if failure.

Sensor.get_float(sensor_channel)
Returns the value of the sensor measurement sample as a float.

Sensor.get_micros(sensor_channel)
Returns the value of the sensor measurement sample in millionths. (Ex. value of (1, 500000) returns as
1500000)

Sensor.get_millis(sensor_channel)
Returns the value of sensor measurement sample in thousandths. (Ex. value of (1, 500000) returns as 1500)

Sensor.get_int(sensor_channel)
Returns only the integer value of the measurement sample. (Ex. value of (1, 500000) returns as 1)

Channels

zsensor.ACCEL_X
Acceleration on the X axis, in m/s^2.

zsensor.ACCEL_Y
Acceleration on the Y axis, in m/s^2.

zsensor.ACCEL_Z
Acceleration on the Z axis, in m/s^2.

zsensor.GYRO_X
Angular velocity around the X axis, in radians/s.

184 Chapter 1. MicroPython libraries

https://docs.zephyrproject.org/latest/reference/peripherals/sensor.html?highlight=sensor#sensors

MicroPython Documentation, Release v1.20.0

zsensor.GYRO_Y
Angular velocity around the Y axis, in radians/s.

zsensor.GYRO_Z
Angular velocity around the Z axis, in radians/s.

zsensor.MAGN_X
Magnetic field on the X axis, in Gauss.

zsensor.MAGN_Y
Magnetic field on the Y axis, in Gauss.

zsensor.MAGN_Z
Magnetic field on the Z axis, in Gauss.

zsensor.DIE_TEMP
Device die temperature in degrees Celsius.

zsensor.PRESS
Pressure in kilopascal.

zsensor.PROX
Proximity. Dimensionless. A value of 1 indicates that an object is close.

zsensor.HUMIDITY
Humidity, in percent.

zsensor.LIGHT
Illuminance in visible spectrum, in lux.

zsensor.ALTITUDE
Altitude, in meters.

1.4 Extending built-in libraries from Python

In most cases, the above modules are actually named umodule rather than module, but MicroPython will alias any
module prefixed with a u to the non-u version. However a file (or frozen module) named module.py will take prece-
dence over this alias.
This allows the user to provide an extended implementation of a built-in library (perhaps to provide additional CPython
compatibility). The user-provided module (in module.py) can still use the built-in functionality by importing umod-
ule directly. This is used extensively in micropython-lib. See Package management for more information.
This applies to both the Python standard libraries (e.g. os, time, etc), but also the MicroPython libraries too (e.g.
machine, bluetooth, etc). The main exception is the port-specific libraries (pyb, esp, etc).
Other than when you specifically want to force the use of the built-in module, we recommend always using import
module rather than import umodule.

1.4. Extending built-in libraries from Python 185

MicroPython Documentation, Release v1.20.0

186 Chapter 1. MicroPython libraries

CHAPTER

TWO

MICROPYTHON LANGUAGE AND IMPLEMENTATION

MicroPython aims to implement the Python 3.4 standard (with selected features from later versions) with respect to
language syntax, and most of the features of MicroPython are identical to those described by the “Language Reference”
documentation at docs.python.org.
The MicroPython standard library is described in the corresponding chapter. TheMicroPython differences from CPython
chapter describes differences between MicroPython and CPython (which mostly concern standard library and types, but
also some language-level features).
This chapter describes features and peculiarities of MicroPython implementation and the best practices to use them.

2.1 Glossary

baremetal A system without a (full-fledged) operating system, for example an MCU-based system. When running on
a baremetal system, MicroPython effectively functions like a small operating system, running user programs and
providing a command interpreter (REPL).

buffer protocol Any Python object that can be automatically converted into bytes, such as bytes, bytearray, mem-
oryview and str objects, which all implement the “buffer protocol”.

board Typically this refers to a printed circuit board (PCB) containing a microcontroller and supporting components.
MicroPython firmware is typically provided per-board, as the firmware contains both MCU-specific functionality
but also board-level functionality such as drivers or pin names.

bytecode A compact representation of a Python program that generated by compiling the Python source code. This is
what the VM actually executes. Bytecode is typically generated automatically at runtime and is invisible to the user.
Note that while CPython and MicroPython both use bytecode, the format is different. You can also pre-compile
source code offline using the cross-compiler.

callee-owned tuple This is a MicroPython-specific construct where, for efficiency reasons, some built-in functions or
methods may re-use the same underlying tuple object to return data. This avoids having to allocate a new tuple
for every call, and reduces heap fragmentation. Programs should not hold references to callee-owned tuples and
instead only extract data from them (or make a copy).

CircuitPython A variant of MicroPython developed by Adafruit Industries.
CPython CPython is the reference implementation of the Python programming language, and the most well-known

one. It is, however, one of many implementations (including Jython, IronPython, PyPy, and MicroPython). While
MicroPython’s implementation differs substantially from CPython, it aims to maintain as much compatibility as
possible.

cross-compiler Also known as mpy-cross. This tool runs on your PC and converts a .py file containing MicroPython
code into a .mpy file containingMicroPython bytecode. This means it loads faster (the board doesn’t have to compile
the code), and uses less space on flash (the bytecode is more space efficient).

187

https://docs.python.org/3/reference/index.html
https://circuitpython.org

MicroPython Documentation, Release v1.20.0

driver A MicroPython library that implements support for a particular component, such as a sensor or display.
FFI Acronym for Foreign Function Interface. A mechanism used by the MicroPython Unix port to access operating

system functionality. This is not available on baremetal ports.
filesystem Most MicroPython ports and boards provide a filesystem stored in flash that is available to user code via the

standard Python file APIs such as open(). Some boards also make this internal filesystem accessible to the host
via USB mass-storage.

frozen module A Python module that has been cross compiled and bundled into the firmware image. This reduces RAM
requirements as the code is executed directly from flash.

Garbage Collector A background process that runs in Python (and MicroPython) to reclaim unused memory in the
heap.

GPIO General-purpose input/output. The simplest means to control electrical signals (commonly referred to as “pins”)
on a microcontroller. GPIO typically allows pins to be either input or output, and to set or get their digital value
(logical “0” or “1”). MicroPython abstracts GPIO access using the machine.Pin and machine.Signal
classes.

GPIO port A group of GPIO pins, usually based on hardware properties of these pins (e.g. controllable by the same
register).

heap A region of RAM where MicroPython stores dynamic data. It is managed automatically by the Garbage Collector.
Different MCUs and boards have vastly different amounts of RAM available for the heap, so this will affect how
complex your program can be.

interned string An optimisation used by MicroPython to improve the efficiency of working with strings. An interned
string is referenced by its (unique) identity rather than its address and can therefore be quickly compared just by
its identifier. It also means that identical strings can be de-duplicated in memory. String interning is almost always
invisible to the user.

MCU Microcontroller. Microcontrollers usually have much less resources than a desktop, laptop, or phone, but are
smaller, cheaper and require much less power. MicroPython is designed to be small and optimized enough to run
on an average modern microcontroller.

micropython-lib MicroPython is (usually) distributed as a single executable/binary file with just few builtin modules.
There is no extensive standard library comparable with CPython’s. Instead, there is a related, but separate project
micropython-lib which provides implementations for many modules from CPython’s standard library.
Some of the modules are are implemented in pure Python, and are able to be used on all ports. However, the
majority of these modules use FFI to access operating system functionality, and as such can only be used on the
MicroPython Unix port (with limited support for Windows).
Unlike the CPython stdlib, micropython-lib modules are intended to be installed individually - either using manual
copying or using mip.

MicroPython port MicroPython supports different boards, RTOSes, and OSes, and can be relatively easily adapted to
new systems. MicroPython with support for a particular system is called a “port” to that system. Different ports
may have widely different functionality. This documentation is intended to be a reference of the generic APIs
available across different ports (“MicroPython core”). Note that some ports may still omit some APIs described
here (e.g. due to resource constraints). Any such differences, and port-specific extensions beyond the MicroPython
core functionality, would be described in the separate port-specific documentation.

MicroPython Unix port The unix port is one of themajorMicroPython ports. It is intended to run on POSIX-compatible
operating systems, like Linux, MacOS, FreeBSD, Solaris, etc. It also serves as the basis of Windows port. The
Unix port is very useful for quick development and testing of the MicroPython language and machine-independent
features. It can also function in a similar way to CPython’s python executable.

mip A package installer for MicroPython (mip - “mip installs packages”). It installs MicroPython packages either from
micropython-lib, GitHub, or arbitrary URLs. mip can be used on-device on network-capable boards, and internally

188 Chapter 2. MicroPython language and implementation

https://github.com/micropython/micropython-lib

MicroPython Documentation, Release v1.20.0

by tools such as mpremote.
See Package management for more information on using mip.

mpremote A tool for interacting with a MicroPython device. See MicroPython remote control: mpremote.
.mpy file The output of the cross-compiler. A compiled form of a .py file that contains MicroPython bytecode instead of

Python source code.
native Usually refers to “native code”, i.e. machine code for the target microcontroller (such as ARM Thumb, Xtensa,

x86/x64). The @native decorator can be applied to a MicroPython function to generate native code instead of
bytecode for that function, which will likely be faster but use more RAM.

port Usually short for MicroPython port, but could also refer to GPIO port.
.py file A file containing Python source code.
REPL An acronym for “Read, Eval, Print, Loop”. This is the interactive Python prompt, useful for debugging or testing

short snippets of code. Most MicroPython boards make a REPL available over a UART, and this is typically
accessible on a host PC via USB.

stream Also known as a “file-like object”. A Python object which provides sequential read-write access to the underlying
data. A stream object implements a corresponding interface, which consists of methods like read(), write(),
readinto(), seek(), flush(), close(), etc. A stream is an important concept in MicroPython; many
I/O objects implement the stream interface, and thus can be used consistently and interchangeably in different
contexts. For more information on streams in MicroPython, see the io module.

UART Acronym for “Universal Asynchronous Receiver/Transmitter”. This is a peripheral that sends data over a pair of
pins (TX & RX). Many boards include a way to make at least one of the UARTs available to a host PC as a serial
port over USB.

upip A now-obsolete package manager for MicroPython, inspired by CPython’s pip, but much smaller and with reduced
functionality. See its replacement, mip.

webrepl A way of connecting to the REPL (and transferring files) on a device over the internet from a browser. See
https://micropython.org/webrepl

2.2 The MicroPython Interactive Interpreter Mode (aka REPL)

This section covers some characteristics of the MicroPython Interactive Interpreter Mode. A commonly used term for
this is REPL (read-eval-print-loop) which will be used to refer to this interactive prompt.

2.2.1 Auto-indent

When typing python statements which end in a colon (for example if, for, while) then the prompt will change to three
dots (…) and the cursor will be indented by 4 spaces. When you press return, the next line will continue at the same level
of indentation for regular statements or an additional level of indentation where appropriate. If you press the backspace
key then it will undo one level of indentation.
If your cursor is all the way back at the beginning, pressing RETURN will then execute the code that you’ve entered. The
following shows what you’d see after entering a for statement (the underscore shows where the cursor winds up):

>>> for i in range(30):
... _

If you then enter an if statement, an additional level of indentation will be provided:

2.2. The MicroPython Interactive Interpreter Mode (aka REPL) 189

https://micropython.org/webrepl

MicroPython Documentation, Release v1.20.0

>>> for i in range(30):
... if i > 3:
... _

Now enter break followed by RETURN and press BACKSPACE:

>>> for i in range(30):
... if i > 3:
... break
... _

Finally type print(i), press RETURN, press BACKSPACE and press RETURN again:

>>> for i in range(30):
... if i > 3:
... break
... print(i)
...
0
1
2
3
>>>

Auto-indent won’t be applied if the previous two lines were all spaces. This means that you can finish entering a compound
statement by pressing RETURN twice, and then a third press will finish and execute.

2.2.2 Auto-completion

While typing a command at the REPL, if the line typed so far corresponds to the beginning of the name of something,
then pressing TAB will show possible things that could be entered. For example, first import the machine module by
entering import machine and pressing RETURN. Then type m and press TAB and it should expand to machine.
Enter a dot . and press TAB again. You should see something like:

>>> machine.
__name__ info unique_id reset
bootloader freq rng idle
sleep deepsleep disable_irq enable_irq
Pin

The word will be expanded as much as possible until multiple possibilities exist. For example, type machine.Pin.AF3
and press TAB and it will expand to machine.Pin.AF3_TIM. Pressing TAB a second time will show the possible
expansions:

>>> machine.Pin.AF3_TIM
AF3_TIM10 AF3_TIM11 AF3_TIM8 AF3_TIM9
>>> machine.Pin.AF3_TIM

190 Chapter 2. MicroPython language and implementation

MicroPython Documentation, Release v1.20.0

2.2.3 Interrupting a running program

You can interrupt a running program by pressing Ctrl-C. This will raise a KeyboardInterrupt which will bring you back
to the REPL, providing your program doesn’t intercept the KeyboardInterrupt exception.
For example:

>>> for i in range(1000000):
... print(i)
...
0
1
2
3
...
6466
6467
6468
Traceback (most recent call last):

File "<stdin>", line 2, in <module>
KeyboardInterrupt:
>>>

2.2.4 Paste mode

If you want to paste some code into your terminal window, the auto-indent feature will mess things up. For example, if
you had the following python code:

def foo():
print('This is a test to show paste mode')
print('Here is a second line')

foo()

and you try to paste this into the normal REPL, then you will see something like this:

>>> def foo():
... print('This is a test to show paste mode')
... print('Here is a second line')
... foo()
...

File "<stdin>", line 3
IndentationError: unexpected indent

If you press Ctrl-E, then you will enter paste mode, which essentially turns off the auto-indent feature, and changes the
prompt from >>> to ===. For example:

>>>
paste mode; Ctrl-C to cancel, Ctrl-D to finish
=== def foo():
=== print('This is a test to show paste mode')
=== print('Here is a second line')
=== foo()
===
This is a test to show paste mode
Here is a second line
>>>

2.2. The MicroPython Interactive Interpreter Mode (aka REPL) 191

MicroPython Documentation, Release v1.20.0

Paste Mode allows blank lines to be pasted. The pasted text is compiled as if it were a file. Pressing Ctrl-D exits paste
mode and initiates the compilation.

2.2.5 Soft reset

A soft reset will reset the python interpreter, but tries not to reset the method by which you’re connected to the MicroPy-
thon board (USB-serial, or Wifi).
You can perform a soft reset from the REPL by pressing Ctrl-D, or from your python code by executing:

machine.soft_reset()

For example, if you reset your MicroPython board, and you execute a dir() command, you’d see something like this:

>>> dir()
['__name__', 'pyb']

Now create some variables and repeat the dir() command:

>>> i = 1
>>> j = 23
>>> x = 'abc'
>>> dir()
['j', 'x', '__name__', 'pyb', 'i']
>>>

Now if you enter Ctrl-D, and repeat the dir() command, you’ll see that your variables no longer exist:

MPY: sync filesystems
MPY: soft reboot
MicroPython v1.5-51-g6f70283-dirty on 2015-10-30; PYBv1.0 with STM32F405RG
Type "help()" for more information.
>>> dir()
['__name__', 'pyb']
>>>

2.2.6 The special variable _ (underscore)

When you use the REPL, you may perform computations and see the results. MicroPython stores the results of the
previous statement in the variable _ (underscore). So you can use the underscore to save the result in a variable. For
example:

>>> 1 + 2 + 3 + 4 + 5
15
>>> x = _
>>> x
15
>>>

192 Chapter 2. MicroPython language and implementation

MicroPython Documentation, Release v1.20.0

2.2.7 Raw mode and raw-paste mode

Raw mode (also called raw REPL) is not something that a person would normally use. It is intended for programmatic
use and essentially behaves like paste mode with echo turned off, and with optional flow control.
Raw mode is entered using Ctrl-A. You then send your python code, followed by a Ctrl-D. The Ctrl-D will be acknowl-
edged by ‘OK’ and then the python code will be compiled and executed. Any output (or errors) will be sent back. Entering
Ctrl-B will leave raw mode and return the the regular (aka friendly) REPL.
Raw-paste mode is an additional mode within the raw REPL that includes flow control, and which compiles code as it
receives it. This makes it more robust for high-speed transfer of code into the device, and it also uses less RAM when
receiving because it does not need to store a verbatim copy of the code before compiling (unlike standard raw mode).
Raw-paste mode uses the following protocol:

1. Enter raw REPL as usual via ctrl-A.
2. Write 3 bytes: b"\x05A\x01" (ie ctrl-E then “A” then ctrl-A).
3. Read 2 bytes to determine if the device entered raw-paste mode:

• If the result is b"R\x00" then the device understands the command but doesn’t support raw paste.
• If the result is b"R\x01" then the device does support raw paste and has entered this mode.
• Otherwise the result should be b"ra" and the device doesn’t support raw paste and the string b"w REPL;
CTRL-B to exit\r\n>" should be read and discarded.

4. If the device is in raw-paste mode then continue, otherwise fallback to standard raw mode.
5. Read 2 bytes, this is the flow control window-size-increment (in bytes) stored as a 16-bit unsigned little endian

integer. The initial value for the remaining-window-size variable should be set to this number.
6. Write out the code to the device:

• While there are bytes to send, write up to the remaining-window-size worth of bytes, and decrease the
remaining-window-size by the number of bytes written.

• If the remaining-window-size is 0, or there is a byte waiting to read, read 1 byte. If this byte is b"\x01"
then increase the remaining-window-size by the window-size-increment from step 5. If this byte is b"\
x04" then the device wants to end the data reception, and b"\x04" should be written to the device and
no more code sent after that. (Note: if there is a byte waiting to be read from the device then it does not
need to be read and acted upon immediately, the device will continue to consume incoming bytes as long as
reamining-window-size is greater than 0.)

7. When all code has been written to the device, write b"\x04" to indicate end-of-data.
8. Read from the device until b"\x04" is received. At this point the device has received and compiled all of the

code that was sent and is executing it.
9. The device outputs any characters produced by the executing code. When (if) the code finishes b"\x04" will

be output, followed by any exception that was uncaught, followed again by b"\x04". It then goes back to the
standard raw REPL and outputs b">".

For example, starting at a new line at the normal (friendly) REPL, if you write:

b"\x01\x05A\x01print(123)\x04"

Then the device will respond with something like:

b"\r\nraw REPL; CTRL-B to exit\r\n>R\x01\x80\x00\x01\x04123\r\n\x04\x04>"

Broken down over time this looks like:

2.2. The MicroPython Interactive Interpreter Mode (aka REPL) 193

MicroPython Documentation, Release v1.20.0

Step 1: enter raw REPL
write: b"\x01"
read: b"\r\nraw REPL; CTRL-B to exit\r\n>"

Step 2-5: enter raw-paste mode
write: b"\x05A\x01"
read: b"R\x01\x80\x00\x01"

Step 6-8: write out code
write: b"print(123)\x04"
read: b"\x04"

Step 9: code executes and result is read
read: b"123\r\n\x04\x04>"

In this case the flow control window-size-increment is 128 and there are two windows worth of data immediately available
at the start, one from the initial window-size-increment value and one from the explicit b"\x01" value that is sent. So
this means up to 256 bytes can be written to begin with before waiting or checking for more incoming flow-control
characters.
The tools/pyboard.py program uses the raw REPL, including raw-paste mode, to execute Python code on a
MicroPython-enabled board.

2.3 MicroPython remote control: mpremote

The mpremote command line tool provides an integrated set of utilities to remotely interact with and automate a Mi-
croPython device over a serial connection.
To use mpremote install it via pip:

$ pip install mpremote

The simplest way to use this tool is just by invoking it without any arguments:

mpremote

This command automatically detects and connects to the first available USB serial device and provides an interactive
REPL. Serial ports are opened in exclusive mode, so running a second (or third, etc) instance of mpremote will connect
to subsequent serial devices, if any are available.

2.3.1 Commands

For REPL access, running mpremote without any arguments is usually all that is needed. mpremote also supports a
set of commands given at the command line which will perform various actions on remote MicroPython devices.
For commands that support multiple arguments (e.g. a list of files), the argument list can be terminated with +.
The full list of supported commands are:

• connect to a specified device via a device-name shortcut:

$ mpremote <device-shortcut>

• connect to specified device via name:

194 Chapter 2. MicroPython language and implementation

MicroPython Documentation, Release v1.20.0

$ mpremote connect <device>

<device> may be one of:
– list: list available devices
– auto: connect to the first available USB serial port
– id:<serial>: connect to the device with USB serial number <serial> (the second entry in the output
from the connect list command)

– port:<path>: connect to the device with the given path
– any valid device name/path, to connect to that device

• disconnect current device:

$ mpremote disconnect

After a disconnect, auto soft-reset is enabled.
• resume a previous mpremote session:

$ mpremote resume

This disables auto soft-reset.
• perform a soft-reset of the device:

$ mpremote soft-reset

This will clear out the Python heap and restart the interpreter. It also disables auto soft-reset.
• enter the REPL on the connected device:

$ mpremote repl [options]

Options are:
– --capture <file>, to capture output of the REPL session to the given file
– --inject-code <string>, to specify characters to inject at the REPL when Ctrl-J is pressed
– --inject-file <file>, to specify a file to inject at the REPL when Ctrl-K is pressed

• evaluate and print the result of a Python expression:

$ mpremote eval <string>

• execute the given Python code:

$ mpremote exec <string>

• run a script from the local filesystem:

$ mpremote run <file>

• execute filesystem commands on the device:

$ mpremote fs <command>

<command> may be:

2.3. MicroPython remote control: mpremote 195

MicroPython Documentation, Release v1.20.0

– cat <file..> to show the contents of a file or files on the device
– ls to list the current directory
– ls <dirs...> to list the given directories
– cp [-r] <src...> <dest> to copy files; use “:” as a prefix to specify a file on the device
– rm <src...> to remove files on the device
– mkdir <dirs...> to create directories on the device
– rmdir <dirs...> to remove directories on the device
– touch <file..> to create the files (if they don’t already exist)

• edit a file on the device:

$ mpremote edit <files...>

The edit command will copy each file from the device to a local temporary directory and then launch your editor
for each file (defined by the environment variable $EDITOR). If the editor exits successfully, the updated file will
be copied back to the device.

• install packages from micropython-lib (or GitHub) using the mip tool:

$ mpremote mip install <packages...>

See Package management for more information.
• mount the local directory on the remote device:

$ mpremote mount [options] <local-dir>

During usage, Ctrl-D will soft-reboot and normally reconnect the mount automatically. If the unit has a main.py
running at startup however the remount cannot occur. In this case a raw mode soft reboot can be used: Ctrl-A
Ctrl-D to reboot, then Ctrl-B to get back to normal repl at which point the mount will be ready.
Options are:

– -l, --unsafe-links: By default an error will be raised if the device accesses a file or directory which is
outside (up one or more directory levels) the local directory that is mounted. This option disables this check
for symbolic links, allowing the device to follow symbolic links outside of the local directory.

• unmount the local directory from the remote device:

$ mpremote umount

Multiple commands can be specified and they will be run sequentially.

2.3.2 Auto connection and soft-reset

Connection and disconnectionwill be done automatically at the start and end of the execution of the tool, if such commands
are not explicitly given. Automatic connection will search for the first available USB serial device. If no action is specified
then the REPL will be entered.
Once connected to a device, mpremote will automatically soft-reset the device if needed. This clears the Python heap
and restarts the interpreter, making sure that subsequent Python code executes in a fresh environment. Auto soft-reset is
performed the first time one of the following commands are executed: mount, eval, exec, run, fs. After doing a
soft-reset for the first time, it will not be done again automatically, until a disconnect command is issued.

196 Chapter 2. MicroPython language and implementation

MicroPython Documentation, Release v1.20.0

Auto soft-reset behaviour can be controlled by the resume command. And the soft-reset command can be used
to perform an explicit soft reset.

2.3.3 Shortcuts

Shortcuts can be defined using the macro system. Built-in shortcuts are:

- ``devs``: list available devices (shortcut for ``connect list``)

• a0, a1, a2, a3: connect to /dev/ttyACM?
• u0, u1, u2, u3: connect to /dev/ttyUSB?
• c0, c1, c2, c3: connect to COM?
• cat, ls, cp, rm, mkdir, rmdir, touch, df: filesystem commands
• reset: reset the device
• bootloader: make the device enter its bootloader

Any user configuration, including user-defined shortcuts, can be placed in the file .config/mpremote/config.py.
For example:

commands = {
"c33": "connect id:334D335C3138",
"bl": "bootloader",
"double x=4": "eval x*2", # x is an argument, with default 4
"wl_scan": ["exec", """

import network
wl = network.WLAN()
wl.active(1)
for ap in wl.scan():

print(ap)
""",],

"test": ["mount", ".", "exec", "import test"],
}

2.3.4 Examples

mpremote

mpremote a1

mpremote connect /dev/ttyUSB0 repl

mpremote ls

mpremote a1 ls

mpremote exec "import micropython; micropython.mem_info()"

mpremote eval 1/2 eval 3/4

mpremote mount .

(continues on next page)

2.3. MicroPython remote control: mpremote 197

MicroPython Documentation, Release v1.20.0

(continued from previous page)
mpremote mount . exec "import local_script"

mpremote ls

mpremote cat boot.py

mpremote cp :main.py .

mpremote cp main.py :

mpremote cp :a.py :b.py

mpremote cp -r dir/ :

mpremote cp a.py b.py : + repl

mpremote mip install aioble

mpremote mip install github:org/repo@branch

mpremote mip install --target /flash/third-party functools

2.4 MicroPython .mpy files

MicroPython defines the concept of an .mpy file which is a binary container file format that holds precompiled code, and
which can be imported like a normal .py module. The file foo.mpy can be imported via import foo, as long as foo.
mpy can be found in the usual way by the import machinery. Usually, each directory listed in sys.path is searched
in order. When searching a particular directory foo.py is looked for first and if that is not found then foo.mpy is
looked for, then the search continues in the next directory if neither is found. As such, foo.py will take precedence
over foo.mpy.
These .mpy files can contain bytecode which is usually generated from Python source files (.py files) via the mpy-cross
program. For some architectures an .mpy file can also contain native machine code, which can be generated in a variety
of ways, most notably from C source code.

2.4.1 Versioning and compatibility of .mpy files

Agiven .mpy filemay ormay not be compatible with a givenMicroPython system. Compatibility is based on the following:
• Version of the .mpy file: the version of the file must match the version supported by the system loading it.
• Sub-version of the .mpy file: if the .mpy file contains native machine code then the sub-version of the file must
match the version support by the system loading it. Otherwise, if there is no native machine code in the .mpy file,
then the sub-version is ignored when loading.

• Small integer bits: the .mpy file will require a minimum number of bits in a small integer and the system loading it
must support at least this many bits.

• Native architecture: if the .mpy file contains nativemachine code then it will specify the architecture of that machine
code and the system loading it must support execution of that architecture’s code.

If a MicroPython system supports importing .mpy files then the sys.implementation._mpy field will exist and
return an integer which encodes the version (lower 8 bits), features and native architecture.

198 Chapter 2. MicroPython language and implementation

MicroPython Documentation, Release v1.20.0

Trying to import an .mpy file that fails one of the first four tests will raise ValueError('incompatible .mpy
file'). Trying to import an .mpy file that fails the native architecture test (if it contains native machine code) will raise
ValueError('incompatible .mpy arch').
If importing an .mpy file fails then try the following:

• Determine the .mpy version and flags supported by your MicroPython system by executing:

import sys
sys_mpy = sys.implementation._mpy
arch = [None, 'x86', 'x64',

'armv6', 'armv6m', 'armv7m', 'armv7em', 'armv7emsp', 'armv7emdp',
'xtensa', 'xtensawin'][sys_mpy >> 10]

print('mpy version:', sys_mpy & 0xff)
print('mpy sub-version:', sys_mpy >> 8 & 3)
print('mpy flags:', end='')
if arch:

print(' -march=' + arch, end='')
print()

• Check the validity of the .mpy file by inspecting the first two bytes of the file. The first byte should be an uppercase
‘M’ and the second byte will be the version number, which should match the system version from above. If it doesn’t
match then rebuild the .mpy file.

• Check if the system .mpy version matches the version emitted by mpy-cross that was used to build the .mpy file,
found by mpy-cross --version. If it doesn’t match then recompile mpy-cross from the Git repository
checked out at the tag (or hash) reported by mpy-cross --version.

• Make sure you are using the correct mpy-cross flags, found by the code above, or by inspecting the
MPY_CROSS_FLAGSMakefile variable for the port that you are using.

The following table shows the correspondence between MicroPython release and .mpy version.

MicroPython release .mpy version
v1.19 and up 6
v1.12 - v1.18 5
v1.11 4
v1.9.3 - v1.10 3
v1.9 - v1.9.2 2
v1.5.1 - v1.8.7 0

For completeness, the next table shows the Git commit of the main MicroPython repository at which the .mpy version
was changed.

.mpy version change Git commit
5 to 6 f2040bfc7ee033e48acef9f289790f3b4e6b74e5
4 to 5 5716c5cf65e9b2cb46c2906f40302401bdd27517
3 to 4 9a5f92ea72754c01cc03e5efcdfe94021120531e
2 to 3 ff93fd4f50321c6190e1659b19e64fef3045a484
1 to 2 dd11af209d226b7d18d5148b239662e30ed60bad
0 to 1 6a11048af1d01c78bdacddadd1b72dc7ba7c6478
initial version 0 d8c834c95d506db979ec871417de90b7951edc30

2.4. MicroPython .mpy files 199

MicroPython Documentation, Release v1.20.0

2.4.2 Binary encoding of .mpy files

MicroPython .mpy files are a binary container format with code objects (bytecode and native machine code) stored inter-
nally in a nested hierarchy. The code for the outer module is stored first, and then its children follow. Each child may have
further children, for example in the case of a class having methods, or a function defining a lambda or comprehension. To
keep files small while still providing a large range of possible values it uses the concept of a variably-encoded-unsigned-
integer (vuint) in many places. Similar to utf-8 encoding, this encoding stores 7 bits per byte with the 8th bit (MSB) set
if one or more bytes follow. The bits of the unsigned integer are stored in the vuint in LSB form.
The top-level of an .mpy file consists of three parts:

• The header.
• The global qstr and constant tables.
• The raw-code for the outer scope of the module. This outer scope is executed when the .mpy file is imported.

You can inspect the contents of a .mpy file by using mpy-tool.py, for example (run from the root of the main Mi-
croPython repository):

$./tools/mpy-tool.py -xd myfile.mpy

The header

The .mpy header is:

size field
byte value 0x4d (ASCII ‘M’)
byte .mpy version number
byte feature flags
byte number of bits in a small int

The global qstr and constant tables

An .mpy file contains a single qstr table, and a single constant object table. These are global to the .mpy file, they are
referenced by all nested raw-code objects. The qstr table maps internal qstr number (internal to the .mpy file) to the
resolved qstr number of the runtime that the .mpy file is imported into. This links the .mpy file with the rest of the system
that it executes within. The constant object table is populated with references to all constant objects that the .mpy file
needs.

size field
vuint number of qstrs
vuint number of constant objects
… qstr data
… encoded constant objects

200 Chapter 2. MicroPython language and implementation

MicroPython Documentation, Release v1.20.0

Raw code elements

A raw-code element contains code, either bytecode or native machine code. Its contents are:

size field
vuint type, size and whether there are sub-raw-code elements
… code (bytecode or machine code)
vuint number of sub-raw-code elements (only if non-zero)
… sub-raw-code elements

The first vuint in a raw-code element encodes the type of code stored in this element (the two least-significant bits),
whether this raw-code has any children (the third least-significant bit), and the length of the code that follows (the amount
of RAM to allocate for it).
Following the vuint comes the code itself. Unless the code type is viper code with relocations, this code is constant data
and does not need to be modified.
If this raw-code has any children (as indicated by a bit in the first vuint), following the code comes a vuint counting the
number of sub-raw-code elements.
Finally any sub-raw-code elements are stored, recursively.

2.5 Writing interrupt handlers

On suitable hardware MicroPython offers the ability to write interrupt handlers in Python. Interrupt handlers - also known
as interrupt service routines (ISR’s) - are defined as callback functions. These are executed in response to an event such as
a timer trigger or a voltage change on a pin. Such events can occur at any point in the execution of the program code. This
carries significant consequences, some specific to the MicroPython language. Others are common to all systems capable
of responding to real time events. This document covers the language specific issues first, followed by a brief introduction
to real time programming for those new to it.
This introduction uses vague terms like “slow” or “as fast as possible”. This is deliberate, as speeds are application
dependent. Acceptable durations for an ISR are dependent on the rate at which interrupts occur, the nature of the main
program, and the presence of other concurrent events.

2.5.1 Tips and recommended practices

This summarises the points detailed below and lists the principal recommendations for interrupt handler code.
• Keep the code as short and simple as possible.
• Avoid memory allocation: no appending to lists or insertion into dictionaries, no floating point.
• Consider using micropython.schedule to work around the above constraint.
• Where an ISR returnsmultiple bytes use a pre-allocatedbytearray. If multiple integers are to be shared between
an ISR and the main program consider an array (array.array).

• Where data is shared between the main program and an ISR, consider disabling interrupts prior to accessing the
data in the main program and re-enabling them immediately afterwards (see Critical Sections).

• Allocate an emergency exception buffer (see below).

2.5. Writing interrupt handlers 201

MicroPython Documentation, Release v1.20.0

2.5.2 MicroPython issues

The emergency exception buffer

If an error occurs in an ISR, MicroPython is unable to produce an error report unless a special buffer is created for the
purpose. Debugging is simplified if the following code is included in any program using interrupts.

import micropython
micropython.alloc_emergency_exception_buf(100)

The emergency exception buffer can only hold one exception stack trace. This means that if a second exception is thrown
during the handling of an exception while the heap is locked, that second exception’s stack trace will replace the original
one - even if the second exception is cleanly handled. This can lead to confusing exception messages if the buffer is later
printed.

Simplicity

For a variety of reasons it is important to keep ISR code as short and simple as possible. It should do only what has to
be done immediately after the event which caused it: operations which can be deferred should be delegated to the main
program loop. Typically an ISR will deal with the hardware device which caused the interrupt, making it ready for the
next interrupt to occur. It will communicate with the main loop by updating shared data to indicate that the interrupt has
occurred, and it will return. An ISR should return control to the main loop as quickly as possible. This is not a specific
MicroPython issue so is covered in more detail below.

Communication between an ISR and the main program

Normally an ISR needs to communicate with the main program. The simplest means of doing this is via one or more
shared data objects, either declared as global or shared via a class (see below). There are various restrictions and hazards
around doing this, which are covered in more detail below. Integers, bytes and bytearray objects are commonly
used for this purpose along with arrays (from the array module) which can store various data types.

The use of object methods as callbacks

MicroPython supports this powerful technique which enables an ISR to share instance variables with the underlying code.
It also enables a class implementing a device driver to support multiple device instances. The following example causes
two LED’s to flash at different rates.

import pyb, micropython
micropython.alloc_emergency_exception_buf(100)
class Foo(object):

def __init__(self, timer, led):
self.led = led
timer.callback(self.cb)

def cb(self, tim):
self.led.toggle()

red = Foo(pyb.Timer(4, freq=1), pyb.LED(1))
green = Foo(pyb.Timer(2, freq=0.8), pyb.LED(2))

In this example the red instance associates timer 4 with LED 1: when a timer 4 interrupt occurs red.cb() is called
causing LED 1 to change state. The green instance operates similarly: a timer 2 interrupt results in the execution of
green.cb() and toggles LED 2. The use of instance methods confers two benefits. Firstly a single class enables code
to be shared between multiple hardware instances. Secondly, as a bound method the callback function’s first argument is

202 Chapter 2. MicroPython language and implementation

MicroPython Documentation, Release v1.20.0

self. This enables the callback to access instance data and to save state between successive calls. For example, if the
class above had a variable self.count set to zero in the constructor, cb() could increment the counter. The red
and green instances would then maintain independent counts of the number of times each LED had changed state.

Creation of Python objects

ISR’s cannot create instances of Python objects. This is because MicroPython needs to allocate memory for the object
from a store of free memory block called the heap. This is not permitted in an interrupt handler because heap allocation
is not re-entrant. In other words the interrupt might occur when the main program is part way through performing an
allocation - to maintain the integrity of the heap the interpreter disallows memory allocations in ISR code.
A consequence of this is that ISR’s can’t use floating point arithmetic; this is because floats are Python objects. Similarly
an ISR can’t append an item to a list. In practice it can be hard to determine exactly which code constructs will attempt
to perform memory allocation and provoke an error message: another reason for keeping ISR code short and simple.
One way to avoid this issue is for the ISR to use pre-allocated buffers. For example a class constructor creates a bytear-
ray instance and a boolean flag. The ISR method assigns data to locations in the buffer and sets the flag. The memory
allocation occurs in the main program code when the object is instantiated rather than in the ISR.
The MicroPython library I/O methods usually provide an option to use a pre-allocated buffer. For example pyb.i2c.
recv() can accept a mutable buffer as its first argument: this enables its use in an ISR.
A means of creating an object without employing a class or globals is as follows:

def set_volume(t, buf=bytearray(3)):
buf[0] = 0xa5
buf[1] = t >> 4
buf[2] = 0x5a
return buf

The compiler instantiates the default buf argument when the function is loaded for the first time (usually when the module
it’s in is imported).
An instance of object creation occurs when a reference to a bound method is created. This means that an ISR cannot pass
a bound method to a function. One solution is to create a reference to the bound method in the class constructor and to
pass that reference in the ISR. For example:

class Foo():
def __init__(self):

self.bar_ref = self.bar # Allocation occurs here
self.x = 0.1
tim = pyb.Timer(4)
tim.init(freq=2)
tim.callback(self.cb)

def bar(self, _):
self.x *= 1.2
print(self.x)

def cb(self, t):
Passing self.bar would cause allocation.
micropython.schedule(self.bar_ref, 0)

Other techniques are to define and instantiate the method in the constructor or to pass Foo.bar() with the argument
self.

2.5. Writing interrupt handlers 203

MicroPython Documentation, Release v1.20.0

Use of Python objects

A further restriction on objects arises because of the way Python works. When an import statement is executed the
Python code is compiled to bytecode, with one line of code typically mapping to multiple bytecodes. When the code runs
the interpreter reads each bytecode and executes it as a series of machine code instructions. Given that an interrupt can
occur at any time between machine code instructions, the original line of Python code may be only partially executed.
Consequently a Python object such as a set, list or dictionary modified in the main loop may lack internal consistency at
the moment the interrupt occurs.
A typical outcome is as follows. On rare occasions the ISR will run at the precise moment in time when the object is
partially updated. When the ISR tries to read the object, a crash results. Because such problems typically occur on rare,
random occasions they can be hard to diagnose. There are ways to circumvent this issue, described in Critical Sections
below.
It is important to be clear about what constitutes the modification of an object. An alteration to a built-in type such as a
dictionary is problematic. Altering the contents of an array or bytearray is not. This is because bytes or words are written
as a single machine code instruction which is not interruptible: in the parlance of real time programming the write is
atomic. A user defined object might instantiate an integer, array or bytearray. It is valid for both the main loop and the
ISR to alter the contents of these.
MicroPython supports integers of arbitrary precision. Values between 2**30 -1 and -2**30 will be stored in a single
machine word. Larger values are stored as Python objects. Consequently changes to long integers cannot be considered
atomic. The use of long integers in ISR’s is unsafe because memory allocation may be attempted as the variable’s value
changes.

Overcoming the float limitation

In general it is best to avoid using floats in ISR code: hardware devices normally handle integers and conversion to floats
is normally done in the main loop. However there are a few DSP algorithms which require floating point. On platforms
with hardware floating point (such as the Pyboard) the inline ARM Thumb assembler can be used to work round this
limitation. This is because the processor stores float values in a machine word; values can be shared between the ISR and
main program code via an array of floats.

Using micropython.schedule

This function enables an ISR to schedule a callback for execution “very soon”. The callback is queued for execution which
will take place at a time when the heap is not locked. Hence it can create Python objects and use floats. The callback is
also guaranteed to run at a time when the main program has completed any update of Python objects, so the callback will
not encounter partially updated objects.
Typical usage is to handle sensor hardware. The ISR acquires data from the hardware and enables it to issue a further
interrupt. It then schedules a callback to process the data.
Scheduled callbacks should comply with the principles of interrupt handler design outlined below. This is to avoid prob-
lems resulting from I/O activity and the modification of shared data which can arise in any code which pre-empts the
main program loop.
Execution time needs to be considered in relation to the frequency with which interrupts can occur. If an interrupt occurs
while the previous callback is executing, a further instance of the callback will be queued for execution; this will run after
the current instance has completed. A sustained high interrupt repetition rate therefore carries a risk of unconstrained
queue growth and eventual failure with a RuntimeError.
If the callback to be passed to schedule() is a bound method, consider the note in “Creation of Python objects”.

204 Chapter 2. MicroPython language and implementation

MicroPython Documentation, Release v1.20.0

2.5.3 Exceptions

If an ISR raises an exception it will not propagate to the main loop. The interrupt will be disabled unless the exception is
handled by the ISR code.

2.5.4 Interfacing to uasyncio

When an ISR runs it can preempt the uasyncio scheduler. If the ISR performs a uasyncio operation the scheduler’s
operation can be disrupted. This applies whether the interrupt is hard or soft and also applies if the ISR has passed
execution to another function via micropython.schedule. In particular creating or cancelling tasks is invalid in an
ISR context. The safe way to interact with uasyncio is to implement a coroutine with synchronisation performed by
uasyncio.ThreadSafeFlag. The following fragment illustrates the creation of a task in response to an interrupt:

tsf = uasyncio.ThreadSafeFlag()

def isr(_): # Interrupt handler
tsf.set()

async def foo():
while True:

await tsf.wait()
uasyncio.create_task(bar())

In this example there will be a variable amount of latency between the execution of the ISR and the execution of foo().
This is inherent to cooperative scheduling. The maximum latency is application and platform dependent but may typically
be measured in tens of ms.

2.5.5 General issues

This is merely a brief introduction to the subject of real time programming. Beginners should note that design errors in
real time programs can lead to faults which are particularly hard to diagnose. This is because they can occur rarely and at
intervals which are essentially random. It is crucial to get the initial design right and to anticipate issues before they arise.
Both interrupt handlers and the main program need to be designed with an appreciation of the following issues.

Interrupt handler design

Asmentioned above, ISR’s should be designed to be as simple as possible. They should always return in a short, predictable
period of time. This is important because when the ISR is running, the main loop is not: inevitably the main loop
experiences pauses in its execution at random points in the code. Such pauses can be a source of hard to diagnose bugs
particularly if their duration is long or variable. In order to understand the implications of ISR run time, a basic grasp of
interrupt priorities is required.
Interrupts are organised according to a priority scheme. ISR code may itself be interrupted by a higher priority interrupt.
This has implications if the two interrupts share data (see Critical Sections below). If such an interrupt occurs it interposes
a delay into the ISR code. If a lower priority interrupt occurs while the ISR is running, it will be delayed until the ISR is
complete: if the delay is too long, the lower priority interrupt may fail. A further issue with slow ISR’s is the case where a
second interrupt of the same type occurs during its execution. The second interrupt will be handled on termination of the
first. However if the rate of incoming interrupts consistently exceeds the capacity of the ISR to service them the outcome
will not be a happy one.
Consequently looping constructs should be avoided or minimised. I/O to devices other than to the interrupting device
should normally be avoided: I/O such as disk access, print statements and UART access is relatively slow, and its
duration may vary. A further issue here is that filesystem functions are not reentrant: using filesystem I/O in an ISR and

2.5. Writing interrupt handlers 205

MicroPython Documentation, Release v1.20.0

the main program would be hazardous. Crucially ISR code should not wait on an event. I/O is acceptable if the code can
be guaranteed to return in a predictable period, for example toggling a pin or LED. Accessing the interrupting device via
I2C or SPI may be necessary but the time taken for such accesses should be calculated or measured and its impact on the
application assessed.
There is usually a need to share data between the ISR and the main loop. This may be done either through global variables
or via class or instance variables. Variables are typically integer or boolean types, or integer or byte arrays (a pre-allocated
integer array offers faster access than a list). Where multiple values are modified by the ISR it is necessary to consider
the case where the interrupt occurs at a time when the main program has accessed some, but not all, of the values. This
can lead to inconsistencies.
Consider the following design. An ISR stores incoming data in a bytearray, then adds the number of bytes received to an
integer representing total bytes ready for processing. The main program reads the number of bytes, processes the bytes,
then clears down the number of bytes ready. This will work until an interrupt occurs just after the main program has read
the number of bytes. The ISR puts the added data into the buffer and updates the number received, but the main program
has already read the number, so processes the data originally received. The newly arrived bytes are lost.
There are various ways of avoiding this hazard, the simplest being to use a circular buffer. If it is not possible to use a
structure with inherent thread safety other ways are described below.

Reentrancy

A potential hazard may occur if a function or method is shared between the main program and one or more ISR’s or
between multiple ISR’s. The issue here is that the function may itself be interrupted and a further instance of that function
run. If this is to occur, the function must be designed to be reentrant. How this is done is an advanced topic beyond the
scope of this tutorial.

Critical sections

An example of a critical section of code is one which accesses more than one variable which can be affected by an ISR.
If the interrupt happens to occur between accesses to the individual variables, their values will be inconsistent. This
is an instance of a hazard known as a race condition: the ISR and the main program loop race to alter the variables.
To avoid inconsistency a means must be employed to ensure that the ISR does not alter the values for the duration of
the critical section. One way to achieve this is to issue pyb.disable_irq() before the start of the section, and
pyb.enable_irq() at the end. Here is an example of this approach:

import pyb, micropython, array
micropython.alloc_emergency_exception_buf(100)

class BoundsException(Exception):
pass

ARRAYSIZE = const(20)
index = 0
data = array.array('i', 0 for x in range(ARRAYSIZE))

def callback1(t):
global data, index
for x in range(5):

data[index] = pyb.rng() # simulate input
index += 1
if index >= ARRAYSIZE:

raise BoundsException('Array bounds exceeded')

tim4 = pyb.Timer(4, freq=100, callback=callback1)

(continues on next page)

206 Chapter 2. MicroPython language and implementation

MicroPython Documentation, Release v1.20.0

(continued from previous page)

for loop in range(1000):
if index > 0:

irq_state = pyb.disable_irq() # Start of critical section
for x in range(index):

print(data[x])
index = 0
pyb.enable_irq(irq_state) # End of critical section
print('loop {}'.format(loop))

pyb.delay(1)

tim4.callback(None)

A critical section can comprise a single line of code and a single variable. Consider the following code fragment.

count = 0
def cb(): # An interrupt callback

count +=1
def main():

Code to set up the interrupt callback omitted
while True:

count += 1

This example illustrates a subtle source of bugs. The line count += 1 in the main loop carries a specific race condition
hazard known as a read-modify-write. This is a classic cause of bugs in real time systems. In the main loop MicroPython
reads the value of count, adds 1 to it, and writes it back. On rare occasions the interrupt occurs after the read and before
the write. The interrupt modifies count but its change is overwritten by the main loop when the ISR returns. In a real
system this could lead to rare, unpredictable failures.
As mentioned above, care should be taken if an instance of a Python built in type is modified in the main code and that
instance is accessed in an ISR. The code performing the modification should be regarded as a critical section to ensure
that the instance is in a valid state when the ISR runs.
Particular care needs to be taken if a dataset is shared between different ISR’s. The hazard here is that the higher priority
interrupt may occur when the lower priority one has partially updated the shared data. Dealing with this situation is an
advanced topic beyond the scope of this introduction other than to note that mutex objects described below can sometimes
be used.
Disabling interrupts for the duration of a critical section is the usual and simplest way to proceed, but it disables all
interrupts rather than merely the one with the potential to cause problems. It is generally undesirable to disable an
interrupt for long. In the case of timer interrupts it introduces variability to the time when a callback occurs. In the case
of device interrupts, it can lead to the device being serviced too late with possible loss of data or overrun errors in the
device hardware. Like ISR’s, a critical section in the main code should have a short, predictable duration.
An approach to dealing with critical sections which radically reduces the time for which interrupts are disabled is to use
an object termed a mutex (name derived from the notion of mutual exclusion). The main program locks the mutex before
running the critical section and unlocks it at the end. The ISR tests whether the mutex is locked. If it is, it avoids the
critical section and returns. The design challenge is defining what the ISR should do in the event that access to the critical
variables is denied. A simple example of a mutex may be found here. Note that the mutex code does disable interrupts,
but only for the duration of eight machine instructions: the benefit of this approach is that other interrupts are virtually
unaffected.

2.5. Writing interrupt handlers 207

https://github.com/peterhinch/micropython-samples.git

MicroPython Documentation, Release v1.20.0

Interrupts and the REPL

Interrupt handlers, such as those associated with timers, can continue to run after a program terminates. This may produce
unexpected results where you might have expected the object raising the callback to have gone out of scope. For example
on the Pyboard:

def bar():
foo = pyb.Timer(2, freq=4, callback=lambda t: print('.', end=''))

bar()

This continues to run until the timer is explicitly disabled or the board is reset with ctrl D.

2.6 Maximising MicroPython speed

Contents

• Maximising MicroPython speed

– Designing for speed

∗ Algorithms

∗ RAM allocation

∗ Buffers

∗ Floating point

∗ Arrays

– Identifying the slowest section of code

– MicroPython code improvements

∗ The const() declaration

∗ Caching object references

∗ Controlling garbage collection

– The Native code emitter

– The Viper code emitter

– Accessing hardware directly

This tutorial describes ways of improving the performance ofMicroPython code. Optimisations involving other languages
are covered elsewhere, namely the use of modules written in C and the MicroPython inline assembler.
The process of developing high performance code comprises the following stages which should be performed in the order
listed.

• Design for speed.
• Code and debug.

Optimisation steps:
• Identify the slowest section of code.

208 Chapter 2. MicroPython language and implementation

MicroPython Documentation, Release v1.20.0

• Improve the efficiency of the Python code.
• Use the native code emitter.
• Use the viper code emitter.
• Use hardware-specific optimisations.

2.6.1 Designing for speed

Performance issues should be considered at the outset. This involves taking a view on the sections of code which are most
performance critical and devoting particular attention to their design. The process of optimisation begins when the code
has been tested: if the design is correct at the outset optimisation will be straightforward and may actually be unnecessary.

Algorithms

The most important aspect of designing any routine for performance is ensuring that the best algorithm is employed. This
is a topic for textbooks rather than for a MicroPython guide but spectacular performance gains can sometimes be achieved
by adopting algorithms known for their efficiency.

RAM allocation

To design efficient MicroPython code it is necessary to have an understanding of the way the interpreter allocates RAM.
When an object is created or grows in size (for example where an item is appended to a list) the necessary RAM is
allocated from a block known as the heap. This takes a significant amount of time; further it will on occasion trigger a
process known as garbage collection which can take several milliseconds.
Consequently the performance of a function or method can be improved if an object is created once only and not permitted
to grow in size. This implies that the object persists for the duration of its use: typically it will be instantiated in a class
constructor and used in various methods.
This is covered in further detail Controlling garbage collection below.

Buffers

An example of the above is the common case where a buffer is required, such as one used for communication with a device.
A typical driver will create the buffer in the constructor and use it in its I/O methods which will be called repeatedly.
The MicroPython libraries typically provide support for pre-allocated buffers. For example, objects which support stream
interface (e.g., file or UART) provide read()method which allocates new buffer for read data, but also a readinto()
method to read data into an existing buffer.

Floating point

Some MicroPython ports allocate floating point numbers on heap. Some other ports may lack dedicated floating-point
coprocessor, and perform arithmetic operations on them in “software” at considerably lower speed than on integers.
Where performance is important, use integer operations and restrict the use of floating point to sections of the code
where performance is not paramount. For example, capture ADC readings as integers values to an array in one quick go,
and only then convert them to floating-point numbers for signal processing.

2.6. Maximising MicroPython speed 209

MicroPython Documentation, Release v1.20.0

Arrays

Consider the use of the various types of array classes as an alternative to lists. The array module supports various
element types with 8-bit elements supported by Python’s built in bytes and bytearray classes. These data structures
all store elements in contiguous memory locations. Once again to avoid memory allocation in critical code these should
be pre-allocated and passed as arguments or as bound objects.
When passing slices of objects such as bytearray instances, Python creates a copy which involves allocation of the
size proportional to the size of slice. This can be alleviated using a memoryview object. The memoryview itself is
allocated on the heap, but is a small, fixed-size object, regardless of the size of slice it points too. Slicing a memoryview
creates a new memoryview, so this cannot be done in an interrupt service routine. Further, the slice syntax a:b causes
further allocation by instantiating a slice(a, b) object.

ba = bytearray(10000) # big array
func(ba[30:2000]) # a copy is passed, ~2K new allocation
mv = memoryview(ba) # small object is allocated
func(mv[30:2000]) # a pointer to memory is passed

A memoryview can only be applied to objects supporting the buffer protocol - this includes arrays but not lists. Small
caveat is that while memoryview object is live, it also keeps alive the original buffer object. So, a memoryview isn’t a
universal panacea. For instance, in the example above, if you are done with 10K buffer and just need those bytes 30:2000
from it, it may be better to make a slice, and let the 10K buffer go (be ready for garbage collection), instead of making a
long-living memoryview and keeping 10K blocked for GC.
Nonetheless, memoryview is indispensable for advanced preallocated buffer management. readinto() method
discussed above puts data at the beginning of buffer and fills in entire buffer. What if you need to put data in the middle
of existing buffer? Just create a memoryview into the needed section of buffer and pass it to readinto().

2.6.2 Identifying the slowest section of code

This is a process known as profiling and is covered in textbooks and (for standard Python) supported by various software
tools. For the type of smaller embedded application likely to be running on MicroPython platforms the slowest function
or method can usually be established by judicious use of the timing ticks group of functions documented in time.
Code execution time can be measured in ms, us, or CPU cycles.
The following enables any function or method to be timed by adding an @timed_function decorator:

def timed_function(f, *args, **kwargs):
myname = str(f).split(' ')[1]
def new_func(*args, **kwargs):

t = time.ticks_us()
result = f(*args, **kwargs)
delta = time.ticks_diff(time.ticks_us(), t)
print('Function {} Time = {:6.3f}ms'.format(myname, delta/1000))
return result

return new_func

210 Chapter 2. MicroPython language and implementation

MicroPython Documentation, Release v1.20.0

2.6.3 MicroPython code improvements

The const() declaration

MicroPython provides a const() declaration. This works in a similar way to #define in C in that when the code
is compiled to bytecode the compiler substitutes the numeric value for the identifier. This avoids a dictionary lookup at
runtime. The argument to const() may be anything which, at compile time, evaluates to an integer e.g. 0x100 or 1
<< 8.

Caching object references

Where a function or method repeatedly accesses objects performance is improved by caching the object in a local variable:

class foo(object):
def __init__(self):

self.ba = bytearray(100)
def bar(self, obj_display):

ba_ref = self.ba
fb = obj_display.framebuffer
iterative code using these two objects

This avoids the need repeatedly to look up self.ba and obj_display.framebuffer in the body of the method
bar().

Controlling garbage collection

When memory allocation is required, MicroPython attempts to locate an adequately sized block on the heap. This may
fail, usually because the heap is cluttered with objects which are no longer referenced by code. If a failure occurs, the
process known as garbage collection reclaims the memory used by these redundant objects and the allocation is then tried
again - a process which can take several milliseconds.
There may be benefits in pre-empting this by periodically issuing gc.collect(). Firstly doing a collection before
it is actually required is quicker - typically on the order of 1ms if done frequently. Secondly you can determine the
point in code where this time is used rather than have a longer delay occur at random points, possibly in a speed critical
section. Finally performing collections regularly can reduce fragmentation in the heap. Severe fragmentation can lead to
non-recoverable allocation failures.

2.6.4 The Native code emitter

This causes the MicroPython compiler to emit native CPU opcodes rather than bytecode. It covers the bulk of the
MicroPython functionality, so most functions will require no adaptation (but see below). It is invoked by means of a
function decorator:

@micropython.native
def foo(self, arg):

buf = self.linebuf # Cached object
code

There are certain limitations in the current implementation of the native code emitter.
• Context managers are not supported (the with statement).
• Generators are not supported.
• If raise is used an argument must be supplied.

2.6. Maximising MicroPython speed 211

MicroPython Documentation, Release v1.20.0

The trade-off for the improved performance (roughly twice as fast as bytecode) is an increase in compiled code size.

2.6.5 The Viper code emitter

The optimisations discussed above involve standards-compliant Python code. The Viper code emitter is not fully com-
pliant. It supports special Viper native data types in pursuit of performance. Integer processing is non-compliant because
it uses machine words: arithmetic on 32 bit hardware is performed modulo 2**32.
Like the Native emitter Viper produces machine instructions but further optimisations are performed, substantially in-
creasing performance especially for integer arithmetic and bit manipulations. It is invoked using a decorator:

@micropython.viper
def foo(self, arg: int) -> int:

code

As the above fragment illustrates it is beneficial to use Python type hints to assist the Viper optimiser. Type hints provide
information on the data types of arguments and of the return value; these are a standard Python language feature formally
defined here PEP0484. Viper supports its own set of types namely int, uint (unsigned integer), ptr, ptr8, ptr16
and ptr32. The ptrX types are discussed below. Currently the uint type serves a single purpose: as a type hint for
a function return value. If such a function returns 0xffffffff Python will interpret the result as 2**32 -1 rather than
as -1.
In addition to the restrictions imposed by the native emitter the following constraints apply:

• Functions may have up to four arguments.
• Default argument values are not permitted.
• Floating point may be used but is not optimised.

Viper provides pointer types to assist the optimiser. These comprise
• ptr Pointer to an object.
• ptr8 Points to a byte.
• ptr16 Points to a 16 bit half-word.
• ptr32 Points to a 32 bit machine word.

The concept of a pointer may be unfamiliar to Python programmers. It has similarities to a Python memoryview object
in that it provides direct access to data stored in memory. Items are accessed using subscript notation, but slices are not
supported: a pointer can return a single item only. Its purpose is to provide fast random access to data stored in contiguous
memory locations - such as data stored in objects which support the buffer protocol, and memory-mapped peripheral
registers in a microcontroller. It should be noted that programming using pointers is hazardous: bounds checking is not
performed and the compiler does nothing to prevent buffer overrun errors.
Typical usage is to cache variables:

@micropython.viper
def foo(self, arg: int) -> int:

buf = ptr8(self.linebuf) # self.linebuf is a bytearray or bytes object
for x in range(20, 30):

bar = buf[x] # Access a data item through the pointer
code omitted

In this instance the compiler “knows” that buf is the address of an array of bytes; it can emit code to rapidly compute the
address of buf[x] at runtime. Where casts are used to convert objects to Viper native types these should be performed
at the start of the function rather than in critical timing loops as the cast operation can take several microseconds. The
rules for casting are as follows:

212 Chapter 2. MicroPython language and implementation

https://www.python.org/dev/peps/pep-0484/

MicroPython Documentation, Release v1.20.0

• Casting operators are currently: int, bool, uint, ptr, ptr8, ptr16 and ptr32.
• The result of a cast will be a native Viper variable.
• Arguments to a cast can be a Python object or a native Viper variable.
• If argument is a native Viper variable, then cast is a no-op (i.e. costs nothing at runtime) that just changes the type
(e.g. from uint to ptr8) so that you can then store/load using this pointer.

• If the argument is a Python object and the cast is int or uint, then the Python object must be of integral type
and the value of that integral object is returned.

• The argument to a bool cast must be integral type (boolean or integer); when used as a return type the viper function
will return True or False objects.

• If the argument is a Python object and the cast is ptr, ptr, ptr16 or ptr32, then the Python object must either
have the buffer protocol (in which case a pointer to the start of the buffer is returned) or it must be of integral type
(in which case the value of that integral object is returned).

Writing to a pointer which points to a read-only object will lead to undefined behaviour.
The following example illustrates the use of a ptr16 cast to toggle pin X1 n times:

BIT0 = const(1)
@micropython.viper
def toggle_n(n: int):

odr = ptr16(stm.GPIOA + stm.GPIO_ODR)
for _ in range(n):

odr[0] ^= BIT0

A detailed technical description of the three code emitters may be found on Kickstarter here Note 1 and here Note 2

2.6.6 Accessing hardware directly

Note: Code examples in this section are given for the Pyboard. The techniques described however may be applied to
other MicroPython ports too.

This comes into the category of more advanced programming and involves some knowledge of the target MCU. Consider
the example of toggling an output pin on the Pyboard. The standard approach would be to write

mypin.value(mypin.value() ^ 1) # mypin was instantiated as an output pin

This involves the overhead of two calls to the Pin instance’s value() method. This overhead can be eliminated by
performing a read/write to the relevant bit of the chip’s GPIO port output data register (odr). To facilitate this the stm
module provides a set of constants providing the addresses of the relevant registers. A fast toggle of pin P4 (CPU pin
A14) - corresponding to the green LED - can be performed as follows:

import machine
import stm

BIT14 = const(1 << 14)
machine.mem16[stm.GPIOA + stm.GPIO_ODR] ^= BIT14

2.6. Maximising MicroPython speed 213

https://www.kickstarter.com/projects/214379695/micro-python-python-for-microcontrollers/posts/664832
https://www.kickstarter.com/projects/214379695/micro-python-python-for-microcontrollers/posts/665145

MicroPython Documentation, Release v1.20.0

2.7 MicroPython on microcontrollers

MicroPython is designed to be capable of running on microcontrollers. These have hardware limitations which may be
unfamiliar to programmers more familiar with conventional computers. In particular the amount of RAM and nonvolatile
“disk” (flash memory) storage is limited. This tutorial offers ways to make the most of the limited resources. Because
MicroPython runs on controllers based on a variety of architectures, the methods presented are generic: in some cases it
will be necessary to obtain detailed information from platform specific documentation.

2.7.1 Flash memory

On the Pyboard the simple way to address the limited capacity is to fit a micro SD card. In some cases this is impractical,
either because the device does not have an SD card slot or for reasons of cost or power consumption; hence the on-chip flash
must be used. The firmware including the MicroPython subsystem is stored in the onboard flash. The remaining capacity
is available for use. For reasons connected with the physical architecture of the flash memory part of this capacity may
be inaccessible as a filesystem. In such cases this space may be employed by incorporating user modules into a firmware
build which is then flashed to the device.
There are two ways to achieve this: frozen modules and frozen bytecode. Frozen modules store the Python source with
the firmware. Frozen bytecode uses the cross compiler to convert the source to bytecode which is then stored with the
firmware. In either case the module may be accessed with an import statement:

import mymodule

The procedure for producing frozen modules and bytecode is platform dependent; instructions for building the firmware
can be found in the README files in the relevant part of the source tree.
In general terms the steps are as follows:

• Clone the MicroPython repository.
• Acquire the (platform specific) toolchain to build the firmware.
• Build the cross compiler.
• Place the modules to be frozen in a specified directory (dependent on whether the module is to be frozen as source
or as bytecode).

• Build the firmware. A specific command may be required to build frozen code of either type - see the platform
documentation.

• Flash the firmware to the device.

2.7.2 RAM

When reducing RAM usage there are two phases to consider: compilation and execution. In addition to memory con-
sumption, there is also an issue known as heap fragmentation. In general terms it is best to minimise the repeated creation
and destruction of objects. The reason for this is covered in the section covering the heap.

214 Chapter 2. MicroPython language and implementation

https://github.com/micropython/micropython

MicroPython Documentation, Release v1.20.0

Compilation phase

When a module is imported, MicroPython compiles the code to bytecode which is then executed by the MicroPython
virtual machine (VM). The bytecode is stored in RAM. The compiler itself requires RAM, but this becomes available for
use when the compilation has completed.
If a number of modules have already been imported the situation can arise where there is insufficient RAM to run the
compiler. In this case the import statement will produce a memory exception.
If a module instantiates global objects on import it will consume RAM at the time of import, which is then unavailable
for the compiler to use on subsequent imports. In general it is best to avoid code which runs on import; a better approach
is to have initialisation code which is run by the application after all modules have been imported. This maximises the
RAM available to the compiler.
If RAM is still insufficient to compile all modules one solution is to precompile modules. MicroPython has a cross
compiler capable of compiling Python modules to bytecode (see the README in the mpy-cross directory). The resulting
bytecode file has a .mpy extension; it may be copied to the filesystem and imported in the usual way. Alternatively some
or all modules may be implemented as frozen bytecode: on most platforms this saves even more RAM as the bytecode is
run directly from flash rather than being stored in RAM.

Execution phase

There are a number of coding techniques for reducing RAM usage.
Constants
MicroPython provides a const keyword which may be used as follows:

from micropython import const
ROWS = const(33)
_COLS = const(0x10)
a = ROWS
b = _COLS

In both instances where the constant is assigned to a variable the compiler will avoid coding a lookup to the name of
the constant by substituting its literal value. This saves bytecode and hence RAM. However the ROWS value will occupy
at least two machine words, one each for the key and value in the globals dictionary. The presence in the dictionary is
necessary because another module might import or use it. This RAM can be saved by prepending the name with an
underscore as in _COLS: this symbol is not visible outside the module so will not occupy RAM.
The argument to const() may be anything which, at compile time, evaluates to a constant e.g. 0x100, 1 << 8 or
(True, "string", b"bytes") (see section below for details). It can even include other const symbols that have
already been defined, e.g. 1 << BIT.
Constant data structures
Where there is a substantial volume of constant data and the platform supports execution from Flash, RAMmay be saved
as follows. The data should be located in Python modules and frozen as bytecode. The data must be defined as bytes
objects. The compiler ‘knows’ that bytes objects are immutable and ensures that the objects remain in flash memory
rather than being copied to RAM. The structmodule can assist in converting between bytes types and other Python
built-in types.
When considering the implications of frozen bytecode, note that in Python strings, floats, bytes, integers, complex numbers
and tuples are immutable. Accordingly these will be frozen into flash (for tuples, only if all their elements are immutable).
Thus, in the line

mystring = "The quick brown fox"

2.7. MicroPython on microcontrollers 215

MicroPython Documentation, Release v1.20.0

the actual string “The quick brown fox” will reside in flash. At runtime a reference to the string is assigned to the variable
mystring. The reference occupies a single machine word. In principle a long integer could be used to store constant
data:

bar = 0xDEADBEEF0000DEADBEEF

As in the string example, at runtime a reference to the arbitrarily large integer is assigned to the variable bar. That
reference occupies a single machine word.
Tuples of constant objects are themselves constant. Such constant tuples are optimised by the compiler so they do not
need to be created at runtime each time they are used. For example:

foo = (1, 2, 3, 4, 5, 6, 100000, ("string", b"bytes", False, True))

This entire tuple will exist as a single object (potentially in flash if the code is frozen) and referenced each time it is needed.
Needless object creation
There are a number of situations where objects may unwittingly be created and destroyed. This can reduce the usability
of RAM through fragmentation. The following sections discuss instances of this.
String concatenation
Consider the following code fragments which aim to produce constant strings:

var = "foo" + "bar"
var1 = "foo" "bar"
var2 = """\
foo\
bar"""

Each produces the same outcome, however the first needlessly creates two string objects at runtime, allocates more RAM
for concatenation before producing the third. The others perform the concatenation at compile time which is more
efficient, reducing fragmentation.
Where strings must be dynamically created before being fed to a stream such as a file it will save RAM if this is done in
a piecemeal fashion. Rather than creating a large string object, create a substring and feed it to the stream before dealing
with the next.
The best way to create dynamic strings is by means of the string format() method:

var = "Temperature {:5.2f} Pressure {:06d}\n".format(temp, press)

Buffers
When accessing devices such as instances of UART, I2C and SPI interfaces, using pre-allocated buffers avoids the creation
of needless objects. Consider these two loops:

while True:
var = spi.read(100)
process data

buf = bytearray(100)
while True:

spi.readinto(buf)
process data in buf

The first creates a buffer on each pass whereas the second re-uses a pre-allocated buffer; this is both faster and more
efficient in terms of memory fragmentation.
Bytes are smaller than ints

216 Chapter 2. MicroPython language and implementation

MicroPython Documentation, Release v1.20.0

On most platforms an integer consumes four bytes. Consider the three calls to the function foo():

def foo(bar):
for x in bar:

print(x)
foo([1, 2, 0xff])
foo((1, 2, 0xff))
foo(b'\1\2\xff')

In the first call a list of integers is created in RAM each time the code is executed. The second call creates a constant
tuple object (a tuple containing only constant objects) as part of the compilation phase, so it is only created once and
is more efficient than the list. The third call efficiently creates a bytes object consuming the minimum amount of
RAM. If the module were frozen as bytecode, both the tuple and bytes object would reside in flash.
Strings Versus Bytes
Python3 introduced Unicode support. This introduced a distinction between a string and an array of bytes. MicroPython
ensures that Unicode strings take no additional space so long as all characters in the string are ASCII (i.e. have a value
< 126). If values in the full 8-bit range are required bytes and bytearray objects can be used to ensure that no
additional space will be required. Note that most string methods (e.g. str.strip()) apply also to bytes instances
so the process of eliminating Unicode can be painless.

s = 'the quick brown fox' # A string instance
b = b'the quick brown fox' # A bytes instance

Where it is necessary to convert between strings and bytes the str.encode() and the bytes.decode() methods
can be used. Note that both strings and bytes are immutable. Any operation which takes as input such an object and
produces another implies at least one RAM allocation to produce the result. In the second line below a new bytes object
is allocated. This would also occur if foo were a string.

foo = b' empty whitespace'
foo = foo.lstrip()

Runtime compiler execution
The Python funcitons eval and exec invoke the compiler at runtime, which requires significant amounts of RAM. Note
that the pickle library from micropython-lib employs exec. It may be more RAM efficient to use the json
library for object serialisation.
Storing strings in flash
Python strings are immutable hence have the potential to be stored in read only memory. The compiler can place in flash
strings defined in Python code. As with frozen modules it is necessary to have a copy of the source tree on the PC and
the toolchain to build the firmware. The procedure will work even if the modules have not been fully debugged, so long
as they can be imported and run.
After importing the modules, execute:

micropython.qstr_info(1)

Then copy and paste all the Q(xxx) lines into a text editor. Check for and remove lines which are obviously invalid. Open
the file qstrdefsport.h which will be found in ports/stm32 (or the equivalent directory for the architecture in use). Copy
and paste the corrected lines at the end of the file. Save the file, rebuild and flash the firmware. The outcome can be
checked by importing the modules and again issuing:

micropython.qstr_info(1)

The Q(xxx) lines should be gone.

2.7. MicroPython on microcontrollers 217

https://docs.python.org/3.5/library/stdtypes.html#str.strip
https://docs.python.org/3.5/library/stdtypes.html#str.encode
https://docs.python.org/3.5/library/stdtypes.html#bytes.decode

MicroPython Documentation, Release v1.20.0

2.7.3 The heap

When a running program instantiates an object the necessary RAM is allocated from a fixed size pool known as the
heap. When the object goes out of scope (in other words becomes inaccessible to code) the redundant object is known
as “garbage”. A process known as “garbage collection” (GC) reclaims that memory, returning it to the free heap. This
process runs automatically, however it can be invoked directly by issuing gc.collect().
The discourse on this is somewhat involved. For a ‘quick fix’ issue the following periodically:

gc.collect()
gc.threshold(gc.mem_free() // 4 + gc.mem_alloc())

Fragmentation

Say a program creates an object foo, then an object bar. Subsequently foo goes out of scope but bar remains. The
RAM used by foo will be reclaimed by GC. However if bar was allocated to a higher address, the RAM reclaimed
from foo will only be of use for objects no bigger than foo. In a complex or long running program the heap can become
fragmented: despite there being a substantial amount of RAM available, there is insufficient contiguous space to allocate
a particular object, and the program fails with a memory error.
The techniques outlined above aim to minimise this. Where large permanent buffers or other objects are required it is
best to instantiate these early in the process of program execution before fragmentation can occur. Further improvements
may be made by monitoring the state of the heap and by controlling GC; these are outlined below.

Reporting

A number of library functions are available to report on memory allocation and to control GC. These are to be found in
the gc and micropythonmodules. The following example may be pasted at the REPL (ctrl e to enter paste mode,
ctrl d to run it).

import gc
import micropython
gc.collect()
micropython.mem_info()
print('-----------------------------')
print('Initial free: {} allocated: {}'.format(gc.mem_free(), gc.mem_alloc()))
def func():

a = bytearray(10000)
gc.collect()
print('Func definition: {} allocated: {}'.format(gc.mem_free(), gc.mem_alloc()))
func()
print('Func run free: {} allocated: {}'.format(gc.mem_free(), gc.mem_alloc()))
gc.collect()
print('Garbage collect free: {} allocated: {}'.format(gc.mem_free(), gc.mem_alloc()))
print('-----------------------------')
micropython.mem_info(1)

Methods employed above:
• gc.collect() Force a garbage collection. See footnote.
• micropython.mem_info() Print a summary of RAM utilisation.
• gc.mem_free() Return the free heap size in bytes.
• gc.mem_alloc() Return the number of bytes currently allocated.

218 Chapter 2. MicroPython language and implementation

MicroPython Documentation, Release v1.20.0

• micropython.mem_info(1) Print a table of heap utilisation (detailed below).
The numbers produced are dependent on the platform, but it can be seen that declaring the function uses a small amount
of RAM in the form of bytecode emitted by the compiler (the RAM used by the compiler has been reclaimed). Running
the function uses over 10KiB, but on return a is garbage because it is out of scope and cannot be referenced. The final
gc.collect() recovers that memory.
The final output produced by micropython.mem_info(1) will vary in detail but may be interpreted as follows:

Symbol Meaning
. free block
h head block
= tail block
m marked head block
T tuple
L list
D dict
F float
B byte code
M module
S string or bytes
A bytearray

Each letter represents a single block of memory, a block being 16 bytes. So each line of the heap dump represents 0x400
bytes or 1KiB of RAM.

Control of garbage collection

A GC can be demanded at any time by issuing gc.collect(). It is advantageous to do this at intervals, firstly to
pre-empt fragmentation and secondly for performance. A GC can take several milliseconds but is quicker when there is
little work to do (about 1ms on the Pyboard). An explicit call can minimise that delay while ensuring it occurs at points
in the program when it is acceptable.
Automatic GC is provoked under the following circumstances. When an attempt at allocation fails, a GC is performed
and the allocation re-tried. Only if this fails is an exception raised. Secondly an automatic GC will be triggered if the
amount of free RAM falls below a threshold. This threshold can be adapted as execution progresses:

gc.collect()
gc.threshold(gc.mem_free() // 4 + gc.mem_alloc())

This will provoke a GC when more than 25% of the currently free heap becomes occupied.
In general modules should instantiate data objects at runtime using constructors or other initialisation functions. The
reason is that if this occurs on initialisation the compiler may be starved of RAMwhen subsequent modules are imported.
If modules do instantiate data on import then gc.collect() issued after the import will ameliorate the problem.

2.7. MicroPython on microcontrollers 219

MicroPython Documentation, Release v1.20.0

2.7.4 String operations

MicroPython handles strings in an efficient manner and understanding this can help in designing applications to run on
microcontrollers. When a module is compiled, strings which occur multiple times are stored once only, a process known
as string interning. In MicroPython an interned string is known as a qstr. In a module imported normally that single
instance will be located in RAM, but as described above, in modules frozen as bytecode it will be located in flash.
String comparisons are also performed efficiently using hashing rather than character by character. The penalty for using
strings rather than integers may hence be small both in terms of performance and RAM usage - a fact which may come
as a surprise to C programmers.

2.7.5 Postscript

MicroPython passes, returns and (by default) copies objects by reference. A reference occupies a single machine word so
these processes are efficient in RAM usage and speed.
Where variables are required whose size is neither a byte nor a machine word there are standard libraries which can assist
in storing these efficiently and in performing conversions. See the array, struct and uctypes modules.

Footnote: gc.collect() return value

On Unix and Windows platforms the gc.collect() method returns an integer which signifies the number of distinct
memory regions that were reclaimed in the collection (more precisely, the number of heads that were turned into frees).
For efficiency reasons bare metal ports do not return this value.

2.8 MicroPython manifest files

2.8.1 Summary

MicroPython has a feature that allows Python code to be “frozen” into the firmware, as an alternative to loading code
from the filesystem.
This has the following benefits:

• the code is pre-compiled to bytecode, avoiding the need for the Python source to be compiled at load-time.
• the bytecode can be executed directly from ROM (i.e. flash memory) rather than being copied into RAM. Similarly
any constant objects (strings, tuples, etc) are loaded from ROM also. This can lead to significantly more memory
being available for your application.

• on devices that do not have a filesystem, this is the only way to load Python code.
During development, freezing is generally not recommended as it will significantly slow down your development cycle,
as each update will require re-flashing the entire firmware. However, it can still be useful to selectively freeze some
rarely-changing dependencies (such as third-party libraries).
The way to list the Python files to be be frozen into the firmware is via a “manifest”, which is a Python file that will be
interpreted by the build process. Typically you would write a manifest file as part of a board definition, but you can also
write a stand-alone manifest file and use it with an existing board definition.
Manifest files can define dependencies on libraries from micropython-lib as well as Python files on the filesystem, and also
on other manifest files.

220 Chapter 2. MicroPython language and implementation

MicroPython Documentation, Release v1.20.0

2.8.2 Writing manifest files

A manifest file is a Python file containing a series of function calls. See the available functions defined below.
Any paths used in manifest files can include the following variables. These all resolve to absolute paths.

• $(MPY_DIR) – path to the micropython repo.
• $(MPY_LIB_DIR) – path to the micropython-lib submodule. Prefer to use require().
• $(PORT_DIR) – path to the current port (e.g. ports/stm32)
• $(BOARD_DIR) – path to the current board (e.g. ports/stm32/boards/PYBV11)

Custom manifest files should not live in the main MicroPython repository. You should keep them in version control with
the rest of your project.
Typically a manifest used for compiling firmware will need to include the port manifest, which might include frozen
modules that are required for the board to function. If you just want to add additional modules to an existing board, then
include the board manifest (which will in turn include the port manifest).

Building with a custom manifest

Your manifest can be specified on the make command line with:

$ make BOARD=MYBOARD FROZEN_MANIFEST=/path/to/my/project/manifest.py

This applies to all ports, including CMake-based ones (e.g. esp32, rp2), as the Makefile wrapper that will pass this into
the CMake build.

Adding a manifest to a board definition

If you have a custom board definition, you can make it include your custom manifest automatically. On make-based ports
(most ports), in your mpconfigboard.mk set the FROZEN_MANIFEST variable.

FROZEN_MANIFEST ?= $(BOARD_DIR)/manifest.py

On CMake-based ports (e.g. esp32, rp2), instead use mpconfigboard.cmake

set(MICROPY_FROZEN_MANIFEST ${MICROPY_BOARD_DIR}/manifest.py)

High-level functions

Note: The opt keyword argument can be set on the various functions, this controls the optimisation level used by the
cross-compiler. See micropython.opt_level().
package(package_path, files=None, base_path='.', opt=None)

This is equivalent to copying the “package_path” directory to the device (except as frozen code).
In the simplest case, to freeze a package “foo” in the current directory:

package("foo")

will recursively include all .py files in foo, and will be frozen as foo/**/*.py.
If the package isn’t in the same directory as the manifest file, use base_path:

2.8. MicroPython manifest files 221

MicroPython Documentation, Release v1.20.0

package("foo", base_path="path/to/libraries")

You can use the variables above, such as $(PORT_DIR) in base_path.
To restrict to certain files in the package use files (note: paths should be relative to the package):
package("foo", files=["bar/baz.py"]).

module(module_path, base_path='.', opt=None)
Include a single Python file as a module.
If the file is in the current directory:

module("foo.py")

Otherwise use base_path to locate the file:

module("foo.py", base_path="src/drivers")

You can use the variables above, such as $(PORT_DIR) in base_path.
require(name, unix_ffi=False)

Require a package by name (and its dependencies) from micropython-lib.
Optionally specify unix_ffi=True to use a module from the unix-ffi directory.

include(manifest_path)
Include another manifest.
Typically a manifest used for compiling firmware will need to include the port manifest, which might include frozen
modules that are required for the board to function.
The manifest argument can be a string (filename) or an iterable of strings.
Relative paths are resolved with respect to the current manifest file.
If the path is to a directory, then it implicitly includes the manifest.py file inside that directory.
You can use the variables above, such as $(PORT_DIR) in manifest_path.

metadata(description=None, version=None, license=None, author=None)
Define metadata for this manifest file. This is useful for manifests for micropython-lib packages.

Low-level functions

These functions are documented for completeness, but with the exception of freeze_as_str all functionality can be
accessed via the high-level functions.
freeze(path, script=None, opt=0)

Freeze the input specified by path, automatically determining its type. A .py script will be compiled to a .mpy
first then frozen, and a .mpy file will be frozen directly.
path must be a directory, which is the base directory to begin searching for files. When importing the resulting
frozen modules, the name of the module will start after path, i.e. path is excluded from the module name.
If path is relative, it is resolved to the current manifest.py.
If script is None, all files in path will be frozen.
If script is an iterable then freeze() is called on all items of the iterable (with the same path and opt passed
through).

222 Chapter 2. MicroPython language and implementation

MicroPython Documentation, Release v1.20.0

If script is a string then it specifies the file or directory to freeze, and can include extra directories before the file or
last directory. The file or directory will be searched for in path. If script is a directory then all files in that directory
will be frozen.
opt is the optimisation level to pass to mpy-cross when compiling .py to .mpy. These levels are described in
micropython.opt_level().

freeze_as_str(path)
Freeze the given path and all .py scripts within it as a string, which will be compiled upon import.

freeze_as_mpy(path, script=None, opt=0)
Freeze the input by first compiling the .py scripts to .mpy files, then freezing the resulting .mpy files. See
freeze() for further details on the arguments.

freeze_mpy(path, script=None, opt=0)
Freeze the input, which must be .mpy files that are frozen directly. See freeze() for further details on the
arguments.

2.8.3 Examples

To freeze a single file from the current directory which will be available as import mydriver, use:

module("mydriver.py")

To freeze a directory of files in a subdirectory “mydriver” of the current directory which will be available as import
mydriver, use:

package("mydriver")

To freeze the “hmac” library from micropython-lib, use:

require("hmac")

A more complete example of a custom manifest.py file for the PYBD_SF2 board is:

Include the board's default manifest.
include("$(BOARD_DIR)/manifest.py")
Add a custom driver
module("mydriver.py")
Add aiorepl from micropython-lib
require("aiorepl")

Then the board can be compiled with

$ cd ports/stm32
$ make BOARD=PYBD_SF2 FROZEN_MANIFEST=~/src/myproject/manifest.py

Note that most boards do not have their own manifest.py, rather they use the port one directly, in which case your
manifest should just include("$(PORT_DIR)/boards/manifest.py") instead.

2.8. MicroPython manifest files 223

MicroPython Documentation, Release v1.20.0

2.9 Package management

2.9.1 Installing packages with mip

Network-capable boards include the mip module, which can install packages from micropython-lib and from third-party
sites (including GitHub).
mip (“mip installs packages”) is similar in concept to Python’s pip tool, however it does not use the PyPI index, rather
it uses micropython-lib as its index by default. mip will automatically fetch compiled .mpy file when downloading from
micropython-lib.
The most common way to use mip is from the REPL:

>>> import mip
>>> mip.install("pkgname") # Installs the latest version of "pkgname" (and␣
↪→dependencies)
>>> mip.install("pkgname", version="x.y") # Installs version x.y of "pkgname"
>>> mip.install("pkgname", mpy=False) # Installs the source version (i.e. .py rather␣
↪→than .mpy files)

mip will detect an appropriate location on the filesystem by searching sys.path for the first entry ending in /lib.
You can override the destination using target, but note that this path must be in sys.path to be able to subsequently
import it.:

>>> mip.install("pkgname", target="third-party")
>>> sys.path.append("third-party")

As well as downloading packages from the micropython-lib index, mip can also install third-party libraries. The simplest
way is to download a file directly:

>>> mip.install("http://example.com/x/y/foo.py")
>>> mip.install("http://example.com/x/y/foo.mpy")

When installing a file directly, the target argument is still supported to set the destination path, but mpy and version
are ignored.
The URL can also start with github: as a simple way of pointing to content hosted on GitHub:

>>> mip.install("github:org/repo/path/foo.py") # Uses default branch
>>> mip.install("github:org/repo/path/foo.py", version="branch-or-tag") # Optionally␣
↪→specify the branch or tag

More sophisticated packages (i.e. with more than one file, or with dependencies) can be downloaded by specifying the
path to their package.json.

>>> mip.install("http://example.com/x/package.json")
>>> mip.install("github:org/user/path/package.json")

If no json file is specified, then “package.json” is implicitly added:

>>> mip.install("http://example.com/x/")
>>> mip.install("github:org/repo")
>>> mip.install("github:org/repo", version="branch-or-tag")

224 Chapter 2. MicroPython language and implementation

MicroPython Documentation, Release v1.20.0

Using mip on the Unix port

On the Unix port, mip can be used at the REPL as above, and also by using -m:

$./micropython -m mip install pkgname-or-url
$./micropython -m mip install pkgname-or-url@version

The --target=path, --no-mpy, and --index arguments can be set:

$./micropython -m mip install --target=third-party pkgname
$./micropython -m mip install --no-mpy pkgname
$./micropython -m mip install --index https://host/pi pkgname

2.9.2 Installing packages with mpremote

The mpremote tool also includes the same functionality as mip and can be used from a host PC to install packages to a
locally connected device (e.g. via USB or UART):

$ mpremote mip install pkgname
$ mpremote mip install pkgname@x.y
$ mpremote mip install http://example.com/x/y/foo.py
$ mpremote mip install github:org/repo
$ mpremote mip install github:org/repo@branch-or-tag

The --target=path, --no-mpy, and --index arguments can be set:

$ mpremote mip install --target=/flash/third-party pkgname
$ mpremote mip install --no-mpy pkgname
$ mpremote mip install --index https://host/pi pkgname

2.9.3 Installing packages manually

Packages can also be installed (in either .py or .mpy form) by manually copying the files to the device. Depending on the
board this might be via USB Mass Storage, the mpremote tool (e.g. mpremote fs cp path/to/package.py
:package.py), webrepl, etc.

2.9.4 Writing & publishing packages

Publishing to micropython-lib is the easiest way to make your package broadly accessible to MicroPython users, and
automatically available via mip and mpremote and compiled to bytecode. See https://github.com/micropython/
micropython-lib for more information.
To write a “self-hosted” package that can be downloaded by mip or mpremote, you need a static webserver (or GitHub)
to host either a single .py file, or a package.json file alongside your .py files.
A typical package.json for an example mlx90640 library looks like:

{
"urls": [
["mlx90640/__init__.py", "github:org/micropython-mlx90640/mlx90640/__init__.py"],
["mlx90640/utils.py", "github:org/micropython-mlx90640/mlx90640/utils.py"]

],
"deps": [

(continues on next page)

2.9. Package management 225

https://github.com/micropython/micropython-lib
https://github.com/micropython/micropython-lib

MicroPython Documentation, Release v1.20.0

(continued from previous page)
["collections-defaultdict", "latest"],
["os-path", "latest"]

],
"version": "0.2"

}

This includes two files, hosted at a GitHub repo named org/micropython-mlx90640, which install into the
mlx90640 directory on the device. It depends on collections-defaultdict and os-path which will be
installed automatically.

2.9.5 Freezing packages

When a Python module or package is imported from the device filesystem, it is compiled into bytecode in RAM, ready to
be executed by the VM. For a .mpy file, this conversion has been done already, but the bytecode still ends up in RAM.
For low-memory devices, or for large applications, it can be advantageous to instead run the bytecode from ROM (i.e.
flash memory). This can be done by “freezing” the bytecode into the MicroPython firmware, which is then flashed to
the device. The runtime performance is the same (although importing is faster), but it can free up significant amounts of
RAM for your program to use.
The downside of this approach is that it’s much slower to develop, because you have to flash the firmware each time, but
it can be still useful to freeze dependencies that don’t change often.
Freezing is done by writing a manifest file and using it in the build, often as part of a custom board definition. See the
MicroPython manifest files guide for more information.

2.10 Inline assembler for Thumb2 architectures

This document assumes some familiarity with assembly language programming and should be read after studying the
tutorial. For a detailed description of the instruction set consult the Architecture Reference Manual detailed below. The
inline assembler supports a subset of the ARM Thumb-2 instruction set described here. The syntax tries to be as close as
possible to that defined in the above ARM manual, converted to Python function calls.
Instructions operate on 32 bit signed integer data except where stated otherwise. Most supported instructions operate
on registers R0-R7 only: where R8-R15 are supported this is stated. Registers R8-R12 must be restored to their
initial value before return from a function. Registers R13-R15 constitute the Link Register, Stack Pointer and Program
Counter respectively.

2.10.1 Document conventions

Where possible the behaviour of each instruction is described in Python, for example
• add(Rd, Rn, Rm) Rd = Rn + Rm

This enables the effect of instructions to be demonstrated in Python. In certain case this is impossible because Python
doesn’t support concepts such as indirection. The pseudocode employed in such cases is described on the relevant page.

226 Chapter 2. MicroPython language and implementation

MicroPython Documentation, Release v1.20.0

2.10.2 Instruction categories

The following sections details the subset of the ARM Thumb-2 instruction set supported by MicroPython.

Register move instructions

Document conventions

Notation: Rd, Rn denote ARM registers R0-R15. immN denotes an immediate value having a width of N bits. These
instructions affect the condition flags.

Register moves

Where immediate values are used, these are zero-extended to 32 bits. Thus mov(R0, 0xff) will set R0 to 255.
• mov(Rd, imm8) Rd = imm8

• mov(Rd, Rn) Rd = Rn

• movw(Rd, imm16) Rd = imm16

• movt(Rd, imm16) Rd = (Rd & 0xffff) | (imm16 << 16)

movt writes an immediate value to the top halfword of the destination register. It does not affect the contents of the
bottom halfword.

• movwt(Rd, imm32) Rd = imm32

movwt is a pseudo-instruction: the MicroPython assembler emits a movw followed by a movt to move a 32-bit value
into Rd.

Load register from memory

Document conventions

Notation: Rt, Rn denote ARM registers R0-R7 except where stated. immN represents an immediate value having a
width of N bits hence imm5 is constrained to the range 0-31. [Rn + immN] is the contents of the memory address
obtained by adding Rn and the offset immN. Offsets are measured in bytes. These instructions affect the condition flags.

Register Load

• ldr(Rt, [Rn, imm7]) Rt = [Rn + imm7] Load a 32 bit word
• ldrb(Rt, [Rn, imm5]) Rt = [Rn + imm5] Load a byte
• ldrh(Rt, [Rn, imm6]) Rt = [Rn + imm6] Load a 16 bit half word

Where a byte or half word is loaded, it is zero-extended to 32 bits.
The specified immediate offsets are measured in bytes. Hence in the case of ldr the 7 bit value enables 32 bit word
aligned values to be accessed with a maximum offset of 31 words. In the case of ldrh the 6 bit value enables 16 bit
half-word aligned values to be accessed with a maximum offset of 31 half-words.

2.10. Inline assembler for Thumb2 architectures 227

MicroPython Documentation, Release v1.20.0

Store register to memory

Document conventions

Notation: Rt, Rn denote ARM registers R0-R7 except where stated. immN represents an immediate value having a
width of N bits hence imm5 is constrained to the range 0-31. [Rn + imm5] is the contents of the memory address
obtained by adding Rn and the offset imm5. Offsets are measured in bytes. These instructions do not affect the condition
flags.

Register Store

• str(Rt, [Rn, imm7]) [Rn + imm7] = Rt Store a 32 bit word
• strb(Rt, [Rn, imm5]) [Rn + imm5] = Rt Store a byte (b0-b7)
• strh(Rt, [Rn, imm6]) [Rn + imm6] = Rt Store a 16 bit half word (b0-b15)

The specified immediate offsets are measured in bytes. Hence in the case of str the 7 bit value enables 32 bit word
aligned values to be accessed with a maximum offset of 31 words. In the case of strh the 6 bit value enables 16 bit
half-word aligned values to be accessed with a maximum offset of 31 half-words.

Logical & bitwise instructions

Document conventions

Notation: Rd, Rn denote ARM registers R0-R7 except in the case of the special instructions where R0-R15 may be
used. Rn<a-b> denotes an ARM register whose contents must lie in range a <= contents <= b. In the case of
instructions with two register arguments, it is permissible for them to be identical. For example the following will zero
R0 (Python R0 ^= R0) regardless of its initial contents.

• eor(r0, r0)
These instructions affect the condition flags except where stated.

Logical instructions

• and_(Rd, Rn) Rd &= Rn

• orr(Rd, Rn) Rd |= Rn

• eor(Rd, Rn) Rd ^= Rn

• mvn(Rd, Rn) Rd = Rn ^ 0xffffffff i.e. Rd = 1’s complement of Rn
• bic(Rd, Rn) Rd &= ~Rn bit clear Rd using mask in Rn

Note the use of “and_” instead of “and”, because “and” is a reserved keyword in Python.

228 Chapter 2. MicroPython language and implementation

MicroPython Documentation, Release v1.20.0

Shift and rotation instructions

• lsl(Rd, Rn<0-31>) Rd <<= Rn

• lsr(Rd, Rn<1-32>) Rd = (Rd & 0xffffffff) >> Rn Logical shift right
• asr(Rd, Rn<1-32>) Rd >>= Rn arithmetic shift right
• ror(Rd, Rn<1-31>) Rd = rotate_right(Rd, Rn) Rd is rotated right Rn bits.

A rotation by (for example) three bits works as follows. If Rd initially contains bits b31 b30..b0 after rotation it will
contain b2 b1 b0 b31 b30..b3

Special instructions

Condition codes are unaffected by these instructions.
• clz(Rd, Rn) Rd = count_leading_zeros(Rn)

count_leading_zeros(Rn) returns the number of binary zero bits before the first binary one bit in Rn.
• rbit(Rd, Rn) Rd = bit_reverse(Rn)

bit_reverse(Rn) returns the bit-reversed contents of Rn. If Rn contains bits b31 b30..b0 Rd will be set to b0 b1
b2..b31

Trailing zeros may be counted by performing a bit reverse prior to executing clz.

Arithmetic instructions

Document conventions

Notation: Rd, Rm, Rn denote ARM registers R0-R7. immN denotes an immediate value having a width of N bits
e.g. imm8, imm3. carry denotes the carry condition flag, not(carry) denotes its complement. In the case of
instructions with more than one register argument, it is permissible for some to be identical. For example the following
will add the contents of R0 to itself, placing the result in R0:

• add(r0, r0, r0)
Arithmetic instructions affect the condition flags except where stated.

Addition

• add(Rdn, imm8) Rdn = Rdn + imm8

• add(Rd, Rn, imm3) Rd = Rn + imm3

• add(Rd, Rn, Rm) Rd = Rn +Rm

• adc(Rd, Rn) Rd = Rd + Rn + carry

2.10. Inline assembler for Thumb2 architectures 229

MicroPython Documentation, Release v1.20.0

Subtraction

• sub(Rdn, imm8) Rdn = Rdn - imm8

• sub(Rd, Rn, imm3) Rd = Rn - imm3

• sub(Rd, Rn, Rm) Rd = Rn - Rm

• sbc(Rd, Rn) Rd = Rd - Rn - not(carry)

Negation

• neg(Rd, Rn) Rd = -Rn

Multiplication and division

• mul(Rd, Rn) Rd = Rd * Rn

This produces a 32 bit result with overflow lost. The result may be treated as signed or unsigned according to the definition
of the operands.

• sdiv(Rd, Rn, Rm) Rd = Rn / Rm

• udiv(Rd, Rn, Rm) Rd = Rn / Rm

These functions perform signed and unsigned division respectively. Condition flags are not affected.

Comparison instructions

These perform an arithmetic or logical instruction on two arguments, discarding the result but setting the condition flags.
Typically these are used to test data values without changing them prior to executing a conditional branch.

Document conventions

Notation: Rd, Rm, Rn denote ARM registers R0-R7. imm8 denotes an immediate value having a width of 8 bits.

The Application Program Status Register (APSR)

This contains four bits which are tested by the conditional branch instructions. Typically a conditional branch will test
multiple bits, for example bge(LABEL). The meaning of condition codes can depend on whether the operands of an
arithmetic instruction are viewed as signed or unsigned integers. Thus bhi(LABEL) assumes unsigned numbers were
processed while bgt(LABEL) assumes signed operands.

230 Chapter 2. MicroPython language and implementation

MicroPython Documentation, Release v1.20.0

APSR Bits

• Z (zero)
This is set if the result of an operation is zero or the operands of a comparison are equal.

• N (negative)
Set if the result is negative.

• C (carry)
An addition sets the carry flag when the result overflows out of the MSB, for example adding 0x80000000 and
0x80000000. By the nature of two’s complement arithmetic this behaviour is reversed on subtraction, with a borrow
indicated by the carry bit being clear. Thus 0x10 - 0x01 is executed as 0x10 + 0xffffffff which will set the carry bit.

• V (overflow)
The overflow flag is set if the result, viewed as a two’s compliment number, has the “wrong” sign in relation to the operands.
For example adding 1 to 0x7fffffff will set the overflow bit because the result (0x8000000), viewed as a two’s complement
integer, is negative. Note that in this instance the carry bit is not set.

Comparison instructions

These set the APSR (Application Program Status Register) N (negative), Z (zero), C (carry) and V (overflow) flags.
• cmp(Rn, imm8) Rn - imm8

• cmp(Rn, Rm) Rn - Rm

• cmn(Rn, Rm) Rn + Rm

• tst(Rn, Rm) Rn & Rm

Conditional execution

The it and ite instructions provide a means of conditionally executing from one to four subsequent instructions without
the need for a label.

• it(<condition>) If then
Execute the next instruction if <condition> is true:

cmp(r0, r1)
it(eq)
mov(r0, 100) # runs if r0 == r1
execution continues here

• ite(<condition>) If then else
If <condtion> is true, execute the next instruction, otherwise execute the subsequent one. Thus:

cmp(r0, r1)
ite(eq)
mov(r0, 100) # runs if r0 == r1
mov(r0, 200) # runs if r0 != r1
execution continues here

This may be extended to control the execution of upto four subsequent instructions: it[x[y[z]]] where x,y,z=t/e; e.g. itt,
itee, itete, ittte, itttt, iteee, etc.

2.10. Inline assembler for Thumb2 architectures 231

MicroPython Documentation, Release v1.20.0

Branch instructions

These cause execution to jump to a target location usually specified by a label (see the label assembler directive).
Conditional branches and the it and ite instructions test the Application Program Status Register (APSR) N (negative),
Z (zero), C (carry) and V (overflow) flags to determine whether the branch should be executed.
Most of the exposed assembler instructions (including move operations) set the flags but there are explicit comparison
instructions to enable values to be tested.
Further detail on the meaning of the condition flags is provided in the section describing comparison functions.

Document conventions

Notation: Rm denotes ARM registers R0-R15. LABEL denotes a label defined with the label() assembler directive.
<condition> indicates one of the following condition specifiers:

• eq Equal to (result was zero)
• ne Not equal
• cs Carry set
• cc Carry clear
• mi Minus (negative)
• pl Plus (positive)
• vs Overflow set
• vc Overflow clear
• hi > (unsigned comparison)
• ls <= (unsigned comparison)
• ge >= (signed comparison)
• lt < (signed comparison)
• gt > (signed comparison)
• le <= (signed comparison)

Branch to label

• b(LABEL) Unconditional branch
• beq(LABEL) branch if equal
• bne(LABEL) branch if not equal
• bge(LABEL) branch if greater than or equal
• bgt(LABEL) branch if greater than
• blt(LABEL) branch if less than (<) (signed)
• ble(LABEL) branch if less than or equal to (<=) (signed)
• bcs(LABEL) branch if carry flag is set
• bcc(LABEL) branch if carry flag is clear

232 Chapter 2. MicroPython language and implementation

MicroPython Documentation, Release v1.20.0

• bmi(LABEL) branch if negative
• bpl(LABEL) branch if positive
• bvs(LABEL) branch if overflow flag set
• bvc(LABEL) branch if overflow flag is clear
• bhi(LABEL) branch if higher (unsigned)
• bls(LABEL) branch if lower or equal (unsigned)

Long branches

The code produced by the branch instructions listed above uses a fixed bit width to specify the branch destination, which
is PC relative. Consequently in long programs where the branch instruction is remote from its destination the assembler
will produce a “branch not in range” error. This can be overcome with the “wide” variants such as

• beq_w(LABEL) long branch if equal
Wide branches use 4 bytes to encode the instruction (compared with 2 bytes for standard branch instructions).

Subroutines (functions)

When entering a subroutine the processor stores the return address in register r14, also known as the link register (lr).
Return to the instruction after the subroutine call is performed by updating the program counter (r15 or pc) from the link
register, This process is handled by the following instructions.

• bl(LABEL)
Transfer execution to the instruction after LABEL storing the return address in the link register (r14).

• bx(Rm) Branch to address specified by Rm.
Typically bx(lr) is issued to return from a subroutine. For nested subroutines the link register of outer scopes must be
saved (usually on the stack) before performing inner subroutine calls.

Stack push and pop

Document conventions

The push() and pop() instructions accept as their argument a register set containing a subset, or possibly all, of the
general-purpose registers R0-R12 and the link register (lr or R14). As with any Python set the order in which the registers
are specified is immaterial. Thus the in the following example the pop() instruction would restore R1, R7 and R8 to their
contents prior to the push():

• push({r1, r8, r7}) Save three registers on the stack.
• pop({r7, r1, r8}) Restore them

2.10. Inline assembler for Thumb2 architectures 233

MicroPython Documentation, Release v1.20.0

Stack operations

• push({regset}) Push a set of registers onto the stack
• pop({regset}) Restore a set of registers from the stack

Miscellaneous instructions

• nop() pass no operation.
• wfi() Suspend execution in a low power state until an interrupt occurs.
• cpsid(flags) set the Priority Mask Register - disable interrupts.
• cpsie(flags) clear the Priority Mask Register - enable interrupts.
• mrs(Rd, special_reg) Rd = special_reg copy a special register to a general register. The special register may
be IPSR (Interrupt Status Register) or BASEPRI (Base Priority Register). The IPSR provides a means of deter-
mining the exception number of an interrupt being processed. It contains zero if no interrupt is being processed.

Currently the cpsie() and cpsid() functions are partially implemented. They require but ignore the flags argument
and serve as a means of enabling and disabling interrupts.

Floating point instructions

These instructions support the use of the ARM floating point coprocessor (on platforms such as the Pyboard which are
equipped with one). The FPU has 32 registers known as s0-s31 each of which can hold a single precision float. Data
can be passed between the FPU registers and the ARM core registers with the vmov instruction.
Note that MicroPython doesn’t support passing floats to assembler functions, nor can you put a float into r0 and expect a
reasonable result. There are two ways to overcome this. The first is to use arrays, and the second is to pass and/or return
integers and convert to and from floats in code.

Document conventions

Notation: Sd, Sm, Sn denote FPU registers, Rd, Rm, Rn denote ARM core registers. The latter can be any ARM
core register although registers R13-R15 are unlikely to be appropriate in this context.

Arithmetic

• vadd(Sd, Sn, Sm) Sd = Sn + Sm

• vsub(Sd, Sn, Sm) Sd = Sn - Sm

• vneg(Sd, Sm) Sd = -Sm

• vmul(Sd, Sn, Sm) Sd = Sn * Sm

• vdiv(Sd, Sn, Sm) Sd = Sn / Sm

• vsqrt(Sd, Sm) Sd = sqrt(Sm)

Registers may be identical: vmul(S0, S0, S0) will execute S0 = S0*S0

234 Chapter 2. MicroPython language and implementation

MicroPython Documentation, Release v1.20.0

Move between ARM core and FPU registers

• vmov(Sd, Rm) Sd = Rm

• vmov(Rd, Sm) Rd = Sm

The FPU has a register known as FPSCR, similar to the ARM core’s APSR, which stores condition codes plus other data.
The following instructions provide access to this.

• vmrs(APSR_nzcv, FPSCR)
Move the floating-point N, Z, C, and V flags to the APSR N, Z, C, and V flags.
This is done after an instruction such as an FPU comparison to enable the condition codes to be tested by the assembler
code. The following is a more general form of the instruction.

• vmrs(Rd, FPSCR) Rd = FPSCR

Move between FPU register and memory

• vldr(Sd, [Rn, offset]) Sd = [Rn + offset]

• vstr(Sd, [Rn, offset]) [Rn + offset] = Sd

Where [Rn + offset] denotes the memory address obtained by adding Rn to the offset. This is specified in bytes.
Since each float value occupies a 32 bit word, when accessing arrays of floats the offset must always be a multiple of four
bytes.

Data comparison

• vcmp(Sd, Sm)
Compare the values in Sd and Sm and set the FPU N, Z, C, and V flags. This would normally be followed by
vmrs(APSR_nzcv, FPSCR) to enable the results to be tested.

Convert between integer and float

• vcvt_f32_s32(Sd, Sm) Sd = float(Sm)

• vcvt_s32_f32(Sd, Sm) Sd = int(Sm)

Assembler directives

Labels

• label(INNER1)
This defines a label for use in a branch instruction. Thus elsewhere in the code a b(INNER1) will cause execution to
continue with the instruction after the label directive.

2.10. Inline assembler for Thumb2 architectures 235

MicroPython Documentation, Release v1.20.0

Defining inline data

The following assembler directives facilitate embedding data in an assembler code block.
• data(size, d0, d1 .. dn)

The data directive creates n array of data values in memory. The first argument specifies the size in bytes of the subsequent
arguments. Hence the first statement below will cause the assembler to put three bytes (with values 2, 3 and 4) into
consecutive memory locations while the second will cause it to emit two four byte words.

data(1, 2, 3, 4)
data(4, 2, 100000)

Data values longer than a single byte are stored in memory in little-endian format.
• align(nBytes)

Align the following instruction to an nBytes value. ARM Thumb-2 instructions must be two byte aligned, hence it’s
advisable to issue align(2) after data directives and prior to any subsequent code. This ensures that the code will
run irrespective of the size of the data array.

2.10.3 Usage examples

These sections provide further code examples and hints on the use of the assembler.

Hints and tips

The following are some examples of the use of the inline assembler and some information on how to work around its limita-
tions. In this document the term “assembler function” refers to a function declared in Python with the @micropython.
asm_thumb decorator, whereas “subroutine” refers to assembler code called from within an assembler function.

Code branches and subroutines

It is important to appreciate that labels are local to an assembler function. There is currently no way for a subroutine
defined in one function to be called from another.
To call a subroutine the instruction bl(LABEL) is issued. This transfers control to the instruction following the la-
bel(LABEL) directive and stores the return address in the link register (lr or r14). To return the instruction bx(lr)
is issued which causes execution to continue with the instruction following the subroutine call. This mechanism implies
that, if a subroutine is to call another, it must save the link register prior to the call and restore it before terminating.
The following rather contrived example illustrates a function call. Note that it’s necessary at the start to branch around all
subroutine calls: subroutines end execution with bx(lr) while the outer function simply “drops off the end” in the style
of Python functions.

@micropython.asm_thumb
def quad(r0):

b(START)
label(DOUBLE)
add(r0, r0, r0)
bx(lr)
label(START)
bl(DOUBLE)
bl(DOUBLE)

(continues on next page)

236 Chapter 2. MicroPython language and implementation

MicroPython Documentation, Release v1.20.0

(continued from previous page)

print(quad(10))

The following code example demonstrates a nested (recursive) call: the classic Fibonacci sequence. Here, prior to a
recursive call, the link register is saved along with other registers which the program logic requires to be preserved.

@micropython.asm_thumb
def fib(r0):

b(START)
label(DOFIB)
push({r1, r2, lr})
cmp(r0, 1)
ble(FIBDONE)
sub(r0, 1)
mov(r2, r0) # r2 = n -1
bl(DOFIB)
mov(r1, r0) # r1 = fib(n -1)
sub(r0, r2, 1)
bl(DOFIB) # r0 = fib(n -2)
add(r0, r0, r1)
label(FIBDONE)
pop({r1, r2, lr})
bx(lr)
label(START)
bl(DOFIB)

for n in range(10):
print(fib(n))

Argument passing and return

The tutorial details the fact that assembler functions can support from zero to three arguments, which must (if used) be
named r0, r1 and r2. When the code executes the registers will be initialised to those values.
The data types which can be passed in this way are integers and memory addresses. With current firmware all possible
32 bit values may be passed and returned. If the return value may have the most significant bit set a Python type hint
should be employed to enable MicroPython to determine whether the value should be interpreted as a signed or unsigned
integer: types are int or uint.

@micropython.asm_thumb
def uadd(r0, r1) -> uint:

add(r0, r0, r1)

hex(uadd(0x40000000,0x40000000)) will return 0x80000000, demonstrating the passing and return of inte-
gers where bits 30 and 31 differ.
The limitations on the number of arguments and return values can be overcome by means of the array module which
enables any number of values of any type to be accessed.

2.10. Inline assembler for Thumb2 architectures 237

MicroPython Documentation, Release v1.20.0

Multiple arguments

If a Python array of integers is passed as an argument to an assembler function, the function will receive the address of
a contiguous set of integers. Thus multiple arguments can be passed as elements of a single array. Similarly a function
can return multiple values by assigning them to array elements. Assembler functions have no means of determining the
length of an array: this will need to be passed to the function.
This use of arrays can be extended to enable more than three arrays to be used. This is done using indirection: the
uctypes module supports addressof() which will return the address of an array passed as its argument. Thus you
can populate an integer array with the addresses of other arrays:

from uctypes import addressof
@micropython.asm_thumb
def getindirect(r0):

ldr(r0, [r0, 0]) # Address of array loaded from passed array
ldr(r0, [r0, 4]) # Return element 1 of indirect array (24)

def testindirect():
a = array.array('i',[23, 24])
b = array.array('i',[0,0])
b[0] = addressof(a)
print(getindirect(b))

Non-integer data types

These may be handled by means of arrays of the appropriate data type. For example, single precision floating point data
may be processed as follows. This code example takes an array of floats and replaces its contents with their squares.

from array import array

@micropython.asm_thumb
def square(r0, r1):

label(LOOP)
vldr(s0, [r0, 0])
vmul(s0, s0, s0)
vstr(s0, [r0, 0])
add(r0, 4)
sub(r1, 1)
bgt(LOOP)

a = array('f', (x for x in range(10)))
square(a, len(a))
print(a)

The uctypes module supports the use of data structures beyond simple arrays. It enables a Python data structure to be
mapped onto a bytearray instance which may then be passed to the assembler function.

238 Chapter 2. MicroPython language and implementation

MicroPython Documentation, Release v1.20.0

Named constants

Assembler code may be made more readable and maintainable by using named constants rather than littering code with
numbers. This may be achieved thus:

MYDATA = const(33)

@micropython.asm_thumb
def foo():

mov(r0, MYDATA)

The const() construct causes MicroPython to replace the variable name with its value at compile time. If constants are
declared in an outer Python scope they can be shared between multiple assembler functions and with Python code.

Assembler code as class methods

MicroPython passes the address of the object instance as the first argument to class methods. This is normally of little
use to an assembler function. It can be avoided by declaring the function as a static method thus:

class foo:
@staticmethod
@micropython.asm_thumb
def bar(r0):
add(r0, r0, r0)

Use of unsupported instructions

These can be coded using the data statement as shown below. While push() and pop() are supported the example
below illustrates the principle. The necessary machine code may be found in the ARM v7-M Architecture Reference
Manual. Note that the first argument of data calls such as

data(2, 0xe92d, 0x0f00) # push r8,r9,r10,r11

indicates that each subsequent argument is a two byte quantity.

Overcoming MicroPython’s integer restriction

The Pyboard chip includes a CRC generator. Its use presents a problem in MicroPython because the returned values
cover the full gamut of 32 bit quantities whereas small integers in MicroPython cannot have differing values in bits 30 and
31. This limitation is overcome with the following code, which uses assembler to put the result into an array and Python
code to coerce the result into an arbitrary precision unsigned integer.

from array import array
import stm

def enable_crc():
stm.mem32[stm.RCC + stm.RCC_AHB1ENR] |= 0x1000

def reset_crc():
stm.mem32[stm.CRC+stm.CRC_CR] = 1

@micropython.asm_thumb

(continues on next page)

2.10. Inline assembler for Thumb2 architectures 239

MicroPython Documentation, Release v1.20.0

(continued from previous page)
def getval(r0, r1):

movwt(r3, stm.CRC + stm.CRC_DR)
str(r1, [r3, 0])
ldr(r2, [r3, 0])
str(r2, [r0, 0])

def getcrc(value):
a = array('i', [0])
getval(a, value)
return a[0] & 0xffffffff # coerce to arbitrary precision

enable_crc()
reset_crc()
for x in range(20):

print(hex(getcrc(0)))

2.10.4 References

• Assembler Tutorial

• Wiki hints and tips
• uPy Inline Assembler source-code, emitinlinethumb.c
• ARM Thumb2 Instruction Set Quick Reference Card
• RM0090 Reference Manual
• ARM v7-MArchitecture ReferenceManual (Available on the ARM site after a simple registration procedure. Also
available on academic sites but beware of out of date versions.)

2.11 Working with filesystems

Contents

• Working with filesystems

– VFS

– Block devices

∗ Built-in block devices

· STM32 / Pyboard

· ESP8266

· ESP32

∗ Custom block devices

– Filesystems

∗ FAT

∗ Littlefs

240 Chapter 2. MicroPython language and implementation

http://wiki.micropython.org/platforms/boards/pyboard/assembler
https://github.com/micropython/micropython/blob/master/py/emitinlinethumb.c
http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001l/QRC0001_UAL.pdf
http://www.google.ae/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&sqi=2&ved=0CBoQFjAA&url=http%3A%2F%2Fwww.st.com%2Fst-web-ui%2Fstatic%2Factive%2Fen%2Fresource%2Ftechnical%2Fdocument%2Freference_manual%2FDM00031020.pdf&ei=G0rSU66xFeuW0QWYwoD4CQ&usg=AFQjCNFuW6TgzE4QpahO_U7g3f3wdwecAg&sig2=iET-R0y9on_Pbflzf9aYDw&bvm=bv.71778758,bs.1,d.bGQ

MicroPython Documentation, Release v1.20.0

∗ Hybrid (STM32)

∗ Hybrid (ESP32)

This tutorial describes how MicroPython provides an on-device filesystem, allowing standard Python file I/O methods to
be used with persistent storage.
MicroPython automatically creates a default configuration and auto-detects the primary filesystem, so this tutorial will be
mostly useful if you want to modify the partitioning, filesystem type, or use custom block devices.
The filesystem is typically backed by internal flash memory on the device, but can also use external flash, RAM, or a
custom block device.
On some ports (e.g. STM32), the filesystem may also be available over USB MSC to a host PC. The pyboard.py tool also
provides a way for the host PC to access to the filesystem on all ports.
Note: This is mainly for use on bare-metal ports like STM32 and ESP32. On ports with an operating system (e.g. the
Unix port) the filesystem is provided by the host OS.

2.11.1 VFS

MicroPython implements a Unix-like Virtual File System (VFS) layer. All mounted filesystems are combined into a
single virtual filesystem, starting at the root /. Filesystems are mounted into directories in this structure, and at startup
the working directory is changed to where the primary filesystem is mounted.
On STM32 / Pyboard, the internal flash is mounted at /flash, and optionally the SDCard at /sd. On ESP8266/ESP32,
the primary filesystem is mounted at /.

2.11.2 Block devices

A block device is an instance of a class that implements the os.AbstractBlockDev protocol.

Built-in block devices

Ports provide built-in block devices to access their primary flash.
On power-on, MicroPython will attempt to detect the filesystem on the default flash and configure and mount it automat-
ically. If no filesystem is found, MicroPython will attempt to create a FAT filesystem spanning the entire flash. Ports can
also provide a mechanism to “factory reset” the primary flash, usually by some combination of button presses at power
on.

STM32 / Pyboard

The pyb.Flash class provides access to the internal flash. On some boards which have larger external flash (e.g. Pyboard
D), it will use that instead. The start kwarg should always be specified, i.e. pyb.Flash(start=0).
Note: For backwards compatibility, when constructed with no arguments (i.e. pyb.Flash()), it only implements the
simple block interface and reflects the virtual device presented to USB MSC (i.e. it includes a virtual partition table at
the start).

2.11. Working with filesystems 241

MicroPython Documentation, Release v1.20.0

ESP8266

The internal flash is exposed as a block device object which is created in the flashbdev module on start up. This
object is by default added as a global variable so it can usually be accessed simply as bdev. This implements the extended
interface.

ESP32

The esp32.Partition class implements a block device for partitions defined for the board. Like ESP8266, there is
a global variable bdev which points to the default partition. This implements the extended interface.

Custom block devices

The following class implements a simple block device that stores its data in RAM using a bytearray:

class RAMBlockDev:
def __init__(self, block_size, num_blocks):

self.block_size = block_size
self.data = bytearray(block_size * num_blocks)

def readblocks(self, block_num, buf):
for i in range(len(buf)):

buf[i] = self.data[block_num * self.block_size + i]

def writeblocks(self, block_num, buf):
for i in range(len(buf)):

self.data[block_num * self.block_size + i] = buf[i]

def ioctl(self, op, arg):
if op == 4: # get number of blocks

return len(self.data) // self.block_size
if op == 5: # get block size

return self.block_size

It can be used as follows:

import os

bdev = RAMBlockDev(512, 50)
os.VfsFat.mkfs(bdev)
os.mount(bdev, '/ramdisk')

An example of a block device that supports both the simple and extended interface (i.e. both signatures and behaviours
of theos.AbstractBlockDev.readblocks() andos.AbstractBlockDev.writeblocks()methods)
is:

class RAMBlockDev:
def __init__(self, block_size, num_blocks):

self.block_size = block_size
self.data = bytearray(block_size * num_blocks)

def readblocks(self, block_num, buf, offset=0):
addr = block_num * self.block_size + offset
for i in range(len(buf)):

(continues on next page)

242 Chapter 2. MicroPython language and implementation

MicroPython Documentation, Release v1.20.0

(continued from previous page)
buf[i] = self.data[addr + i]

def writeblocks(self, block_num, buf, offset=None):
if offset is None:

do erase, then write
for i in range(len(buf) // self.block_size):

self.ioctl(6, block_num + i)
offset = 0

addr = block_num * self.block_size + offset
for i in range(len(buf)):

self.data[addr + i] = buf[i]

def ioctl(self, op, arg):
if op == 4: # block count

return len(self.data) // self.block_size
if op == 5: # block size

return self.block_size
if op == 6: # block erase

return 0

As it supports the extended interface, it can be used with littlefs:

import os

bdev = RAMBlockDev(512, 50)
os.VfsLfs2.mkfs(bdev)
os.mount(bdev, '/ramdisk')

Once mounted, the filesystem (regardless of its type) can be used as it normally would be used from Python code, for
example:

with open('/ramdisk/hello.txt', 'w') as f:
f.write('Hello world')

print(open('/ramdisk/hello.txt').read())

2.11.3 Filesystems

MicroPython ports can provide implementations of FAT, littlefs v1 and littlefs v2.
The following table shows which filesystems are included in the firmware by default for given port/board combinations,
however they can be optionally enabled in a custom firmware build.

Board FAT littlefs v1 littlefs v2
pyboard 1.0, 1.1, D Yes No Yes
Other STM32 Yes No No
ESP8266 (1M) No No Yes
ESP8266 (2M+) Yes No Yes
ESP32 Yes No Yes

2.11. Working with filesystems 243

MicroPython Documentation, Release v1.20.0

FAT

The main advantage of the FAT filesystem is that it can be accessed over USB MSC on supported boards (e.g. STM32)
without any additional drivers required on the host PC.
However, FAT is not tolerant to power failure during writes and this can lead to filesystem corruption. For applications
that do not require USB MSC, it is recommended to use littlefs instead.
To format the entire flash using FAT:

ESP8266 and ESP32
import os
os.umount('/')
os.VfsFat.mkfs(bdev)
os.mount(bdev, '/')

STM32
import os, pyb
os.umount('/flash')
os.VfsFat.mkfs(pyb.Flash(start=0))
os.mount(pyb.Flash(start=0), '/flash')
os.chdir('/flash')

Littlefs

Littlefs is a filesystem designed for flash-based devices, and is much more resistant to filesystem corruption.

Note: There are reports of littlefs v1 and v2 failing in certain situations, for details see littlefs issue 347 and littlefs issue
295.

To format the entire flash using littlefs v2:

ESP8266 and ESP32
import os
os.umount('/')
os.VfsLfs2.mkfs(bdev)
os.mount(bdev, '/')

STM32
import os, pyb
os.umount('/flash')
os.VfsLfs2.mkfs(pyb.Flash(start=0))
os.mount(pyb.Flash(start=0), '/flash')
os.chdir('/flash')

A littlefs filesystem can be still be accessed on a PC over USB MSC using the littlefs FUSE driver. Note that you must
specify both the --block_size and --block_count options to override the defaults. For example (after building
the littlefs-fuse executable):

$./lfs --block_size=4096 --block_count=512 -o allow_other /dev/sdb1 mnt

This will allow the board’s littlefs filesystem to be accessed at the mnt directory. To get the correct values of
block_size and block_count use:

244 Chapter 2. MicroPython language and implementation

https://github.com/littlefs-project/littlefs
https://github.com/littlefs-project/littlefs/issues/347
https://github.com/littlefs-project/littlefs/issues/295
https://github.com/littlefs-project/littlefs/issues/295
https://github.com/littlefs-project/littlefs-fuse

MicroPython Documentation, Release v1.20.0

import pyb
f = pyb.Flash(start=0)
f.ioctl(1, 1) # initialise flash in littlefs raw-block mode
block_count = f.ioctl(4, 0)
block_size = f.ioctl(5, 0)

Hybrid (STM32)

By using the start and len kwargs to pyb.Flash, you can create block devices spanning a subset of the flash device.
For example, to configure the first 256kiB as FAT (and available over USB MSC), and the remainder as littlefs:

import os, pyb
os.umount('/flash')
p1 = pyb.Flash(start=0, len=256*1024)
p2 = pyb.Flash(start=256*1024)
os.VfsFat.mkfs(p1)
os.VfsLfs2.mkfs(p2)
os.mount(p1, '/flash')
os.mount(p2, '/data')
os.chdir('/flash')

This might be useful to make your Python files, configuration and other rarely-modified content available over USBMSC,
but allowing for frequently changing application data to reside on littlefs with better resilience to power failure, etc.
The partition at offset 0 will be mounted automatically (and the filesystem type automatically detected), but you can add:

import os, pyb
p2 = pyb.Flash(start=256*1024)
os.mount(p2, '/data')

to boot.py to mount the data partition.

Hybrid (ESP32)

On ESP32, if you build custom firmware, you can modify partitions.csv to define an arbitrary partition layout.
At boot, the partition named “vfs” will be mounted at / by default, but any additional partitions can be mounted in your
boot.py using:

import esp32, os
p = esp32.Partition.find(esp32.Partition.TYPE_DATA, label='foo')
os.mount(p, '/foo')

2.12 The pyboard.py tool

This is a standalone Python tool that runs on your PC that provides a way to:
• Quickly run a Python script or command on a MicroPython device. This is useful while developing MicroPython
programs to quickly test code without needing to copy files to/from the device.

• Access the filesystem on a device. This allows you to deploy your code to the device (even if the board doesn’t
support USB MSC).

2.12. The pyboard.py tool 245

MicroPython Documentation, Release v1.20.0

Despite the name, pyboard.pyworks on all MicroPython ports that support the raw REPL (including STM32, ESP32,
ESP8266, NRF).
You can download the latest version from GitHub. The only dependency is the pyserial library which can be installed
from PiPy or your system package manager.
Running pyboard.py --help gives the following output:

usage: pyboard [-h] [-d DEVICE] [-b BAUDRATE] [-u USER] [-p PASSWORD]
[-c COMMAND] [-w WAIT] [--follow | --no-follow] [-f]
[files [files ...]]

Run scripts on the pyboard.

positional arguments:
files input files

optional arguments:
-h, --help show this help message and exit
-d DEVICE, --device DEVICE

the serial device or the IP address of the pyboard
-b BAUDRATE, --baudrate BAUDRATE

the baud rate of the serial device
-u USER, --user USER the telnet login username
-p PASSWORD, --password PASSWORD

the telnet login password
-c COMMAND, --command COMMAND

program passed in as string
-w WAIT, --wait WAIT seconds to wait for USB connected board to become

available
--follow follow the output after running the scripts

[default if no scripts given]
-f, --filesystem perform a filesystem action: cp local :device | cp

:device local | cat path | ls [path] | rm path | mkdir
path | rmdir path

2.12.1 Running a command on the device

This is useful for testing short snippets of code, or to script an interaction with the device.:

$ pyboard.py --device /dev/ttyACM0 -c 'print(1+1)'
2

If you are often interacting with the same device, you can set the environment variable PYBOARD_DEVICE as an alter-
native to using the --device command line option. For example, the following is equivalent to the previous example:

$ export PYBOARD_DEVICE=/dev/ttyACM0
$ pyboard.py -c 'print(1+1)'

Similarly, the PYBOARD_BAUDRATE environment variable can be used to set the default for the --baudrate option.

246 Chapter 2. MicroPython language and implementation

https://github.com/micropython/micropython/blob/master/tools/pyboard.py

MicroPython Documentation, Release v1.20.0

2.12.2 Running a script on the device

If you have a script, app.py that you want to run on a device, then use:

$ pyboard.py --device /dev/ttyACM0 app.py

Note that this doesn’t actually copy app.py to the device’s filesystem, it just loads the code into RAM and executes it. Any
output generated by the program will be displayed.
If the program app.py does not finish then you’ll need to stop pyboard.py, eg with Ctrl-C. The program app.py will
still continue to run on the MicroPython device.

2.12.3 Filesystem access

Using the -f flag, the following filesystem operations are supported:
• cat path Print the contents of a file on the device.
• cp src [src...] dest Copy files to/from the device.
• ls [path] List contents of a directory (defaults to current working directory).
• mkdir path Create a directory.
• rm path Remove a file.
• rmdir path Remove a directory.
• touch path Create a file if it doesn’t already exist.

The cp command uses a ssh-like convention for referring to local and remote files. Any path starting with a : will be
interpreted as on the device, otherwise it will be local. So:

$ pyboard.py --device /dev/ttyACM0 -f cp main.py :main.py

will copy main.py from the current directory on the PC to a file named main.py on the device. The filename can be
omitted, e.g.:

$ pyboard.py --device /dev/ttyACM0 -f cp main.py :

is equivalent to the above.
Some more examples:

Copy main.py from the device to the local PC.
$ pyboard.py --device /dev/ttyACM0 -f cp :main.py main.py
Same, but using . instead.
$ pyboard.py --device /dev/ttyACM0 -f cp :main.py .

Copy three files to the device, keeping their names
and paths (note: `lib` must exist on the device)
$ pyboard.py --device /dev/ttyACM0 -f cp main.py app.py lib/foo.py :

Remove a file from the device.
$ pyboard.py --device /dev/ttyACM0 -f rm util.py

Print the contents of a file on the device.
$ pyboard.py --device /dev/ttyACM0 -f cat boot.py
...contents of boot.py...

2.12. The pyboard.py tool 247

MicroPython Documentation, Release v1.20.0

2.12.4 Using the pyboard library

You can also use pyboard.py as a library for scripting interactions with a MicroPython board.

import pyboard
pyb = pyboard.Pyboard('/dev/ttyACM0', 115200)
pyb.enter_raw_repl()
ret = pyb.exec('print(1+1)')
print(ret)
pyb.exit_raw_repl()

248 Chapter 2. MicroPython language and implementation

CHAPTER

THREE

MICROPYTHON DIFFERENCES FROM CPYTHON

MicroPython implements Python 3.4 and some select features of Python 3.5 and above. The sections below describe the
current status of these features.

3.1 Python 3.5

Below is a list of finalised/accepted PEPs for Python 3.5 grouped into their impact to MicroPython.

Extensions to the syntax Status
PEP 448 Additional unpacking generalizations Partial
PEP 465 A new matrix multiplication operator Complete
PEP 492 Coroutines with async and await syntax Complete
Extensions and changes to runtime
PEP 461 % formatting for binary strings Complete
PEP 475 Retrying system calls that fail with EINTR Complete
PEP 479 Change StopIteration handling inside generators Complete
Standard library changes
PEP 471 os.scandir()
PEP 485 math.isclose(), a function for testing approximate

equality
Complete

Miscellaneous changes
PEP 441 Improved Python zip application support
PEP 486 Make the Python Launcher aware of virtual environments Not relevant
PEP 484 Type hints (advisory only) Complete1
PEP 488 Elimination of PYO files Not relevant
PEP 489 Redesigning extension module loading

Other Language Changes:

Added the namereplace error handlers. The backslashreplace error handlers now work with decoding and
translating.
Property docstrings are now writable. This is especially useful for collections.namedtuple() docstrings
Circular imports involving relative imports are now supported.

New Modules:
• typing

1 The MicroPython parser correct ignores all type hints. However, the typing module is not built-in.

249

https://www.python.org/dev/peps/pep-0448/
https://www.python.org/dev/peps/pep-0465/
https://www.python.org/dev/peps/pep-0492/
https://www.python.org/dev/peps/pep-0461/
https://www.python.org/dev/peps/pep-0475/
https://www.python.org/dev/peps/pep-0479/
https://www.python.org/dev/peps/pep-0471/
https://www.python.org/dev/peps/pep-0485/
https://www.python.org/dev/peps/pep-0441/
https://www.python.org/dev/peps/pep-0486/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0488/
https://www.python.org/dev/peps/pep-0489/
https://docs.python.org/3/whatsnew/3.5.html#typing

MicroPython Documentation, Release v1.20.0

• zipzap
Changes to built-in modules:

collections
The OrderedDict class is now implemented in C, which makes it 4 to 100 times faster.
OrderedDict.items() , OrderedDict.keys() , OrderedDict.values() views now support reversed() iteration.
The deque class now defines index(), insert(), and copy(), and supports the + and * operators.
Docstrings produced by namedtuple() can now be updated.
The UserString class now implements the __getnewargs__(), __rmod__(), casefold(), format_map(), is-
printable(), and maketrans() methods to match the corresponding methods of str.
heapq
Element comparison in merge() can now be customized by passing a key function in a new optional key
keyword argument, and a new optional reverse keyword argument can be used to reverse element compar-
ison
io
A new BufferedIOBase.readinto1()method, that uses at most one call to the underlying raw stream’s Raw-
IOBase.read() or RawIOBase.readinto() methods
json
JSON decoder now raises JSONDecodeError instead of ValueError to provide better context information
about the error.
math
Two new constants have been added to the math module: inf and nan. Com-

plete
A new function isclose() provides a way to test for approximate equality.
A new gcd() function has been added. The fractions.gcd() function is now deprecated.
os
The new scandir() function returning an iterator of DirEntry objects has been added.
The urandom() function now uses the getrandom() syscall on Linux 3.17 or newer, and getentropy() on
OpenBSD 5.6 and newer, removing the need to use /dev/urandom and avoiding failures due to potential
file descriptor exhaustion.
New get_blocking() and set_blocking() functions allow getting and setting a file descriptor’s blocking mode
(O_NONBLOCK.)
There is a new os.path.commonpath() function returning the longest common sub-path of each passed
pathname
re
References and conditional references to groups with fixed length are now allowed in lookbehind assertions
The number of capturing groups in regular expressions is no longer limited to 100.
The sub() and subn() functions now replace unmatched groups with empty strings instead of raising an
exception.
The re.error exceptions have new attributes, msg, pattern, pos, lineno, and colno, that provide better context
information about the error
socket
Functions with timeouts now use a monotonic clock, instead of a system clock.
A new socket.sendfile() method allows sending a file over a socket by using the high-performance
os.sendfile() function on UNIX, resulting in uploads being from 2 to 3 times faster than when using plain
socket.send()
The socket.sendall()method no longer resets the socket timeout every time bytes are received or sent. The
socket timeout is now the maximum total duration to send all data.
The backlog argument of the socket.listen()method is now optional. By default it is set to SOMAXCONN
or to 128, whichever is less.

Com-
plete

ssl
continues on next page

250 Chapter 3. MicroPython differences from CPython

https://docs.python.org/3/whatsnew/3.5.html#zipapp
https://docs.python.org/3/whatsnew/3.5.html#collections
https://docs.python.org/3/whatsnew/3.5.html#heapq
https://docs.python.org/3/whatsnew/3.5.html#io
https://docs.python.org/3/whatsnew/3.5.html#json
https://docs.python.org/3/whatsnew/3.5.html#math
https://docs.python.org/3/whatsnew/3.5.html#os
https://docs.python.org/3/whatsnew/3.5.html#re
https://docs.python.org/3/whatsnew/3.5.html#socket
https://docs.python.org/3/whatsnew/3.5.html#ssl

MicroPython Documentation, Release v1.20.0

Table 1 – continued from previous page
Memory BIO Support
Application-Layer Protocol Negotiation Support
There is a new SSLSocket.version() method to query the actual protocol version in use.
The SSLSocket class now implements a SSLSocket.sendfile() method.
The SSLSocket.send() method now raises either the ssl.SSLWantReadError or ssl.SSLWantWriteError ex-
ception on a non-blocking socket if the operation would block. Previously, it would return 0.
The cert_time_to_seconds() function now interprets the input time as UTC and not as local time, per RFC
5280. Additionally, the return value is always an int.
New SSLObject.shared_ciphers() and SSLSocket.shared_ciphers()methods return the list of ciphers sent by
the client during the handshake.
The SSLSocket.do_handshake(), SSLSocket.read(), SSLSocket.shutdown(), and SSLSocket.write() methods
of the SSLSocket class no longer reset the socket timeout every time bytes are received or sent.
The match_hostname() function now supports matching of IP addresses.
sys
A new set_coroutine_wrapper() function allows setting a global hook that will be called whenever a corou-
tine object is created by an async def function. A corresponding get_coroutine_wrapper() can be used to
obtain a currently set wrapper.
A new is_finalizing() function can be used to check if the Python interpreter is shutting down.
time
The monotonic() function is now always available

Notes

3.2 Python 3.6

Python 3.6 beta 1 was released on 12 Sep 2016, and a summary of the new features can be found here:

New Syntax Features Status
PEP 498 Literal String Formatting Complete
PEP 515 Underscores in Numeric Literals Complete
PEP 525 Asynchronous Generators
PEP 526 Syntax for Variable Annotations (provisional) Complete
PEP 530 Asynchronous Comprehensions
New Built-in Features
PEP 468 Preserving the order of kwargs in a function
PEP 487 Simpler customization of class creation
PEP 520 Preserving Class Attribute Definition Order
Standard Library Changes
PEP 495 Local Time Disambiguation
PEP 506 Adding A Secrets Module To The Standard Library
PEP 519 Adding a file system path protocol
CPython Internals
PEP 509 Add a private version to dict Won’t do
PEP 523 Adding a frame evaluation API to CPython
Linux/Window Changes
PEP 524 Make os.urandom() blocking on Linux (during sys-

tem startup)
PEP 528 Change Windows console encoding to UTF-8
PEP 529 Change Windows filesystem encoding to UTF-8

3.2. Python 3.6 251

https://docs.python.org/3/whatsnew/3.5.html#sys
https://docs.python.org/3/whatsnew/3.5.html#time
https://www.python.org/dev/peps/pep-0498/
https://www.python.org/dev/peps/pep-0515/
https://www.python.org/dev/peps/pep-0525/
https://www.python.org/dev/peps/pep-0526/
https://www.python.org/dev/peps/pep-0530/
https://www.python.org/dev/peps/pep-0468/
https://www.python.org/dev/peps/pep-0487/
https://www.python.org/dev/peps/pep-0520/
https://www.python.org/dev/peps/pep-0495/
https://www.python.org/dev/peps/pep-0506/
https://www.python.org/dev/peps/pep-0519/
https://www.python.org/dev/peps/pep-0509/
https://www.python.org/dev/peps/pep-0523/
https://www.python.org/dev/peps/pep-0524/
https://www.python.org/dev/peps/pep-0528/
https://www.python.org/dev/peps/pep-0529/

MicroPython Documentation, Release v1.20.0

Other Language Changes:

A global or nonlocal statement must now textually appear before the first use of the affected name in the
same scope. Previously this was a SyntaxWarning.
It is now possible to set a special method to None to indicate that the corresponding operation is not
available. For example, if a class sets __iter__() to None , the class is not iterable.
Long sequences of repeated traceback lines are now abbreviated as [Previous line repeated {count} more
times]
Import now raises the new exception ModuleNotFoundError when it cannot find a module. Code that
currently checks for ImportError (in try-except) will still work.
Class methods relying on zero-argument super()will nowwork correctly when called frommetaclass meth-
ods during class creation.

Changes to built-in modules:

array
Exhausted iterators of array.array will now stay exhausted even if the iterated array is extended.
binascii
The b2a_base64() function now accepts an optional newline keyword argument to control whether the
newline character is appended to the return value

Com-
plete

cmath
The new cmath.tau (τ) constant has been added
New constants: cmath.inf and cmath.nan to match math.inf and math.nan , and also cmath.infj and
cmath.nanj to match the format used by complex repr
collections
The new Collection abstract base class has been added to represent sized iterable container classes
The new Reversible abstract base class represents iterable classes that also provide the __reversed__()
method.
The new AsyncGenerator abstract base class represents asynchronous generators.
The namedtuple() function now accepts an optional keyword argument module, which, when specified, is
used for the __module__ attribute of the returned named tuple class.
The verbose and rename arguments for namedtuple() are now keyword-only.
Recursive collections.deque instances can now be pickled.
hashlib
BLAKE2 hash functions were added to the module. blake2b() and blake2s() are always available and
support the full feature set of BLAKE2.
The SHA-3 hash functions sha3_224(), sha3_256(), sha3_384(), sha3_512(), and SHAKE hash functions
shake_128() and shake_256() were added.
The password-based key derivation function scrypt() is now available with OpenSSL 1.1.0 and newer.
json
json.load() and json.loads() now support binary input. Encoded JSON should be represented using either
UTF-8, UTF-16, or UTF-32.
math
The new math.tau (τ) constant has been added Com-

plete
os
A new close()method allows explicitly closing a scandir() iterator. The scandir() iterator now supports the
context manager protocol.
On Linux, os.urandom() now blocks until the system urandom entropy pool is initialized to increase the
security.
The Linux getrandom() syscall (get random bytes) is now exposed as the new os.getrandom() function.

continues on next page

252 Chapter 3. MicroPython differences from CPython

https://docs.python.org/3.6/whatsnew/3.6.html#array
https://docs.python.org/3.6/whatsnew/3.6.html#binascii
https://docs.python.org/3.6/whatsnew/3.6.html#cmath
https://docs.python.org/3.6/whatsnew/3.6.html#collections
https://docs.python.org/3.6/whatsnew/3.6.html#hashlib
https://docs.python.org/3.6/whatsnew/3.6.html#json
https://docs.python.org/3.6/whatsnew/3.6.html#math
https://docs.python.org/3.6/whatsnew/3.6.html#os

MicroPython Documentation, Release v1.20.0

Table 2 – continued from previous page
re
Added support of modifier spans in regular expressions. Examples: ‘(?i:p)ython’ matches ‘python’ and
‘Python’, but not ‘PYTHON’; ‘(?i)g(?-i:v)r’ matches ‘GvR’ and ‘gvr’, but not ‘GVR’.
Match object groups can be accessed by __getitem__, which is equivalent to group(). So mo[‘name’] is
now equivalent to mo.group(‘name’).
Match objects now support index-like objects as group indices.
socket
The ioctl() function now supports the SIO_LOOPBACK_FAST_PATH control code.
The getsockopt() constants SO_DOMAIN , SO_PROTOCOL, SO_PEERSEC , and SO_PASSSEC are now
supported.
The setsockopt() now supports the setsockopt(level, optname, None, optlen: int) form.
The socket module now supports the address family AF_ALG to interface with Linux Kernel crypto API.
ALG_, SOL_ALG and sendmsg_afalg() were added.
New Linux constants TCP_USER_TIMEOUT and TCP_CONGESTION were added.
ssl
ssl supports OpenSSL 1.1.0. The minimum recommend version is 1.0.2.
3DES has been removed from the default cipher suites and ChaCha20 Poly1305 cipher suites have been
added.
SSLContext has better default configuration for options and ciphers.
SSL session can be copied from one client-side connection to another with the new SSLSession class. TLS
session resumption can speed up the initial handshake, reduce latency and improve performance.
The new get_ciphers() method can be used to get a list of enabled ciphers in order of cipher priority.
All constants and flags have been converted to IntEnum and IntFlags.
Server and client-side specific TLS protocols for SSLContext were added.
Added SSLContext.post_handshake_auth to enable and ssl.SSLSocket.verify_client_post_handshake() to
initiate TLS 1.3 post-handshake authentication.
struct
now supports IEEE 754 half-precision floats via the ‘e’ format specifier.
sys
The new getfilesystemencodeerrors() function returns the name of the error mode used to convert between
Unicode filenames and bytes filenames.
zlib
The compress() and decompress() functions now accept keyword arguments

3.3 Python 3.7

New Features:

3.3. Python 3.7 253

https://docs.python.org/3.6/whatsnew/3.6.html#re
https://docs.python.org/3.6/whatsnew/3.6.html#socket
https://docs.python.org/3.6/whatsnew/3.6.html#ssl
https://docs.python.org/3.6/whatsnew/3.6.html#struct
https://docs.python.org/3.6/whatsnew/3.6.html#sys
https://docs.python.org/3.6/whatsnew/3.6.html#zlib

MicroPython Documentation, Release v1.20.0

Feature Status
PEP 538 Coercing the legacy C locale to a UTF-8 based locale
PEP 539 A New C-API for Thread-Local Storage in CPython
PEP 540 UTF-8 mode
PEP 552 Deterministic pyc
PEP 553 Built-in breakpoint()
PEP 557 Data Classes
PEP 560 Core support for typing module and generic types
PEP 562 Module __getattr__ and __dir__ Partial
PEP 563 Postponed Evaluation of Annotations
PEP 564 Time functions with nanosecond resolution Partial1
PEP 565 Show DeprecationWarning in __main__
PEP 567 Context Variables

Other Language Changes:

async and await are now reserved keywords Com-
plete

dict objects must preserve insertion-order
More than 255 arguments can now be passed to a function; a function can now have more than 255
parameters
bytes.fromhex() and bytearray.fromhex() now ignore all ASCII whitespace, not only
spaces
str, bytes, and bytearray gained support for the new isascii() method, which can be used to
test if a string or bytes contain only the ASCII characters
ImportError now displays module name and module __file__ path when from ... import
... fails
Circular imports involving absolute imports with binding a submodule to a name are now supported
object.__format__(x, '') is now equivalent to str(x) rather than format(str(self),
'')
In order to better support dynamic creation of stack traces, types.TracebackType can now be in-
stantiated from Python code, and the tb_next attribute on tracebacks is now writable
When using the -m switch, sys.path[0] is now eagerly expanded to the full starting directory path,
rather than being left as the empty directory (which allows imports from the current working directory at
the time when an import occurs)
The new -X importtime option or the PYTHONPROFILEIMPORTTIME environment variable can
be used to show the timing of each module import

Changes to built-in modules:
1 Only time.time_ns() is implemented.

254 Chapter 3. MicroPython differences from CPython

https://www.python.org/dev/peps/pep-0538/
https://www.python.org/dev/peps/pep-0539/
https://www.python.org/dev/peps/pep-0540/
https://www.python.org/dev/peps/pep-0552/
https://www.python.org/dev/peps/pep-0553/
https://www.python.org/dev/peps/pep-0557/
https://www.python.org/dev/peps/pep-0560/
https://www.python.org/dev/peps/pep-0562/
https://www.python.org/dev/peps/pep-0563/
https://www.python.org/dev/peps/pep-0564/
https://www.python.org/dev/peps/pep-0565/
https://www.python.org/dev/peps/pep-0567/

MicroPython Documentation, Release v1.20.0

asyncio
Too many to list
gc
New features include gc.freeze(), gc.unfreeze(), gc-get_freeze_count
math
math.remainder() added to implement IEEE 754-style remainder
re
A number of tidy up features including better support for splitting on empty strings and copy support for
compiled expressions and match objects
sys
sys.breakpointhook() added. sys.get(/set)_coroutine_origin_tracking_depth() added
time
Mostly updates to support nanosecond resolution in PEP564, see above

Notes

3.4 Python 3.8

Python 3.8.0 (final) was released on the 14 October 2019. The Features for 3.8 are defined in PEP 569 and a detailed
description of the changes can be found in What’s New in Python 3.8.

Features Status
PEP 570 Positional-only arguments
PEP 572 Assignment Expressions Complete
PEP 574 Pickle protocol 5 with out-of-band data
PEP 578 Runtime audit hooks
PEP 587 Python Initialization Configuration
PEP 590 Vectorcall: a fast calling protocol for CPython
Miscellaneous
f-strings support = for self-documenting expressions and debugging Complete

Other Language Changes:

3.4. Python 3.8 255

https://docs.python.org/3/whatsnew/3.7.html#asyncio
https://docs.python.org/3/whatsnew/3.7.html#gc
https://docs.python.org/3/whatsnew/3.7.html#math
https://docs.python.org/3/whatsnew/3.7.html#re
https://docs.python.org/3/whatsnew/3.7.html#sys
https://docs.python.org/3/whatsnew/3.7.html#time
https://www.python.org/dev/peps/pep-0569/#id9
https://docs.python.org/3/whatsnew/3.8.html
https://www.python.org/dev/peps/pep-0570/
https://www.python.org/dev/peps/pep-0572/
https://www.python.org/dev/peps/pep-0574/
https://www.python.org/dev/peps/pep-0578/
https://www.python.org/dev/peps/pep-0587/
https://www.python.org/dev/peps/pep-0590/

MicroPython Documentation, Release v1.20.0

A continue statement was illegal in the finally clause due to a problem with the implementation. In Python
3.8 this restriction was lifted

Com-
plete

The bool, int , and fractions.Fraction types now have an as_integer_ratio() method like that found in float
and decimal.Decimal
Constructors of int, float and complex will now use the __index__() special method, if available and the
corresponding method __int__(), __float__() or __complex__() is not available
Added support of N{name} escapes in regular expressions
Dict and dictviews are now iterable in reversed insertion order using reversed()
The syntax allowed for keyword names in function calls was further restricted. In particular,
f((keyword)=arg) is no longer allowed
Generalized iterable unpacking in yield and return statements no longer requires enclosing parentheses
When a comma is missed in code such as [(10, 20) (30, 40)], the compiler displays a SyntaxWarning with
a helpful suggestion
Arithmetic operations between subclasses of datetime.date or datetime.datetime and datetime.timedelta ob-
jects now return an instance of the subclass, rather than the base class
When the Python interpreter is interrupted by Ctrl-C (SIGINT) and the resulting KeyboardInterrupt excep-
tion is not caught, the Python process now exits via a SIGINT signal or with the correct exit code such that
the calling process can detect that it died due to a Ctrl-C
Some advanced styles of programming require updating the types.CodeType object for an existing function
For integers, the three-argument form of the pow() function now permits the exponent to be negative in
the case where the base is relatively prime to the modulus
Dict comprehensions have been synced-up with dict literals so that the key is computed first and the value
second
The object.__reduce__() method can now return a tuple from two to six elements long

Changes to built-in modules:

256 Chapter 3. MicroPython differences from CPython

MicroPython Documentation, Release v1.20.0

asyncio
asyncio.run() has graduated from the provisional to stable API Com-

plete
Running python -m asyncio launches a natively async REPL
The exception asyncio.CancelledError now inherits from BaseException rather than Exception and no
longer inherits from concurrent.futures.CancelledError

Com-
plete

Added asyncio.Task.get_coro() for getting the wrapped coroutine within an asyncio.Task
Asyncio tasks can now be named, either by passing the name keyword argument to asyncio.create_task()
or the create_task() event loop method, or by calling the set_name() method on the task object
Added support for Happy Eyeballs to asyncio.loop.create_connection(). To specify the behavior, two new
parameters have been added: happy_eyeballs_delay and interleave.
gc
get_objects() can now receive an optional generation parameter indicating a generation to get objects from.
(Note, though, that while gc is a built-in, get_objects() is not implemented for MicroPython)
math
Added new function math.dist() for computing Euclidean distance between two points
Expanded the math.hypot() function to handle multiple dimensions
Added new function,math.prod(), as analogous function to sum() that returns the product of a “start” value
(default: 1) times an iterable of numbers
Added two new combinatoric functions math.perm() and math.comb()
Added a new function math.isqrt() for computing accurate integer square roots without conversion to
floating point
The function math.factorial() no longer accepts arguments that are not int-like Com-

plete
sys
Add new sys.unraisablehook() function which can be overridden to control how “unraisable exceptions”
are handled

3.5 Python 3.9

Python 3.9.0 (final) was released on the 5th October 2020. The Features for 3.9 are defined in PEP 596 and a detailed
description of the changes can be found in What’s New in Python 3.9

Features Status
PEP 573 Fast access to module state from methods of C extension types Not relevant
PEP 584 Union operators added to dict Complete1
PEP 585 Type hinting generics in standard collections
PEP 593 Flexible function and variable annotations
PEP 602 CPython adopts an annual release cycle. Instead of annual, aiming for

two month release cycle
Not relevant

PEP 614 Relaxed grammar restrictions on decorators
PEP 615 The IANA Time Zone Database is now present in the standard library

in the zoneinfo module
PEP 616 String methods to remove prefixes and suffixes
PEP 617 CPython now uses a new parser based on PEG Not relevant

Other Language Changes:
1 PEP 584 dict union operator is only available on MicroPython builds with MICROPY_CPYTHON_COMPAT enabled.

3.5. Python 3.9 257

https://docs.python.org/3/whatsnew/3.8.html#asyncio
https://docs.python.org/3/whatsnew/3.8.html#gc
https://docs.python.org/3/whatsnew/3.8.html#math
https://docs.python.org/3/whatsnew/3.8.html#sys
https://www.python.org/dev/peps/pep-0596/#features-for-3-9
https://docs.python.org/3/whatsnew/3.9.html
https://www.python.org/dev/peps/pep-0573/
https://www.python.org/dev/peps/pep-0584/
https://www.python.org/dev/peps/pep-0584/
https://www.python.org/dev/peps/pep-0593/
https://www.python.org/dev/peps/pep-0602/
https://www.python.org/dev/peps/pep-0614/
https://www.python.org/dev/peps/pep-0615/
https://www.python.org/dev/peps/pep-0616/
https://www.python.org/dev/peps/pep-0617/

MicroPython Documentation, Release v1.20.0

__import__() now raises ImportError instead of ValueError Com-
plete

Python now gets the absolute path of the script filename specified on the command line (ex: python3
script.py): the __file__ attribute of the __main__ module became an absolute path, rather than a relative
path
By default, for best performance, the errors argument is only checked at the first encoding/decoding error
and the encoding argument is sometimes ignored for empty strings
“”.replace(“”, s, n) now returns s instead of an empty string for all non-zero n. It is now consistent with
“”.replace(“”, s)
Any valid expression can now be used as a decorator. Previously, the grammar was much more restrictive
Parallel running of aclose() / asend() / athrow() is now prohibited, and ag_running now reflects the actual
running status of the async generator
Unexpected errors in calling the __iter__ method are no longer masked by TypeError in the in operator
and functions contains(), indexOf() and countOf() of the operator module
Unparenthesized lambda expressions can no longer be the expression part in an if clause in comprehensions
and generator expressions

Changes to built-in modules:

258 Chapter 3. MicroPython differences from CPython

MicroPython Documentation, Release v1.20.0

asyncio
Due to significant security concerns, the reuse_address parameter of asyn-
cio.loop.create_datagram_endpoint() is no longer supported
Added a new coroutine shutdown_default_executor() that schedules a shutdown for the default executor
that waits on the ThreadPoolExecutor to finish closing. Also, asyncio.run() has been updated to use the
new coroutine.
Added asyncio.PidfdChildWatcher, a Linux-specific child watcher implementation that polls process file
descriptors
added a new coroutine asyncio.to_thread()
When cancelling the task due to a timeout, asyncio.wait_for() will now wait until the cancellation is com-
plete also in the case when timeout is <= 0, like it does with positive timeouts
asyncio now raises TyperError when calling incompatible methods with an ssl.SSLSocket socket
gc
Garbage collection does not block on resurrected objects
Added a new function gc.is_finalized() to check if an object has been finalized by the garbage collector
math
Expanded the math.gcd() function to handle multiple arguments. Formerly, it only supported two argu-
ments
Added math.lcm(): return the least common multiple of specified arguments
Added math.nextafter(): return the next floating-point value after x towards y
Added math.ulp(): return the value of the least significant bit of a float
os
Exposed the Linux-specific os.pidfd_open() and os.P_PIDFD
The os.unsetenv() function is now also available on Windows Com-

plete
The os.putenv() and os.unsetenv() functions are now always available Com-

plete
Added os.waitstatus_to_exitcode() function: convert a wait status to an exit code
random
Added a new random.Random.randbytes method: generate random bytes
sys
Added a new sys.platlibdir attribute: name of the platform-specific library directory
Previously, sys.stderr was block-buffered when non-interactive. Now stderr defaults to always being line-
buffered

Notes

3.6 Python 3.10

Python 3.10.0 (final) was released on the 4 October 2021. The Features for 3.10 are defined in PEP 619 and a detailed
description of the changes can be found in What’s New in Python 3.10.

3.6. Python 3.10 259

https://docs.python.org/3/whatsnew/3.9.html#asyncio
https://docs.python.org/3/whatsnew/3.9.html#gc
https://docs.python.org/3/whatsnew/3.9.html#math
https://docs.python.org/3/whatsnew/3.9.html#os
https://docs.python.org/3/whatsnew/3.9.html#random
https://docs.python.org/3/whatsnew/3.9.html#sys
https://www.python.org/dev/peps/pep-0619/#features-for-3-10
https://docs.python.org/3/whatsnew/3.10.html

MicroPython Documentation, Release v1.20.0

New syntax features Status
PEP 634 Structural Pattern Matching: Specification 1

PEP 635 Structural Pattern Matching: Motivation and Rationale ?

PEP 636 Structural Pattern Matching: Tutorial ?

bpo-12782 Parenthesized context managers are now officially allowed
New features in the standard library
PEP 618 Add Optional Length-Checking To zip
Interpreter improvements
PEP 626 Precise line numbers for debugging and other tools
New typing features
PEP 604 Allow writing union types as X | Y
PEP 613 Explicit Type Aliases
PEP 612 Parameter Specification Variables
Important deprecations, removals or restrictions
PEP 644 Require OpenSSL 1.1.1 or newer
PEP 632 Deprecate distutils module. Not relevant
PEP 623 Deprecate and prepare for the removal of the wstr member in PyU-

nicodeObject.
Not relevant

PEP 624 Remove Py_UNICODE encoder APIs Not relevant
PEP 597 Add optional EncodingWarning

Other Language Changes:
1 The structural pattern matching feature is discussed in issue #7847.

260 Chapter 3. MicroPython differences from CPython

https://www.python.org/dev/peps/pep-0634/
https://www.python.org/dev/peps/pep-0635/
https://www.python.org/dev/peps/pep-0636/
https://github.com/python/cpython/issues/56991
https://www.python.org/dev/peps/pep-0618/
https://www.python.org/dev/peps/pep-0626/
https://www.python.org/dev/peps/pep-0604/
https://www.python.org/dev/peps/pep-0613/
https://www.python.org/dev/peps/pep-0612/
https://www.python.org/dev/peps/pep-0644/
https://www.python.org/dev/peps/pep-0632/
https://www.python.org/dev/peps/pep-0623/
https://www.python.org/dev/peps/pep-0624/
https://www.python.org/dev/peps/pep-0597/
https://github.com/micropython/micropython/issues/7847

MicroPython Documentation, Release v1.20.0

The int type has a new method int.bit_count(), returning the number of ones in the binary
expansion of a given integer, also known as the population count.
The views returned by dict.keys(), dict.values() and dict.items() now all have a map-
ping attribute that gives a types.MappingProxyType object wrapping the original dictionary.
PEP 618: The zip() function now has an optional strict flag, used to require that all the iterables
have an equal length.
Builtin and extension functions that take integer arguments no longer accept Decimals, Fractions and
other objects that can be converted to integers only with a loss (e.g. that have the __int__() method
but do not have the __index__() method).
If object.__ipow__() returns NotImplemented, the operator will correctly fall back to
object.__pow__() and object.__rpow__() as expected.
Assignment expressions can now be used unparenthesized within set literals and set comprehensions, as
well as in sequence indexes (but not slices).
Functions have a new __builtins__ attribute which is used to look for builtin symbols when a function
is executed, instead of looking into __globals__['__builtins__']. The attribute is initialized
from __globals__["__builtins__"] if it exists, else from the current builtins.
Two new builtin functions – aiter() and anext() have been added to provide asynchronous coun-
terparts to iter() and next(), respectively.
Static methods (@staticmethod) and class methods (@classmethod) now inherit the method at-
tributes (__module__, __name__, __qualname__, __doc__, __annotations__) and have
a new __wrapped__ attribute. Moreover, static methods are now callable as regular functions.
Annotations for complex targets (everything beside simple name targets defined by PEP 526) no
longer cause any runtime effects with from __future__ import annotations.
Class and module objects now lazy-create empty annotations dicts on demand. The annotations dicts
are stored in the object’s __dict__ for backwards compatibility. This improves the best practices for
working with __annotations__.
Annotations consist of yield, yield from, await or named expressions are now forbidden under
from __future__ import annotations due to their side effects.
Usage of unbound variables, super() and other expressions that might alter the processing of symbol
table as annotations are now rendered effectless under from __future__ import annotations.
Hashes of NaN values of bothfloat type anddecimal.Decimal type now depend on object identity.
Formerly, they always hashed to 0 even though NaN values are not equal to one another. This caused
potentially quadratic runtime behavior due to excessive hash collisions when creating dictionaries and sets
containing multiple NaNs.
A SyntaxError (instead of a NameError) will be raised when deleting the __debug__ constant.
SyntaxError exceptions now have end_lineno and end_offset attributes. They will be None
if not determined.

Changes to built-in modules:

asyncio
Add missing connect_accepted_socket() method.
array
The index() method of array.array now has optional start and stop parameters.
gc
Add audit hooks for gc.get_objects(), gc.get_referrers() and gc.
get_referents().
hashlib
The hashlib module requires OpenSSL 1.1.1 or newer.
The hashlib module has preliminary support for OpenSSL 3.0.0.

continues on next page

3.6. Python 3.10 261

https://docs.python.org/3.5/library/stdtypes.html#dict.keys
https://docs.python.org/3.5/library/stdtypes.html#dict.values
https://docs.python.org/3.5/library/stdtypes.html#dict.items
https://docs.python.org/3.5/library/types.html#types.MappingProxyType
https://www.python.org/dev/peps/pep-0618
https://docs.python.org/3.5/library/decimal.html#decimal.Decimal
https://docs.python.org/3.5/library/fractions.html#fractions.Fraction
https://docs.python.org/3.5/reference/datamodel.html#object.__int__
https://docs.python.org/3.5/reference/datamodel.html#object.__index__
https://www.python.org/dev/peps/pep-0526
https://docs.python.org/3.5/library/decimal.html#decimal.Decimal
https://docs.python.org/3/whatsnew/3.10.html#asyncio
https://docs.python.org/3/whatsnew/3.10.html#array
https://docs.python.org/3.5/library/array.html#array.array.index
https://docs.python.org/3/whatsnew/3.10.html#gc
https://docs.python.org/3.5/library/gc.html#gc.get_objects
https://docs.python.org/3.5/library/gc.html#gc.get_referrers
https://docs.python.org/3.5/library/gc.html#gc.get_referents
https://docs.python.org/3.5/library/gc.html#gc.get_referents
https://docs.python.org/3/whatsnew/3.10.html#hashlib

MicroPython Documentation, Release v1.20.0

Table 3 – continued from previous page
The pure-Python fallback of pbkdf2_hmac() is deprecated. In the future PBKDF2-HMAC will only
be available when Python has been built with OpenSSL support.
os
Add os.cpu_count() support for VxWorks RTOS.
Add a new function os.eventfd() and related helpers to wrap the eventfd2 syscall on Linux.
Add os.splice() that allows to move data between two file descriptors without copying between
kernel address space and user address space, where one of the file descriptors must refer to a pipe.
Add O_EVTONLY, O_FSYNC, O_SYMLINK and O_NOFOLLOW_ANY for macOS.
platform
Add platform.freedesktop_os_release() to retrieve operation system identification from
freedesktop.org os-release standard file.
socket
The exception socket.timeout is now an alias of TimeoutError.
Add option to create MPTCP sockets with IPPROTO_MPTCP.
Add IP_RECVTOS option to receive the type of service (ToS) or DSCP/ECN fields.
ssl
The ssl module requires OpenSSL 1.1.1 or newer.
The ssl module has preliminary support for OpenSSL 3.0.0 and new option
OP_IGNORE_UNEXPECTED_EOF.
Deprecated function and use of deprecated constants now result in a DeprecationWarning. ssl.
SSLContext.options has OP_NO_SSLv2 and OP_NO_SSLv3 set by default and therefore cannot
warn about setting the flag again.
The ssl module now has more secure default settings. Ciphers without forward secrecy or SHA-1 MAC
are disabled by default. Security level 2 prohibits weak RSA, DH, and ECC keys with less than 112 bits
of security. SSLContext defaults to minimum protocol version TLS 1.2. Settings are based on Hynek
Schlawack’s research.
The deprecated protocols SSL 3.0, TLS 1.0, and TLS 1.1 are no longer officially supported. Python does
not block them actively. However OpenSSL build options, distro configurations, vendor patches, and
cipher suites may prevent a successful handshake.
Add a timeout parameter to the ssl.get_server_certificate() function.
The ssl module uses heap-types and multi-phase initialization.
A new verify flag VERIFY_X509_PARTIAL_CHAIN has been added.
sys
Add sys.orig_argv attribute: the list of the original command line arguments passed to the Python
executable.
Add sys.stdlib_module_names, containing the list of the standard library module names.
_thread
_thread.interrupt_main() now takes an optional signal number to simulate (the default is still
signal.SIGINT).

262 Chapter 3. MicroPython differences from CPython

https://docs.python.org/3.5/library/hashlib.html#hashlib.pbkdf2_hmac
https://docs.python.org/3/whatsnew/3.10.html#os
https://docs.python.org/3.5/library/os.html#os.cpu_count
https://docs.python.org/3/whatsnew/3.10.html#platform
https://www.freedesktop.org/software/systemd/man/os-release.html
https://docs.python.org/3/whatsnew/3.10.html#socket
https://docs.python.org/3.5/library/socket.html#socket.timeout
https://docs.python.org/3.5/library/exceptions.html#TimeoutError
https://docs.python.org/3/whatsnew/3.10.html#ssl
https://docs.python.org/3.5/library/exceptions.html#DeprecationWarning
https://docs.python.org/3.5/library/ssl.html#ssl.SSLContext.options
https://docs.python.org/3.5/library/ssl.html#ssl.SSLContext.options
https://docs.python.org/3.5/library/ssl.html#ssl.OP_NO_SSLv2
https://docs.python.org/3.5/library/ssl.html#ssl.OP_NO_SSLv3
https://docs.python.org/3.5/library/ssl.html#ssl.SSLContext
https://docs.python.org/3.5/library/ssl.html#ssl.get_server_certificate
https://docs.python.org/3/whatsnew/3.10.html#sys
https://docs.python.org/3/whatsnew/3.10.html#_thread
https://docs.python.org/3.5/library/_thread.html#_thread.interrupt_main

MicroPython Documentation, Release v1.20.0

Notes

For the features of Python that are implemented by MicroPython, there are sometimes differences in their behaviour
compared to standard Python. The operations listed in the sections below produce conflicting results in MicroPython
when compared to standard Python.

3.7 Syntax

Generated Thu 04 May 2023 14:18:33 UTC

3.7.1 Argument unpacking does not work if the argument being unpacked is the
nth or greater argument where n is the number of bits in an MP_SMALL_INT.

Cause: The implementation uses an MP_SMALL_INT to flag args that need to be unpacked.
Workaround: Use fewer arguments.
Sample code:

def example(*args):
print(len(args))

MORE = ["a", "b", "c"]

example(
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
*MORE,

)

CPy output: uPy output:

67 Traceback (most recent call last):
File "<stdin>", line 21, in <module>

SyntaxError: too many args

Operators

3.7.2 MicroPython allows using := to assign to the variable of a comprehension,
CPython raises a SyntaxError.

Cause: MicroPython is optimised for code size and doesn’t check this case.
Workaround: Do not rely on this behaviour if writing CPython compatible code.
Sample code:

print([i := -1 for i in range(4)])

3.7. Syntax 263

MicroPython Documentation, Release v1.20.0

CPy output: uPy output:

File "<stdin>", line 7
SyntaxError: assignment expression␣
↪→cannot rebind comprehension iteration␣
↪→variable 'i'

Traceback (most recent call last):
File "<stdin>", line 7, in <listcomp>

SyntaxError: identifier redefined as␣
↪→global

Spaces

3.7.3 uPy requires spaces between literal numbers and keywords, CPy doesn’t

Sample code:

try:
print(eval("1and 0"))

except SyntaxError:
print("Should have worked")

try:
print(eval("1or 0"))

except SyntaxError:
print("Should have worked")

try:
print(eval("1if 1else 0"))

except SyntaxError:
print("Should have worked")

CPy output: uPy output:

0
1
1

Should have worked
Should have worked
Should have worked

Unicode

3.7.4 Unicode name escapes are not implemented

Sample code:

print("\N{LATIN SMALL LETTER A}")

CPy output: uPy output:

a NotImplementedError: unicode name escapes

264 Chapter 3. MicroPython differences from CPython

MicroPython Documentation, Release v1.20.0

3.8 Core language

Generated Thu 04 May 2023 14:18:33 UTC

3.8.1 f-strings don’t support concatenation with adjacent literals if the adjacent
literals contain braces or are f-strings

Cause: MicroPython is optimised for code space.
Workaround: Use the + operator between literal strings when either or both are f-strings
Sample code:

x, y = 1, 2
print("aa" f"{x}") # works
print(f"{x}" "ab") # works
print("a{}a" f"{x}") # fails
print(f"{x}" "a{}b") # fails
print(f"{x}" f"{y}") # fails

CPy output: uPy output:

aa1
1ab
a{}a1
1a{}b
12

Traceback (most recent call last):
File "<stdin>", line 13

SyntaxError: invalid syntax

3.8.2 f-strings cannot support expressions that require parsing to resolve unbal-
anced nested braces and brackets

Cause: MicroPython is optimised for code space.
Workaround: Always use balanced braces and brackets in expressions inside f-strings
Sample code:

print(f'{"hello { world"}')
print(f'{"hello] world"}')

CPy output: uPy output:

hello { world
hello] world

Traceback (most recent call last):
File "<stdin>", line 9

SyntaxError: invalid syntax

3.8. Core language 265

MicroPython Documentation, Release v1.20.0

3.8.3 Raw f-strings are not supported

Cause: MicroPython is optimised for code space.
Sample code:

rf"hello"

CPy output: uPy output:

Traceback (most recent call last):
File "<stdin>", line 8

SyntaxError: raw f-strings are not␣
↪→supported

3.8.4 f-strings don’t support the !r, !s, and !a conversions

Cause: MicroPython is optimised for code space.
Workaround: Use repr(), str(), and ascii() explictly.
Sample code:

class X:
def __repr__(self):

return "repr"

def __str__(self):
return "str"

print(f"{X()!r}")
print(f"{X()!s}")

CPy output: uPy output:

repr
str

Traceback (most recent call last):
File "<stdin>", line 17

SyntaxError: invalid syntax

Classes

3.8.5 Special method __del__ not implemented for user-defined classes

Sample code:

import gc

class Foo:
def __del__(self):

(continues on next page)

266 Chapter 3. MicroPython differences from CPython

MicroPython Documentation, Release v1.20.0

(continued from previous page)
print("__del__")

f = Foo()
del f

gc.collect()

CPy output: uPy output:

__del__

3.8.6 Method Resolution Order (MRO) is not compliant with CPython

Cause: Depth first non-exhaustive method resolution order
Workaround: Avoid complex class hierarchies with multiple inheritance and complex method overrides. Keep in mind
that many languages don’t support multiple inheritance at all.
Sample code:

class Foo:
def __str__(self):

return "Foo"

class C(tuple, Foo):
pass

t = C((1, 2, 3))
print(t)

CPy output: uPy output:

Foo (1, 2, 3)

3.8.7 When inheriting from multiple classes super() only calls one class

Cause: See Method Resolution Order (MRO) is not compliant with CPython

Workaround: See Method Resolution Order (MRO) is not compliant with CPython

Sample code:

class A:
def __init__(self):

print("A.__init__")

(continues on next page)

3.8. Core language 267

MicroPython Documentation, Release v1.20.0

(continued from previous page)
class B(A):

def __init__(self):
print("B.__init__")
super().__init__()

class C(A):
def __init__(self):

print("C.__init__")
super().__init__()

class D(B, C):
def __init__(self):

print("D.__init__")
super().__init__()

D()

CPy output: uPy output:

D.__init__
B.__init__
C.__init__
A.__init__

D.__init__
B.__init__
A.__init__

3.8.8 Calling super() getter property in subclass will return a property object, not
the value

Sample code:

class A:
@property
def p(self):

return {"a": 10}

class AA(A):
@property
def p(self):

return super().p

a = AA()
print(a.p)

CPy output: uPy output:

{'a': 10} <property>

268 Chapter 3. MicroPython differences from CPython

MicroPython Documentation, Release v1.20.0

Functions

3.8.9 Error messages for methods may display unexpected argument counts

Cause: MicroPython counts “self” as an argument.
Workaround: Interpret error messages with the information above in mind.
Sample code:

try:
[].append()

except Exception as e:
print(e)

CPy output: uPy output:

list.append() takes exactly one argument␣
↪→(0 given)

function takes 2 positional arguments␣
↪→but 1 were given

3.8.10 Function objects do not have the __module__ attribute

Cause: MicroPython is optimized for reduced code size and RAM usage.
Workaround: Use sys.modules[function.__globals__['__name__']] for non-builtin modules.
Sample code:

def f():
pass

print(f.__module__)

CPy output: uPy output:

__main__ Traceback (most recent call last):
File "<stdin>", line 13, in <module>

AttributeError: 'function' object has no␣
↪→attribute '__module__'

3.8.11 User-defined attributes for functions are not supported

Cause: MicroPython is highly optimized for memory usage.
Workaround: Use external dictionary, e.g. FUNC_X[f] = 0.
Sample code:

def f():
pass

(continues on next page)

3.8. Core language 269

MicroPython Documentation, Release v1.20.0

(continued from previous page)

f.x = 0
print(f.x)

CPy output: uPy output:

0 Traceback (most recent call last):
File "<stdin>", line 13, in <module>

AttributeError: 'function' object has no␣
↪→attribute 'x'

Generator

3.8.12 Context manager __exit__() not called in a generator which does not run to
completion

Sample code:

class foo(object):
def __enter__(self):

print("Enter")

def __exit__(self, *args):
print("Exit")

def bar(x):
with foo():

while True:
x += 1
yield x

def func():
g = bar(0)
for _ in range(3):

print(next(g))

func()

CPy output: uPy output:

Enter
1
2
3
Exit

Enter
1
2
3

270 Chapter 3. MicroPython differences from CPython

MicroPython Documentation, Release v1.20.0

Runtime

3.8.13 Local variables aren’t included in locals() result

Cause: MicroPython doesn’t maintain symbolic local environment, it is optimized to an array of slots. Thus, local
variables can’t be accessed by a name.
Sample code:

def test():
val = 2
print(locals())

test()

CPy output: uPy output:

{'val': 2} {'test': <function test at␣
↪→0x7fce9e1b7240>, '__name__': '__main__
↪→', '__file__': '<stdin>'}

3.8.14 Code running in eval() function doesn’t have access to local variables

Cause: MicroPython doesn’t maintain symbolic local environment, it is optimized to an array of slots. Thus, local
variables can’t be accessed by a name. Effectively, eval(expr) in MicroPython is equivalent to eval(expr,
globals(), globals()).
Sample code:

val = 1

def test():
val = 2
print(val)
eval("print(val)")

test()

CPy output: uPy output:

2
2

2
1

3.8. Core language 271

MicroPython Documentation, Release v1.20.0

import

3.8.15 __all__ is unsupported in __init__.py in MicroPython.

Cause: Not implemented.
Workaround: Manually import the sub-modules directly in __init__.py using from . import foo, bar.
Sample code:

from modules3 import *

foo.hello()

CPy output: uPy output:

hello Traceback (most recent call last):
File "<stdin>", line 9, in <module>

NameError: name 'foo' isn't defined

3.8.16 __path__ attribute of a package has a different type (single string instead of
list of strings) in MicroPython

Cause: MicroPython does’t support namespace packages split across filesystem. Beyond that, MicroPython’s import
system is highly optimized for minimal memory usage.
Workaround: Details of import handling is inherently implementation dependent. Don’t rely on such details in portable
applications.
Sample code:

import modules

print(modules.__path__)

CPy output: uPy output:

['/home/micropython/micropython-autodocs/
↪→tests/cpydiff/modules']

../tests/cpydiff/modules

3.8.17 Failed to load modules are still registered as loaded

Cause: To make module handling more efficient, it’s not wrapped with exception handling.
Workaround: Test modules before production use; during development, use del sys.modules["name"], or just
soft or hard reset the board.
Sample code:

import sys

try:

(continues on next page)

272 Chapter 3. MicroPython differences from CPython

MicroPython Documentation, Release v1.20.0

(continued from previous page)
from modules import foo

except NameError as e:
print(e)

try:
from modules import foo

print("Should not get here")
except NameError as e:

print(e)

CPy output: uPy output:

foo
name 'xxx' is not defined
foo
name 'xxx' is not defined

foo
name 'xxx' isn't defined
Should not get here

3.8.18 MicroPython does’t support namespace packages split across filesystem.

Cause: MicroPython’s import system is highly optimized for simplicity, minimal memory usage, and minimal filesystem
search overhead.
Workaround: Don’t install modules belonging to the same namespace package in different directories. ForMicroPython,
it’s recommended to have at most 3-component module search paths: for your current application, per-user (writable),
system-wide (non-writable).
Sample code:

import sys

sys.path.append(sys.path[1] + "/modules")
sys.path.append(sys.path[1] + "/modules2")

import subpkg.foo
import subpkg.bar

print("Two modules of a split namespace package imported")

CPy output: uPy output:

Two modules of a split namespace package␣
↪→imported

Traceback (most recent call last):
File "<stdin>", line 13, in <module>

ImportError: no module named 'subpkg.bar'

3.8. Core language 273

MicroPython Documentation, Release v1.20.0

3.9 Builtin types

Generated Thu 04 May 2023 14:18:33 UTC

3.9.1 Exception

All exceptions have readable value and errno attributes, not just StopIteration and OSError.

Cause: MicroPython is optimised to reduce code size.
Workaround: Only use value on StopIteration exceptions, and errno on OSError exceptions. Do not use
or rely on these attributes on other exceptions.
Sample code:

e = Exception(1)
print(e.value)
print(e.errno)

CPy output: uPy output:

Traceback (most recent call last):
File "<stdin>", line 8, in <module>

AttributeError: 'Exception' object has␣
↪→no attribute 'value'

1
1

Exception chaining not implemented

Sample code:

try:
raise TypeError

except TypeError:
raise ValueError

CPy output: uPy output:

Traceback (most recent call last):
File "<stdin>", line 8, in <module>

TypeError

During handling of the above exception,␣
↪→another exception occurred:

Traceback (most recent call last):
File "<stdin>", line 10, in <module>

ValueError

Traceback (most recent call last):
File "<stdin>", line 10, in <module>

ValueError:

274 Chapter 3. MicroPython differences from CPython

MicroPython Documentation, Release v1.20.0

User-defined attributes for builtin exceptions are not supported

Cause: MicroPython is highly optimized for memory usage.
Workaround: Use user-defined exception subclasses.
Sample code:

e = Exception()
e.x = 0
print(e.x)

CPy output: uPy output:

0 Traceback (most recent call last):
File "<stdin>", line 8, in <module>

AttributeError: 'Exception' object has␣
↪→no attribute 'x'

Exception in while loop condition may have unexpected line number

Cause: Condition checks are optimized to happen at the end of loop body, and that line number is reported.
Sample code:

l = ["-foo", "-bar"]

i = 0
while l[i][0] == "-":

print("iter")
i += 1

CPy output: uPy output:

iter
iter
Traceback (most recent call last):

File "<stdin>", line 10, in <module>
IndexError: list index out of range

iter
iter
Traceback (most recent call last):
File "<stdin>", line 12, in <module>

IndexError: list index out of range

Exception.__init__ method does not exist.

Cause: Subclassing native classes is not fully supported in MicroPython.
Workaround: Call using super() instead:

class A(Exception):
def __init__(self):

super().__init__()

Sample code:

3.9. Builtin types 275

MicroPython Documentation, Release v1.20.0

class A(Exception):
def __init__(self):

Exception.__init__(self)

a = A()

CPy output: uPy output:

Traceback (most recent call last):
File "<stdin>", line 18, in <module>
File "<stdin>", line 15, in __init__

AttributeError: type object 'Exception'␣
↪→has no attribute '__init__'

3.9.2 bytearray

Array slice assignment with unsupported RHS

Sample code:

b = bytearray(4)
b[0:1] = [1, 2]
print(b)

CPy output: uPy output:

bytearray(b'\x01\x02\x00\x00\x00') Traceback (most recent call last):
File "<stdin>", line 8, in <module>

NotImplementedError: array/bytes␣
↪→required on right side

3.9.3 bytes

bytes objects support .format() method

Cause: MicroPython strives to be a more regular implementation, so if both str and bytes support __mod__() (the
% operator), it makes sense to support format() for both too. Support for __mod__ can also be compiled out, which
leaves only format() for bytes formatting.
Workaround: If you are interested in CPython compatibility, don’t use .format() on bytes objects.
Sample code:

print(b"{}".format(1))

276 Chapter 3. MicroPython differences from CPython

MicroPython Documentation, Release v1.20.0

CPy output: uPy output:

Traceback (most recent call last):
File "<stdin>", line 7, in <module>

AttributeError: 'bytes' object has no␣
↪→attribute 'format'

b'1'

bytes() with keywords not implemented

Workaround: Pass the encoding as a positional parameter, e.g. print(bytes('abc', 'utf-8'))

Sample code:

print(bytes("abc", encoding="utf8"))

CPy output: uPy output:

b'abc' Traceback (most recent call last):
File "<stdin>", line 7, in <module>

NotImplementedError: keyword argument(s)␣
↪→not implemented - use normal args␣
↪→instead

Bytes subscription with step != 1 not implemented

Cause: MicroPython is highly optimized for memory usage.
Workaround: Use explicit loop for this very rare operation.
Sample code:

print(b"123"[0:3:2])

CPy output: uPy output:

b'13' Traceback (most recent call last):
File "<stdin>", line 7, in <module>

NotImplementedError: only slices with␣
↪→step=1 (aka None) are supported

3.9. Builtin types 277

MicroPython Documentation, Release v1.20.0

3.9.4 dict

Dictionary keys view does not behave as a set.

Cause: Not implemented.
Workaround: Explicitly convert keys to a set before using set operations.
Sample code:

print({1: 2, 3: 4}.keys() & {1})

CPy output: uPy output:

{1} Traceback (most recent call last):
File "<stdin>", line 7, in <module>

TypeError: unsupported types for __and__
↪→: 'dict_view', 'set'

3.9.5 float

uPy allows implicit conversion of objects in maths operations while CPython does not.

Workaround: Objects should be wrapped in float(obj) for compatibility with CPython.
Sample code:

class Test:
def __float__(self):

return 0.5

print(2.0 * Test())

CPy output: uPy output:

Traceback (most recent call last):
File "<stdin>", line 14, in <module>

TypeError: unsupported operand type(s)␣
↪→for *: 'float' and 'Test'

1.0

uPy and CPython outputs formats may differ

Sample code:

print("%.1g" % -9.9)

CPy output: uPy output:

-1e+01 -10

278 Chapter 3. MicroPython differences from CPython

MicroPython Documentation, Release v1.20.0

3.9.6 int

bit_length method doesn’t exist.

Cause: bit_length method is not implemented.
Workaround: Avoid using this method on MicroPython.
Sample code:

x = 255
print("{} is {} bits long.".format(x, x.bit_length()))

CPy output: uPy output:

255 is 8 bits long. Traceback (most recent call last):
File "<stdin>", line 9, in <module>

AttributeError: 'int' object has no␣
↪→attribute 'bit_length'

No int conversion for int-derived types available

Workaround: Avoid subclassing builtin types unless really needed. Prefer https://en.wikipedia.org/wiki/Composition_
over_inheritance .
Sample code:

class A(int):
__add__ = lambda self, other: A(int(self) + other)

a = A(42)
print(a + a)

CPy output: uPy output:

84 Traceback (most recent call last):
File "<stdin>", line 14, in <module>
File "<stdin>", line 10, in <lambda>

TypeError: unsupported types for __radd__
↪→: 'int', 'int'

3.9.7 list

List delete with step != 1 not implemented

Workaround: Use explicit loop for this rare operation.
Sample code:

3.9. Builtin types 279

https://en.wikipedia.org/wiki/Composition_over_inheritance
https://en.wikipedia.org/wiki/Composition_over_inheritance

MicroPython Documentation, Release v1.20.0

l = [1, 2, 3, 4]
del l[0:4:2]
print(l)

CPy output: uPy output:

[2, 4] Traceback (most recent call last):
File "<stdin>", line 8, in <module>

NotImplementedError:

List slice-store with non-iterable on RHS is not implemented

Cause: RHS is restricted to be a tuple or list
Workaround: Use list(<iter>) on RHS to convert the iterable to a list
Sample code:

l = [10, 20]
l[0:1] = range(4)
print(l)

CPy output: uPy output:

[0, 1, 2, 3, 20] Traceback (most recent call last):
File "<stdin>", line 8, in <module>

TypeError: object 'range' isn't a tuple␣
↪→or list

List store with step != 1 not implemented

Workaround: Use explicit loop for this rare operation.
Sample code:

l = [1, 2, 3, 4]
l[0:4:2] = [5, 6]
print(l)

CPy output: uPy output:

[5, 2, 6, 4] Traceback (most recent call last):
File "<stdin>", line 8, in <module>

NotImplementedError:

280 Chapter 3. MicroPython differences from CPython

MicroPython Documentation, Release v1.20.0

3.9.8 str

Start/end indices such as str.endswith(s, start) not implemented

Sample code:

print("abc".endswith("c", 1))

CPy output: uPy output:

True Traceback (most recent call last):
File "<stdin>", line 7, in <module>

NotImplementedError: start/end indices

Attributes/subscr not implemented

Sample code:

print("{a[0]}".format(a=[1, 2]))

CPy output: uPy output:

1 Traceback (most recent call last):
File "<stdin>", line 7, in <module>

NotImplementedError: attributes not␣
↪→supported

str(…) with keywords not implemented

Workaround: Input the encoding format directly. eg print(bytes('abc', 'utf-8'))

Sample code:

print(str(b"abc", encoding="utf8"))

CPy output: uPy output:

abc Traceback (most recent call last):
File "<stdin>", line 7, in <module>

NotImplementedError: keyword argument(s)␣
↪→not implemented - use normal args␣
↪→instead

3.9. Builtin types 281

MicroPython Documentation, Release v1.20.0

str.ljust() and str.rjust() not implemented

Cause: MicroPython is highly optimized for memory usage. Easy workarounds available.
Workaround: Instead of s.ljust(10) use "%-10s" % s, instead of s.rjust(10) use "% 10s" % s.
Alternatively, "{:<10}".format(s) or "{:>10}".format(s).
Sample code:

print("abc".ljust(10))

CPy output: uPy output:

abc Traceback (most recent call last):
File "<stdin>", line 7, in <module>

AttributeError: 'str' object has no␣
↪→attribute 'ljust'

None as first argument for rsplit such as str.rsplit(None, n) not implemented

Sample code:

print("a a a".rsplit(None, 1))

CPy output: uPy output:

['a a', 'a'] Traceback (most recent call last):
File "<stdin>", line 7, in <module>

NotImplementedError: rsplit(None,n)

Subscript with step != 1 is not yet implemented

Sample code:

print("abcdefghi"[0:9:2])

CPy output: uPy output:

acegi Traceback (most recent call last):
File "<stdin>", line 7, in <module>

NotImplementedError: only slices with␣
↪→step=1 (aka None) are supported

282 Chapter 3. MicroPython differences from CPython

MicroPython Documentation, Release v1.20.0

3.9.9 tuple

Tuple load with step != 1 not implemented

Sample code:

print((1, 2, 3, 4)[0:4:2])

CPy output: uPy output:

(1, 3) Traceback (most recent call last):
File "<stdin>", line 7, in <module>

NotImplementedError: only slices with␣
↪→step=1 (aka None) are supported

3.10 Modules

Generated Thu 04 May 2023 14:18:33 UTC

3.10.1 array

Comparison between different typecodes not supported

Cause: Code size
Workaround: Compare individual elements
Sample code:

import array

array.array("b", [1, 2]) == array.array("i", [1, 2])

CPy output: uPy output:

Traceback (most recent call last):
File "<stdin>", line 9, in <module>

NotImplementedError:

Overflow checking is not implemented

Cause: MicroPython implements implicit truncation in order to reduce code size and execution time
Workaround: If CPython compatibility is needed then mask the value explicitly
Sample code:

3.10. Modules 283

MicroPython Documentation, Release v1.20.0

import array

a = array.array("b", [257])
print(a)

CPy output: uPy output:

Traceback (most recent call last):
File "<stdin>", line 9, in <module>

OverflowError: signed char is greater␣
↪→than maximum

array('b', [1])

Looking for integer not implemented

Sample code:

import array

print(1 in array.array("B", b"12"))

CPy output: uPy output:

False Traceback (most recent call last):
File "<stdin>", line 9, in <module>

NotImplementedError:

Array deletion not implemented

Sample code:

import array

a = array.array("b", (1, 2, 3))
del a[1]
print(a)

CPy output: uPy output:

array('b', [1, 3]) Traceback (most recent call last):
File "<stdin>", line 10, in <module>

TypeError: 'array' object doesn't␣
↪→support item deletion

284 Chapter 3. MicroPython differences from CPython

MicroPython Documentation, Release v1.20.0

Subscript with step != 1 is not yet implemented

Sample code:

import array

a = array.array("b", (1, 2, 3))
print(a[3:2:2])

CPy output: uPy output:

array('b') Traceback (most recent call last):
File "<stdin>", line 10, in <module>

NotImplementedError: only slices with␣
↪→step=1 (aka None) are supported

3.10.2 builtins

Second argument to next() is not implemented

Cause: MicroPython is optimised for code space.
Workaround: Instead of val = next(it, deflt) use:

try:
val = next(it)

except StopIteration:
val = deflt

Sample code:

print(next(iter(range(0)), 42))

CPy output: uPy output:

42 Traceback (most recent call last):
File "<stdin>", line 12, in <module>

TypeError: function takes 1 positional␣
↪→arguments but 2 were given

3.10.3 deque

Deque not implemented

Workaround: Use regular lists. micropython-lib has implementation of collections.deque.
Sample code:

3.10. Modules 285

MicroPython Documentation, Release v1.20.0

import collections

D = collections.deque()
print(D)

CPy output: uPy output:

deque([]) Traceback (most recent call last):
File "<stdin>", line 9, in <module>

TypeError: function missing 2 required␣
↪→positional arguments

3.10.4 json

JSON module does not throw exception when object is not serialisable

Sample code:

import json

a = bytes(x for x in range(256))
try:

z = json.dumps(a)
x = json.loads(z)
print("Should not get here")

except TypeError:
print("TypeError")

CPy output: uPy output:

TypeError Traceback (most recent call last):
File "<stdin>", line 12, in <module>

UnicodeError:

3.10.5 os

environ attribute is not implemented

Workaround: Use getenv, putenv and unsetenv
Sample code:

import os

try:
print(os.environ.get("NEW_VARIABLE"))
os.environ["NEW_VARIABLE"] = "VALUE"
print(os.environ["NEW_VARIABLE"])

except AttributeError:
print("should not get here")

(continues on next page)

286 Chapter 3. MicroPython differences from CPython

MicroPython Documentation, Release v1.20.0

(continued from previous page)
print(os.getenv("NEW_VARIABLE"))
os.putenv("NEW_VARIABLE", "VALUE")
print(os.getenv("NEW_VARIABLE"))

CPy output: uPy output:

None
VALUE

should not get here
None
VALUE

getenv returns actual value instead of cached value

Cause: The environ attribute is not implemented
Sample code:

import os

print(os.getenv("NEW_VARIABLE"))
os.putenv("NEW_VARIABLE", "VALUE")
print(os.getenv("NEW_VARIABLE"))

CPy output: uPy output:

None
None

None
VALUE

3.10.6 random

getrandbits method can only return a maximum of 32 bits at a time.

Cause: PRNG’s internal state is only 32bits so it can only return a maximum of 32 bits of data at a time.
Workaround: If you need a number that has more than 32 bits then utilize the random module from micropython-lib.
Sample code:

import random

x = random.getrandbits(64)
print("{}".format(x))

CPy output: uPy output:

15210618280509628930 Traceback (most recent call last):
File "<stdin>", line 11, in <module>

ValueError: bits must be 32 or less

3.10. Modules 287

MicroPython Documentation, Release v1.20.0

randint method can only return an integer that is at most the native word size.

Cause: PRNG is only able to generate 32 bits of state at a time. The result is then cast into a native sized int instead of
a full int object.
Workaround: If you need integers larger than native wordsize use the random module from micropython-lib.
Sample code:

import random

x = random.randint(2**128 - 1, 2**128)
print("x={}".format(x))

CPy output: uPy output:

x=340282366920938463463374607431768211456 Traceback (most recent call last):
File "<stdin>", line 11, in <module>

OverflowError: overflow converting long␣
↪→int to machine word

3.10.7 struct

Struct pack with too few args, not checked by uPy

Sample code:

import struct

try:
print(struct.pack("bb", 1))
print("Should not get here")

except:
print("struct.error")

CPy output: uPy output:

struct.error b'\x01\x00'
Should not get here

Struct pack with too many args, not checked by uPy

Sample code:

import struct

try:
print(struct.pack("bb", 1, 2, 3))
print("Should not get here")

except:
print("struct.error")

288 Chapter 3. MicroPython differences from CPython

MicroPython Documentation, Release v1.20.0

CPy output: uPy output:

struct.error b'\x01\x02'
Should not get here

Struct pack with whitespace in format, whitespace ignored by CPython, error on uPy

Cause: MicroPython is optimised for code size.
Workaround: Don’t use spaces in format strings.
Sample code:

import struct

try:
print(struct.pack("b b", 1, 2))
print("Should have worked")

except:
print("struct.error")

CPy output: uPy output:

b'\x01\x02'
Should have worked

struct.error

3.10.8 sys

Overriding sys.stdin, sys.stdout and sys.stderr not possible

Cause: They are stored in read-only memory.
Sample code:

import sys

sys.stdin = None
print(sys.stdin)

CPy output: uPy output:

None Traceback (most recent call last):
File "<stdin>", line 9, in <module>

AttributeError: 'module' object has no␣
↪→attribute 'stdin'

3.10. Modules 289

MicroPython Documentation, Release v1.20.0

290 Chapter 3. MicroPython differences from CPython

CHAPTER

FOUR

MICROPYTHON INTERNALS

This chapter covers a tour of MicroPython from the perspective of a developer, contributing to MicroPython. It acts as
a comprehensive resource on the implementation details of MicroPython for both novice and expert contributors.
Development around MicroPython usually involves modifying the core runtime, porting or maintaining a new library.
This guide describes at great depth, the implementation details of MicroPython including a getting started guide, compiler
internals, porting MicroPython to a new platform and implementing a core MicroPython library.

4.1 Getting Started

This guide covers a step-by-step process on setting up version control, obtaining and building a copy of the source code
for a port, building the documentation, running tests, and a description of the directory structure of the MicroPython code
base.

4.1.1 Source control with git

MicroPython is hosted on GitHub and uses Git for source control. The workflow is such that code is pulled and pushed
to and from the main repository. Install the respective version of Git for your operating system to follow through the rest
of the steps.

Note: For a reference on the installation instructions, please refer to the Git installation instructions. Learn about the
basic git commands in this Git Handbook or any other sources on the internet.

Note: A .git-blame-ignore-revs file is included which avoids the output of git blame getting cluttered by commits which
are only for formatting code but have no functional changes. See git blame documentation on how to use this.

4.1.2 Get the code

It is recommended that you maintain a fork of the MicroPython repository for your development purposes. The process
of obtaining the source code includes the following:

1. Fork the repository https://github.com/micropython/micropython
2. You will now have a fork at <https://github.com/<your-user-name>/micropython>.
3. Clone the forked repository using the following command:

291

https://github.com/micropython/micropython
https://git-scm.com
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://guides.github.com/introduction/git-handbook/
https://git-scm.com/docs/git-blame#Documentation/git-blame.txt---ignore-revltrevgt
https://github.com/micropython/micropython
https://github.com

MicroPython Documentation, Release v1.20.0

$ git clone https://github.com/<your-user-name>/micropython

Then, configure the remote repositories to be able to collaborate on the MicroPython project.
Configure remote upstream:

$ cd micropython
$ git remote add upstream https://github.com/micropython/micropython

It is common to configure upstream and origin on a forked repository to assist with sharing code changes. You
can maintain your own mapping but it is recommended that origin maps to your fork and upstream to the main
MicroPython repository.
After the above configuration, your setup should be similar to this:

$ git remote -v
origin https://github.com/<your-user-name>/micropython (fetch)
origin https://github.com/<your-user-name>/micropython (push)
upstream https://github.com/micropython/micropython (fetch)
upstream https://github.com/micropython/micropython (push)

You should now have a copy of the source code. By default, you are pointing to the master branch. To prepare for further
development, it is recommended to work on a development branch.

$ git checkout -b dev-branch

You can give it any name. You will have to compile MicroPython whenever you change to a different branch.

4.1.3 Compile and build the code

When compiling MicroPython, you compile a specific port, usually targeting a specific board. Start by installing the
required dependencies. Then build the MicroPython cross-compiler before you can successfully compile and build. This
applies specifically when using Linux to compile. The Windows instructions are provided in a later section.

Required dependencies

Install the required dependencies for Linux:

$ sudo apt-get install build-essential libffi-dev git pkg-config

For the stm32 port, the ARM cross-compiler is required:

$ sudo apt-get install arm-none-eabi-gcc arm-none-eabi-binutils arm-none-eabi-newlib

See the ARM GCC toolchain for the latest details.
Python is also required. Python 2 is supported for now, but we recommend using Python 3. Check that you have Python
available on your system:

$ python3
Python 3.5.0 (default, Jul 17 2020, 14:04:10)
[GCC 5.4.0 20160609] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

All supported ports have different dependency requirements, see their respective readme files.

292 Chapter 4. MicroPython Internals

https://git-scm.com/book/en/v2/Git-Basics-Working-with-Remotes
https://docs.python.org/3.5/glossary.html#glossary
https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads
https://github.com/micropython/micropython/tree/master/ports

MicroPython Documentation, Release v1.20.0

Building the MicroPython cross-compiler

Almost all ports require building mpy-cross first to perform pre-compilation of Python code that will be included in
the port firmware:

$ cd mpy-cross
$ make

Note: Note that, mpy-cross must be built for the host architecture and not the target architecture.

If it built successfully, you should see a message similar to this:

LINK mpy-cross
text data bss dec hex filename

279328 776 880 280984 44998 mpy-cross

Note: Use make -C mpy-cross to build the cross-compiler in one statement without moving to the mpy-cross
directory otherwise, you will need to do cd .. for the next steps.

Building the Unix port of MicroPython

The Unix port is a version of MicroPython that runs on Linux, macOS, and other Unix-like operating systems. It’s
extremely useful for developing MicroPython as it avoids having to deploy your code to a device to test it. In many ways,
it works a lot like CPython’s python binary.
To build for the Unix port, make sure all Linux related dependencies are installed as detailed in the required dependencies
section. See the Required dependencies to make sure that all dependencies are installed for this port. Also, make sure you
have a working environment for gcc and GNU make. Ubuntu 20.04 has been used for the example below but other
unixes ought to work with little modification:

$ gcc --version
gcc (Ubuntu 9.3.0-10ubuntu2) 9.3.0
Copyright (C) 2019 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.then build:

$ cd ports/unix
$ make submodules
$ make

If MicroPython built correctly, you should see the following:

LINK micropython
text data bss dec hex filename

412033 5680 2496 420209 66971 micropython

Now run it:

$./micropython
MicroPython v1.13-38-gc67012d-dirty on 2020-09-13; linux version
Use Ctrl-D to exit, Ctrl-E for paste mode
>>> print("hello world")

(continues on next page)

4.1. Getting Started 293

MicroPython Documentation, Release v1.20.0

(continued from previous page)
hello world
>>>

Building the Windows port

TheWindows port includes a Visual Studio project file micropython.vcxproj that you can use to build micropython.exe. It
can be opened in Visual Studio or built from the command line using msbuild. Alternatively, it can be built using mingw,
either in Windows with Cygwin, or on Linux. See windows port documentation for more information.

Building the STM32 port

Like the Unix port, you need to install some required dependencies as detailed in the Required dependencies section, then
build:

$ cd ports/stm32
$ make submodules
$ make

Please refer to the stm32 documentation for more details on flashing the firmware.

Note: See the Required dependencies to make sure that all dependencies are installed for this port. The cross-compiler
is needed. arm-none-eabi-gcc should also be in the $PATH or specified manually via CROSS_COMPILE, either
by setting the environment variable or in the make command line arguments.

You can also specify which board to use:

$ cd ports/stm32
$ make submodules
$ make BOARD=<board>

See ports/stm32/boards for the available boards. e.g. “PYBV11” or “NUCLEO_WB55”.

4.1.4 Building the documentation

MicroPython documentation is created using Sphinx. If you have already installed Python, then install Sphinx using
pip. It is recommended that you use a virtual environment:

$ python3 -m venv env
$ source env/bin/activate
$ pip install sphinx

Navigate to the docs directory:

$ cd docs

Build the docs:

$ make html

Open docs/build/html/index.html in your browser to view the docs locally. Refer to the documentation on
importing your documentation to use Read the Docs.

294 Chapter 4. MicroPython Internals

https://github.com/micropython/micropython/tree/master/ports/windows
https://github.com/micropython/micropython/tree/master/ports/stm32
https://github.com/micropython/micropython/tree/master/ports/stm32/boards
https://docs.readthedocs.io/en/stable/intro/import-guide.html

MicroPython Documentation, Release v1.20.0

4.1.5 Running the tests

To run all tests in the test suite on the Unix port use:

$ cd ports/unix
$ make test

To run a selection of tests on a board/device connected over USB use:

$ cd tests
$./run-tests.py --target minimal --device /dev/ttyACM0

See alsoWriting tests.

4.1.6 Folder structure

There are a couple of directories to take note of in terms of where certain implementation details are. The following is a
break down of the top-level folders in the source code.
py

Contains the compiler, runtime, and core library implementation.
mpy-cross

Has the MicroPython cross-compiler which pre-compiles the Python scripts to bytecode.
ports

Code for all the versions of MicroPython for the supported ports.
lib

Low-level C libraries used by any port which are mostly 3rd-party libraries.
drivers

Has drivers for specific hardware and intended to work across multiple ports.
extmod

Contains a C implementation of more non-core modules.
docs

Has the standard documentation found at https://docs.micropython.org/.
tests

An implementation of the test suite.
tools

Contains scripts used by the build and CI process, as well as user tools such as pyboard.py and mpre-
mote.

examples
Example code for building MicroPython as a library as well as native modules.

4.1. Getting Started 295

https://docs.micropython.org/

MicroPython Documentation, Release v1.20.0

4.2 Writing tests

Tests in MicroPython are located at the path tests/. The following is a listing of key directories and the run-tests.py
runner script:

.
├── basics
├── extmod
├── float
├── micropython
├── run-tests.py
...

There are subfolders maintained to categorize the tests. Add a test by creating a new file in one of the existing folders
or in a new folder. It’s also possible to make custom tests outside this tests folder, which would be recommended for a
custom port.
For example, add the following code in a file print.py in the tests/unix/ subdirectory:

def print_one():
print(1)

print_one()

If you run your tests, this test should appear in the test output:

$ cd ports/unix
$ make tests
skip unix/extra_coverage.py
pass unix/ffi_callback.py
pass unix/ffi_float.py
pass unix/ffi_float2.py
pass unix/print.py
pass unix/time.py
pass unix/time2.py

Tests are run by comparing the output from the test target against the output from CPython. So any test should use print
statements to indicate test results.
For tests that can’t be compared to CPython (i.e. micropython-specific functionality), you can provide a .py.exp file
which will be used as the truth for comparison.
The other way to run tests, which is useful when running on targets other than the Unix port, is:

$ cd tests
$./run-tests.py

Then to run on a board:

$./run-tests.py --target minimal --device /dev/ttyACM0

And to run only a certain set of tests (eg a directory):

$./run-tests.py -d basics
$./run-tests.py float/builtin*.py

296 Chapter 4. MicroPython Internals

MicroPython Documentation, Release v1.20.0

4.3 The Compiler

The compilation process in MicroPython involves the following steps:
• The lexer converts the stream of text that makes up a MicroPython program into tokens.
• The parser then converts the tokens into an abstract syntax (parse tree).
• Then bytecode or native code is emitted based on the parse tree.

For purposes of this discussion we are going to add a simple language feature add1 that can be use in Python as:

>>> add1 3
4
>>>

The add1 statement takes an integer as argument and adds 1 to it.

4.3.1 Adding a grammar rule

MicroPython’s grammar is based on the CPython grammar and is defined in py/grammar.h. This grammar is what is
used to parse MicroPython source files.
There are two macros you need to know to define a grammar rule: DEF_RULE and DEF_RULE_NC. DEF_RULE allows
you to define a rule with an associated compile function, while DEF_RULE_NC has no compile (NC) function for it.
A simple grammar definition with a compile function for our new add1 statement looks like the following:

DEF_RULE(add1_stmt, c(add1_stmt), and(2), tok(KW_ADD1), rule(testlist))

The second argument c(add1_stmt) is the corresponding compile function that should be implemented in py/
compile.c to turn this rule into executable code.
The third required argument can be or or and. This specifies the number of nodes associated with a statement. For
example, in this case, our add1 statement is similar to ADD1 in assembly language. It takes one numeric argument.
Therefore, the add1_stmt has two nodes associated with it. One node is for the statement itself, i.e the literal add1
corresponding to KW_ADD1, and the other for its argument, a testlist rule which is the top-level expression rule.

Note: The add1 rule here is just an example and not part of the standard MicroPython grammar.

The fourth argument in this example is the token associated with the rule, KW_ADD1. This token should be defined in
the lexer by editing py/lexer.h.
Defining the same rule without a compile function is achieved by using the DEF_RULE_NC macro and omitting the
compile function argument:

DEF_RULE_NC(add1_stmt, and(2), tok(KW_ADD1), rule(testlist))

The remaining arguments take on the same meaning. A rule without a compile function must be handled explicitly by all
rules that may have this rule as a node. Such NC-rules are usually used to express sub-parts of a complicated grammar
structure that cannot be expressed in a single rule.

Note: The macros DEF_RULE and DEF_RULE_NC take other arguments. For an in-depth understanding of supported
parameters, see py/grammar.h.

4.3. The Compiler 297

https://docs.python.org/3.5/reference/grammar.html
https://github.com/micropython/micropython/blob/master/py/grammar.h
https://github.com/micropython/micropython/blob/master/py/grammar.h

MicroPython Documentation, Release v1.20.0

4.3.2 Adding a lexical token

Every rule defined in the grammar should have a token associated with it that is defined in py/lexer.h. Add this token
by editing the _mp_token_kind_t enum:

typedef enum _mp_token_kind_t {
...
MP_TOKEN_KW_OR,
MP_TOKEN_KW_PASS,
MP_TOKEN_KW_RAISE,
MP_TOKEN_KW_RETURN,
MP_TOKEN_KW_TRY,
MP_TOKEN_KW_WHILE,
MP_TOKEN_KW_WITH,
MP_TOKEN_KW_YIELD,
MP_TOKEN_KW_ADD1,
...

} mp_token_kind_t;

Then also edit py/lexer.c to add the new keyword literal text:

STATIC const char *const tok_kw[] = {
...
"or",
"pass",
"raise",
"return",
"try",
"while",
"with",
"yield",
"add1",
...

};

Notice the keyword is named depending on what you want it to be. For consistency, maintain the naming standard
accordingly.

Note: The order of these keywords in py/lexer.c must match the order of tokens in the enum defined in py/
lexer.h.

4.3.3 Parsing

In the parsing stage the parser takes the tokens produced by the lexer and converts them to an abstract syntax tree (AST)
or parse tree. The implementation for the parser is defined in py/parse.c.
The parser also maintains a table of constants for use in different aspects of parsing, similar to what a symbol table does.
Several optimizations like constant folding on integers for most operations e.g. logical, binary, unary, etc, and optimizing
enhancements on parenthesis around expressions are performed during this phase, along with some optimizations on
strings.
It’s worth noting that docstrings are discarded and not accessible to the compiler. Even optimizations like string interning
are not applied to docstrings.

298 Chapter 4. MicroPython Internals

https://github.com/micropython/micropython/blob/master/py/parse.c
https://steemit.com/programming/@drifter1/writing-a-simple-compiler-on-my-own-symbol-table-basic-structure
http://compileroptimizations.com/category/constant_folding.htm
https://en.wikipedia.org/wiki/String_interning

MicroPython Documentation, Release v1.20.0

4.3.4 Compiler passes

Like many compilers, MicroPython compiles all code to MicroPython bytecode or native code. The functionality that
achieves this is implemented in py/compile.c. The most relevant method you should know about is this:

mp_obj_t mp_compile(mp_parse_tree_t *parse_tree, qstr source_file, bool is_repl) {
// Create a context for this module, and set its globals dict.
mp_module_context_t *context = m_new_obj(mp_module_context_t);
context->module.globals = mp_globals_get();

// Compile the input parse_tree to a raw-code structure.
mp_compiled_module_t cm;
cm.context = context;
mp_compile_to_raw_code(parse_tree, source_file, is_repl, &cm);

// Create and return a function object that executes the outer module.
return mp_make_function_from_raw_code(cm.rc, cm.context, NULL);

}

The compiler compiles the code in four passes: scope, stack size, code size and emit. Each pass runs the same C code
over the same AST data structure, with different things being computed each time based on the results of the previous
pass.

First pass

In the first pass, the compiler learns about the known identifiers (variables) and their scope, being global, local, closed
over, etc. In the same pass the emitter (bytecode or native code) also computes the number of labels needed for the
emitted code.

// Compile pass 1.
comp->emit = emit_bc;
comp->emit_method_table = &emit_bc_method_table;

uint max_num_labels = 0;
for (scope_t *s = comp->scope_head; s != NULL && comp->compile_error == MP_OBJ_NULL;␣
↪→s = s->next) {

if (s->emit_options == MP_EMIT_OPT_ASM) {
compile_scope_inline_asm(comp, s, MP_PASS_SCOPE);

} else {
compile_scope(comp, s, MP_PASS_SCOPE);

// Check if any implicitly declared variables should be closed over.
for (size_t i = 0; i < s->id_info_len; ++i) {

id_info_t *id = &s->id_info[i];
if (id->kind == ID_INFO_KIND_GLOBAL_IMPLICIT) {

scope_check_to_close_over(s, id);
}

}
}
...

}

4.3. The Compiler 299

https://github.com/micropython/micropython/blob/master/py/compile.c

MicroPython Documentation, Release v1.20.0

Second and third passes

The second and third passes involve computing the Python stack size and code size for the bytecode or native code. After
the third pass the code size cannot change, otherwise jump labels will be incorrect.

for (scope_t *s = comp->scope_head; s != NULL && comp->compile_error == MP_OBJ_NULL;␣
↪→s = s->next) {

...

// Pass 2: Compute the Python stack size.
compile_scope(comp, s, MP_PASS_STACK_SIZE);

// Pass 3: Compute the code size.
if (comp->compile_error == MP_OBJ_NULL) {

compile_scope(comp, s, MP_PASS_CODE_SIZE);
}

...
}

Just before pass two there is a selection for the type of code to be emitted, which can either be native or bytecode.

// Choose the emitter type.
switch (s->emit_options) {

case MP_EMIT_OPT_NATIVE_PYTHON:
case MP_EMIT_OPT_VIPER:

if (emit_native == NULL) {
emit_native = NATIVE_EMITTER(new)(&comp->compile_error, &comp->next_label,

↪→ max_num_labels);
}
comp->emit_method_table = NATIVE_EMITTER_TABLE;
comp->emit = emit_native;
break;

default:
comp->emit = emit_bc;
comp->emit_method_table = &emit_bc_method_table;
break;

}

The bytecode option is the default but something unique to note for the native code option is that there is another option
via VIPER. See the Emitting native code section for more details on viper annotations.
There is also support for inline assembly code, where assembly instructions are written as Python function calls but are
emitted directly as the corresponding machine code. This assembler has only three passes (scope, code size, emit) and
uses a different implementation, not the compile_scope function. See the inline assembler tutorial for more details.

300 Chapter 4. MicroPython Internals

https://docs.micropython.org/en/latest/pyboard/tutorial/assembler.html#pyboard-tutorial-assembler

MicroPython Documentation, Release v1.20.0

Fourth pass

The fourth pass emits the final code that can be executed, either bytecode in the virtual machine, or native code directly
by the CPU.

for (scope_t *s = comp->scope_head; s != NULL && comp->compile_error == MP_OBJ_NULL;␣
↪→s = s->next) {

...

// Pass 4: Emit the compiled bytecode or native code.
if (comp->compile_error == MP_OBJ_NULL) {

compile_scope(comp, s, MP_PASS_EMIT);
}

}

4.3.5 Emitting bytecode

Statements in Python code usually correspond to emitted bytecode, for example a + b generates “push a” then “push
b” then “binary op add”. Some statements do not emit anything but instead affect other things like the scope of variables,
for example global a.
The implementation of a function that emits bytecode looks similar to this:

void mp_emit_bc_unary_op(emit_t *emit, mp_unary_op_t op) {
emit_write_bytecode_byte(emit, 0, MP_BC_UNARY_OP_MULTI + op);

}

We use the unary operator expressions for an example here but the implementation details are similar for other
statements/expressions. The method emit_write_bytecode_byte() is a wrapper around the main function
emit_get_cur_to_write_bytecode() that all functions must call to emit bytecode.

4.3.6 Emitting native code

Similar to how bytecode is generated, there should be a corresponding function in py/emitnative.c for each code
statement:

STATIC void emit_native_unary_op(emit_t *emit, mp_unary_op_t op) {
vtype_kind_t vtype;
emit_pre_pop_reg(emit, &vtype, REG_ARG_2);
if (vtype == VTYPE_PYOBJ) {

emit_call_with_imm_arg(emit, MP_F_UNARY_OP, op, REG_ARG_1);
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);

} else {
adjust_stack(emit, 1);
EMIT_NATIVE_VIPER_TYPE_ERROR(emit,

MP_ERROR_TEXT("unary op %q not implemented"), mp_unary_op_method_
↪→name[op]);

}
}

The difference here is that we have to handle viper typing. Viper annotations allow us to handle more than one type of
variable. By default all variables are Python objects, but with viper a variable can also be declared as a machine-typed
variable like a native integer or pointer. Viper can be thought of as a superset of Python, where normal Python objects
are handled as usual, while native machine variables are handled in an optimised way by using direct machine instructions

4.3. The Compiler 301

MicroPython Documentation, Release v1.20.0

for the operations. Viper typing may break Python equivalence because, for example, integers become native integers
and can overflow (unlike Python integers which extend automatically to arbitrary precision).

4.4 Memory Management

Unlike programming languages such as C/C++, MicroPython hides memory management details from the developer by
supporting automatic memory management. Automatic memory management is a technique used by operating systems
or applications to automatically manage the allocation and deallocation of memory. This eliminates challenges such as
forgetting to free the memory allocated to an object. Automatic memory management also avoids the critical issue of
using memory that is already released. Automatic memory management takes many forms, one of them being garbage
collection (GC).
The garbage collector usually has two responsibilities;

1. Allocate new objects in available memory.
2. Free unused memory.

There are many GC algorithms but MicroPython uses the Mark and Sweep policy for managing memory. This algorithm
has a mark phase that traverses the heap marking all live objects while the sweep phase goes through the heap reclaiming
all unmarked objects.
Garbage collection functionality in MicroPython is available through the gc built-in module:

>>> x = 5
>>> x
5
>>> import gc
>>> gc.enable()
>>> gc.mem_alloc()
1312
>>> gc.mem_free()
2071392
>>> gc.collect()
19
>>> gc.disable()
>>>

Even when gc.disable() is invoked, collection can be triggered with gc.collect().

4.4.1 The object model

All MicroPython objects are referred to by the mp_obj_t data type. This is usually word-sized (i.e. the same size as
a pointer on the target architecture), and can be typically 32-bit (STM32, nRF, ESP32, Unix x86) or 64-bit (Unix x64).
It can also be greater than a word-size for certain object representations, for example OBJ_REPR_D has a 64-bit sized
mp_obj_t on a 32-bit architecture.
An mp_obj_t represents a MicroPython object, for example an integer, float, type, dict or class instance. Some objects,
like booleans and small integers, have their value stored directly in the mp_obj_t value and do not require additional
memory. Other objects have their value store elsewhere in memory (for example on the garbage-collected heap) and their
mp_obj_t contains a pointer to that memory. A portion of mp_obj_t is the tag which tells what type of object it is.
See py/mpconfig.h for the specific details of the available representations.
Pointer tagging

302 Chapter 4. MicroPython Internals

https://en.wikipedia.org/wiki/Tracing_garbage_collection#Basic_algorithm

MicroPython Documentation, Release v1.20.0

Because pointers are word-aligned, when they are stored in an mp_obj_t the lower bits of this object handle will be
zero. For example on a 32-bit architecture the lower 2 bits will be zero:
********|********|********|******00

These bits are reserved for purposes of storing a tag. The tag stores extra information as opposed to introducing a new
field to store that information in the object, which may be inefficient. In MicroPython the tag tells if we are dealing with
a small integer, interned (small) string or a concrete object, and different semantics apply to each of these.
For small integers the mapping is this:
********|********|********|*******1

Where the asterisks hold the actual integer value. For an interned string or an immediate object (e.g. True) the layout
of the mp_obj_t value is, respectively:
********|********|********|*****010

********|********|********|*****110

While a concrete object that is none of the above takes the form:
********|********|********|******00

The stars here correspond to the address of the concrete object in memory.

4.4.2 Allocation of objects

The value of a small integer is stored directly in the mp_obj_t and will be allocated in-place, not on the heap or
elsewhere. As such, creation of small integers does not affect the heap. Similarly for interned strings that already have
their textual data stored elsewhere, and immediate values like None, False and True.
Everything else which is a concrete object is allocated on the heap and its object structure is such that a field is reserved
in the object header to store the type of the object.

+++++++++++
+ +
+ type + object header
+ +
+++++++++++
+ + object items
+ +
+ +
+++++++++++

The heap’s smallest unit of allocation is a block, which is four machine words in size (16 bytes on a 32-bit machine, 32
bytes on a 64-bit machine). Another structure also allocated on the heap tracks the allocation of objects in each block.
This structure is called a bitmap.

4.4. Memory Management 303

MicroPython Documentation, Release v1.20.0

The bitmap tracks whether a block is “free” or “in use” and use two bits to track this state for each block.
The mark-sweep garbage collector manages the objects allocated on the heap, and also utilises the bitmap to mark objects
that are still in use. See py/gc.c for the full implementation of these details.
Allocation: heap layout
The heap is arranged such that it consists of blocks in pools. A block can have different properties:

• ATB(allocation table byte): If set, then the block is a normal block
• FREE: Free block
• HEAD: Head of a chain of blocks
• TAIL: In the tail of a chain of blocks
• MARK : Marked head block
• FTB(finaliser table byte): If set, then the block has a finaliser

4.5 Implementing a Module

This chapter details how to implement a core module in MicroPython. MicroPython modules can be one of the following:
• Built-in module: A general module that is be part of the MicroPython repository.
• User module: A module that is useful for your specific project that you maintain in your own repository or private
codebase.

• Dynamic module: A module that can be deployed and imported at runtime to your device.
A module in MicroPython can be implemented in one of the following locations:

304 Chapter 4. MicroPython Internals

https://github.com/micropython/micropython/blob/master/py/gc.c

MicroPython Documentation, Release v1.20.0

• py/: A core library that mirrors core CPython functionality.
• extmod/: A CPython or MicroPython-specific module that is shared across multiple ports.
• ports/<port>/: A port-specific module.

Note: This chapter describes modules implemented in py/ or core modules. See Extending MicroPython in C for details
on implementing an external module. For details on port-specific modules, see Porting MicroPython.

4.5.1 Implementing a core module

Like CPython, MicroPython has core builtin modules that can be accessed through import statements. An example is the
gc module discussed in Memory Management.

>>> import gc
>>> gc.enable()
>>>

MicroPython has several other builtin standard/core modules like io, array etc. Adding a new core module involves
several modifications.
First, create the C file in the py/ directory. In this example we are adding a hypothetical new module subsystem in
the file modsubsystem.c:

#include "py/builtin.h"
#include "py/runtime.h"

#if MICROPY_PY_SUBSYSTEM

// info()
STATIC mp_obj_t py_subsystem_info(void) {

return MP_OBJ_NEW_SMALL_INT(42);
}
MP_DEFINE_CONST_FUN_OBJ_0(subsystem_info_obj, py_subsystem_info);

STATIC const mp_rom_map_elem_t mp_module_subsystem_globals_table[] = {
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_subsystem) },
{ MP_ROM_QSTR(MP_QSTR_info), MP_ROM_PTR(&subsystem_info_obj) },

};
STATIC MP_DEFINE_CONST_DICT(mp_module_subsystem_globals, mp_module_subsystem_globals_
↪→table);

const mp_obj_module_t mp_module_subsystem = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t *)&mp_module_subsystem_globals,

};

MP_REGISTER_MODULE(MP_QSTR_subsystem, mp_module_subsystem);

#endif

The implementation includes a definition of all functions related to the module and adds the functions to the
module’s global table in mp_module_subsystem_globals_table. It also creates the module object with
mp_module_subsystem. The module is then registered with the wider system via the MP_REGISTER_MODULE
macro.

4.5. Implementing a Module 305

MicroPython Documentation, Release v1.20.0

After building and running the modified MicroPython, the module should now be importable:

>>> import subsystem
>>> subsystem.info()
42
>>>

Ourinfo() function currently returns just a single number but can be extended to do anything. Similarly, more functions
can be added to this new module.

4.6 Optimizations

MicroPython uses several optimizations to save RAM but also ensure the efficient execution of programs. This chapter
discusses some of these optimizations.

Note: MicroPython string interning and Maps and Dictionaries details other optimizations on strings and dictionaries.

4.6.1 Frozen bytecode

When MicroPython loads Python code from the filesystem, it first has to parse the file into a temporary in-memory
representation, and then generate bytecode for execution, both of which are stored in the heap (in RAM). This can
lead to significant amounts of memory being used. The MicroPython cross compiler can be used to generate a .mpy
file, containing the pre-compiled bytecode for a Python module. This will still be loaded into RAM, but it avoids the
additional overhead of the parsing stage.
As a further optimisation, the pre-compiled bytecode from a .mpy file can be “frozen” into the firmware image as part
of the main firmware compilation process, which means that the bytecode will be executed from ROM. This can lead to
a significant memory saving, and reduce heap fragmentation.
See MicroPython manifest files for more information.

4.6.2 Variables

MicroPython processes local and global variables differently. Global variables are stored and looked up from a global
dictionary that is allocated on the heap (note that each module has its own separate dict, so separate namespace). Local
variables on the other hand are are stored on the Python value stack, which may live on the C stack or on the heap. They
are accessed directly by their offset within the Python stack, which is more efficient than a global lookup in a dict.
The length of global variable names also affects how much RAM is used as identifiers are stored in RAM. The shorter
the identifier, the less memory is used.
The other aspect is that const variables that start with an underscore are treated as proper constants and are not allocated
or added in a dictionary, hence saving some memory. These variables use const() from the MicroPython library.
Therefore:

from micropython import const

X = const(1)
_Y = const(2)
foo(X, _Y)

Compiles to:

306 Chapter 4. MicroPython Internals

MicroPython Documentation, Release v1.20.0

X = 1
foo(1, 2)

4.6.3 Allocation of memory

Most of the common MicroPython constructs are not allocated on the heap. However the following are:
• Dynamic data structures like lists, mappings, etc;
• Functions, classes and object instances;
• imports; and
• First-time assignment of global variables (to create the slot in the global dict).

For a detailed discussion on a more user-centric perspective on optimization, see Maximising MicroPython speed

4.7 MicroPython string interning

MicroPython uses string interning to save both RAM and ROM. This avoids having to store duplicate copies of the same
string. Primarily, this applies to identifiers in your code, as something like a function or variable name is very likely to
appear in multiple places in the code. In MicroPython an interned string is called a QSTR (uniQue STRing).
A QSTR value (with type qstr) is a index into a linked list of QSTR pools. QSTRs store their length and a hash of
their contents for fast comparison during the de-duplication process. All bytecode operations that work with strings use
a QSTR argument.

4.7.1 Compile-time QSTR generation

In the MicroPython C code, any strings that should be interned in the final firmware are written as MP_QSTR_Foo. At
compile time this will evaluate to a qstr value that points to the index of "Foo" in the QSTR pool.
A multi-step process in the Makefile makes this work. In summary this process has three parts:

1. Find all MP_QSTR_Foo tokens in the code.
2. Generate a static QSTR pool containing all the string data (including lengths and hashes).
3. Replace all MP_QSTR_Foo (via the preprocessor) with their corresponding index.

MP_QSTR_Foo tokens are searched for in two sources:
1. All files referenced in $(SRC_QSTR). This is all C code (i.e. py, extmod, ports/stm32) but not including

third-party code such as lib.
2. Additional $(QSTR_GLOBAL_DEPENDENCIES) (which includes mpconfig*.h).

Note: frozen_mpy.c (generated by mpy-tool.py) has its own QSTR generation and pool.
Some additional strings that can’t be expressed using the MP_QSTR_Foo syntax (e.g. they contain non-alphanumeric
characters) are explicitly provided in qstrdefs.h and qstrdefsport.h via the $(QSTR_DEFS) variable.
Processing happens in the following stages:

1. qstr.i.last is the concatenation of putting every single input file through the C pre-processor. This means
that any conditionally disabled code will be removed, and macros expanded. This means we don’t add strings to
the pool that won’t be used in the final firmware. Because at this stage (thanks to the NO_QSTR macro added by
QSTR_GEN_CFLAGS) there is no definition for MP_QSTR_Foo it passes through this stage unaffected. This file

4.7. MicroPython string interning 307

https://docs.micropython.org/en/latest/reference/speed_python.html
https://en.wikipedia.org/wiki/String_interning

MicroPython Documentation, Release v1.20.0

also includes comments from the preprocessor that include line number information. Note that this step only uses
files that have changed, which means that qstr.i.last will only contain data from files that have changed since
the last compile.

2. qstr.split is an empty file created after running makeqstrdefs.py split on qstr.i.last. It’s just used
as a dependency to indicate that the step ran. This script outputs one file per input C file, genhdr/qstr/.
..file.c.qstr, which contains only the matched QSTRs. Each QSTR is printed as Q(Foo). This step is
necessary to combine the existing files with the new data generated from the incremental update inqstr.i.last.

3. qstrdefs.collected.h is the output of concatenating genhdr/qstr/* using makeqstrdefs.py
cat. This is now the full set of MP_QSTR_Foo’s found in the code, now formatted as Q(Foo), one-per-line,
with duplicates. This file is only updated if the set of qstrs has changed. A hash of the QSTR data is written to
another file (qstrdefs.collected.h.hash) which allows it to track changes across builds.

4. Generate an enumeration, each entry of which maps a MP_QSTR_Foo to it’s corresponding index. It concatenates
qstrdefs.collected.h with qstrdefs*.h, then it transforms each line from Q(Foo) to "Q(Foo)"
so they pass through the preprocessor unchanged. Then the preprocessor is used to deal with any conditional
compilation in qstrdefs*.h. Then the transformation is undone back to Q(Foo), and saved as qstrdefs.
preprocessed.h.

5. qstrdefs.generated.h is the output of makeqstrdata.py. For each Q(Foo) in
qstrdefs.preprocessed.h (plus some extra hard-coded ones), it outputs QDEF(MP_QSTR_Foo, (const
byte*)"hash" "Foo").

Then in the main compile, two things happen with qstrdefs.generated.h:
1. In qstr.h, each QDEF becomes an entry in an enum, which makes MP_QSTR_Foo available to code and equal to

the index of that string in the QSTR table.
2. In qstr.c, the actual QSTR data table is generated as elements of the mp_qstr_const_pool->qstrs.

4.7.2 Run-time QSTR generation

Additional QSTR pools can be created at runtime so that strings can be added to them. For example, the code:

foo[x] = 3

Will need to create a QSTR for the value of x so it can be used by the “load attr” bytecode.
Also, when compiling Python code, identifiers and literals need to have QSTRs created. Note: only literals shorter than
10 characters become QSTRs. This is because a regular string on the heap always takes up a minimum of 16 bytes (one
GC block), whereas QSTRs allow them to be packed more efficiently into the pool.
QSTR pools (and the underlying “chunks” that store the string data) are allocated on-demand on the heap with a minimum
size.

4.8 Maps and Dictionaries

MicroPython dictionaries and maps use techniques called open addressing and linear probing. This chapter details both
of these methods.

308 Chapter 4. MicroPython Internals

MicroPython Documentation, Release v1.20.0

4.8.1 Open addressing

Open addressing is used to resolve collisions. Collisions are very common occurrences and happen when two items happen
to hash to the same slot or location. For example, given a hash setup as this:

If there is a request to fill slot 0 with 70, since the slot 0 is not empty, open addressing finds the next available slot in
the dictionary to service this request. This sequential search for an alternate location is called probing. There are several
sequence probing algorithms but MicroPython uses linear probing that is described in the next section.

4.8.2 Linear probing

Linear probing is one of the methods for finding an available address or slot in a dictionary. In MicroPython, it is used
with open addressing. To service the request described above, unlike other probing algorithms, linear probing assumes a
fixed interval of 1 between probes. The request will therefore be serviced by placing the item in the next free slot which
is slot 4 in our example:

The same methods i.e open addressing and linear probing are used to search for an item in a dictionary. Assume we want
to search for the data item 33. The computed hash value will be 2. Looking at slot 2 reveals 33, at this point, we return
True. Searching for 70 is quite different as there was a collision at the time of insertion. Therefore computing the hash
value is 0 which is currently holding 44. Instead of simply returning False, we perform a sequential search starting at
point 1 until the item 70 is found or we encounter a free slot. This is the general way of performing look-ups in hashes:

// not yet found, keep searching in this table
pos = (pos + 1) % set->alloc;

if (pos == start_pos) {
// search got back to starting position, so index is not in table
if (lookup_kind & MP_MAP_LOOKUP_ADD_IF_NOT_FOUND) {

if (avail_slot != NULL) {
// there was an available slot, so use that
set->used++;
*avail_slot = index;
return index;

} else {
// not enough room in table, rehash it
mp_set_rehash(set);

(continues on next page)

4.8. Maps and Dictionaries 309

https://en.wikipedia.org/wiki/Open_addressing

MicroPython Documentation, Release v1.20.0

(continued from previous page)
// restart the search for the new element
start_pos = pos = hash % set->alloc;

}
}

} else {
return MP_OBJ_NULL;

}

4.9 The public C API

The public C-API comprises functions defined in all C header files in the py/ directory. Most of the important core
runtime C APIs are exposed in runtime.h and obj.h.
The following is an example of public API functions from obj.h:

mp_obj_t mp_obj_new_list(size_t n, mp_obj_t *items);
mp_obj_t mp_obj_list_append(mp_obj_t self_in, mp_obj_t arg);
mp_obj_t mp_obj_list_remove(mp_obj_t self_in, mp_obj_t value);
void mp_obj_list_get(mp_obj_t self_in, size_t *len, mp_obj_t **items);

At its core, any functions and macros in header files make up the public API and can be used to access very low-level
details of MicroPython. Static inline functions in header files are fine too, such functions will be inlined in the code when
used.
Header files in the ports directory are only exposed to the functionality specific to a given port.

4.10 Extending MicroPython in C

This chapter describes options for implementing additional functionality in C, but from code written outside of the main
MicroPython repository. The first approach is useful for building your own custom firmware with some project-specific
additional modules or functions that can be accessed from Python. The second approach is for building modules that can
be loaded at runtime.
Please see the library section for more information on building core modules that live in the main MicroPython repository.

4.10.1 MicroPython external C modules

When developing modules for use with MicroPython you may find you run into limitations with the Python environment,
often due to an inability to access certain hardware resources or Python speed limitations.
If your limitations can’t be resolved with suggestions inMaximising MicroPython speed, writing some or all of your module
in C (and/or C++ if implemented for your port) is a viable option.
If your module is designed to access or work with commonly available hardware or libraries please consider implementing
it inside the MicroPython source tree alongside similar modules and submitting it as a pull request. If however you’re
targeting obscure or proprietary systems it maymakemore sense to keep this external to the mainMicroPython repository.
This chapter describes how to compile such external modules into the MicroPython executable or firmware image. Both
Make and CMake build tools are supported, and when writing an external module it’s a good idea to add the build files
for both of these tools so the module can be used on all ports. But when compiling a particular port you will only need to
use one method of building, either Make or CMake.

310 Chapter 4. MicroPython Internals

MicroPython Documentation, Release v1.20.0

An alternative approach is to use Native machine code in .mpy files which allows writing custom C code that is placed in
a .mpy file, which can be imported dynamically in to a running MicroPython system without the need to recompile the
main firmware.

Structure of an external C module

A MicroPython user C module is a directory with the following files:
• *.c / *.cpp / *.h source code files for your module.
These will typically include the low level functionality being implemented and the MicroPython binding functions
to expose the functions and module(s).
Currently the best reference for writing these functions/modules is to find similar modules within the MicroPython
tree and use them as examples.

• micropython.mk contains the Makefile fragment for this module.
$(USERMOD_DIR) is available in micropython.mk as the path to your module directory. As it’s rede-
fined for each c module, is should be expanded in your micropython.mk to a local make variable, eg EX-
AMPLE_MOD_DIR := $(USERMOD_DIR)

Your micropython.mk must add your modules source files to the SRC_USERMOD_C or
SRC_USERMOD_LIB_C variables. The former will be processed forMP_QSTR_ andMP_REGISTER_MODULE
definitions, the latter will not (e.g. helpers and library code that isn’t MicroPython-specific). These paths should
include your expaned copy of $(USERMOD_DIR), e.g.:

SRC_USERMOD_C += $(EXAMPLE_MOD_DIR)/modexample.c
SRC_USERMOD_LIB_C += $(EXAMPLE_MOD_DIR)/utils/algorithm.c

Similarly, use SRC_USERMOD_CXX and SRC_USERMOD_LIB_CXX for C++ source files.
If you have custom compiler options (like -I to add directories to search for header files), these should be added
to CFLAGS_USERMOD for C code and to CXXFLAGS_USERMOD for C++ code.

• micropython.cmake contains the CMake configuration for this module.
Inmicropython.cmake, youmay use${CMAKE_CURRENT_LIST_DIR} as the path to the current module.
Your micropython.cmake should define an INTERFACE library and associate your source files, compile
definitions and include directories with it. The library should then be linked to the usermod target.

add_library(usermod_cexample INTERFACE)

target_sources(usermod_cexample INTERFACE
${CMAKE_CURRENT_LIST_DIR}/examplemodule.c

)

target_include_directories(usermod_cexample INTERFACE
${CMAKE_CURRENT_LIST_DIR}

)

target_link_libraries(usermod INTERFACE usermod_cexample)

See below for full usage example.

4.10. Extending MicroPython in C 311

MicroPython Documentation, Release v1.20.0

Basic example

The cexample module provides examples for a function and a class. The cexample.add_ints(a, b) function
adds two integer args together and returns the result. The cexample.Timer() type creates timers that can be used
to measure the elapsed time since the object is instantiated.
The module can be found in the MicroPython source tree in the examples directory and has a source file and a Makefile
fragment with content as described above:

micropython/
└──examples/

└──usercmodule/
└──cexample/

├── examplemodule.c
├── micropython.mk
└── micropython.cmake

Refer to the comments in these files for additional explanation. Next to thecexamplemodule there’s alsocppexample
which works in the same way but shows one way of mixing C and C++ code in MicroPython.

Compiling the cmodule into MicroPython

To build such a module, compile MicroPython (see getting started), applying 2 modifications:
1. Set the build-time flag USER_C_MODULES to point to the modules you want to include. For ports that use Make

this variable should be a directory which is searched automatically for modules. For ports that use CMake this
variable should be a file which includes the modules to build. See below for details.

2. Enable the modules by setting the corresponding C preprocessor macro to 1. This is only needed if the modules
you are building are not automatically enabled.

For building the example modules which come with MicroPython, set USER_C_MODULES to the examples/
usercmodule directory for Make, or to examples/usercmodule/micropython.cmake for CMake.
For example, here’s how the to build the unix port with the example modules:

cd micropython/ports/unix
make USER_C_MODULES=../../examples/usercmodule

You may need to run make clean once at the start when including new user modules in the build. The build output
will show the modules found:

...
Including User C Module from ../../examples/usercmodule/cexample
Including User C Module from ../../examples/usercmodule/cppexample
...

For a CMake-based port such as rp2, this will look a little different (note that CMake is actually invoked by make):

cd micropython/ports/rp2
make USER_C_MODULES=../../examples/usercmodule/micropython.cmake

Again, you may need to run make clean first for CMake to pick up the user modules. The CMake build output lists
the modules by name:

...
Including User C Module(s) from ../../examples/usercmodule/micropython.cmake

(continues on next page)

312 Chapter 4. MicroPython Internals

https://github.com/micropython/micropython/tree/master/examples/usercmodule/cexample
https://github.com/micropython/micropython/wiki/Getting-Started

MicroPython Documentation, Release v1.20.0

(continued from previous page)
Found User C Module(s): usermod_cexample, usermod_cppexample
...

The contents of the top-level micropython.cmake can be used to control which modules are enabled.
For your own projects it’s more convenient to keep custom code out of the main MicroPython source tree, so a typical
project directory structure will look like this:

my_project/
├── modules/
│ ├── example1/
│ │ ├── example1.c
│ │ ├── micropython.mk
│ │ └── micropython.cmake
│ ├── example2/
│ │ ├── example2.c
│ │ ├── micropython.mk
│ │ └── micropython.cmake
│ └── micropython.cmake
└── micropython/

├──ports/
... ├──stm32/

...

When building with Make set USER_C_MODULES to the my_project/modules directory. For example, building
the stm32 port:

cd my_project/micropython/ports/stm32
make USER_C_MODULES=../../../modules

When building with CMake the top level micropython.cmake – found directly in the my_project/modules
directory – should include all of the modules you want to have available:

include(${CMAKE_CURRENT_LIST_DIR}/example1/micropython.cmake)
include(${CMAKE_CURRENT_LIST_DIR}/example2/micropython.cmake)

Then build with:

cd my_project/micropython/ports/esp32
make USER_C_MODULES=../../../../modules/micropython.cmake

Note that the esp32 port needs the extra .. for relative paths due to the location of its main CMakeLists.txt file.
You can also specify absolute paths to USER_C_MODULES.
All modules specified by the USER_C_MODULES variable (either found in this directory when using Make, or added via
include when using CMake) will be compiled, but only those which are enabled will be available for importing. User
modules are usually enabled by default (this is decided by the developer of the module), in which case there is nothing
more to do than set USER_C_MODULES as described above.
If a module is not enabled by default then the corresponding C preprocessor macro must be enabled. This macro name
can be found by searching for the MP_REGISTER_MODULE line in the module’s source code (it usually appears at the
end of the main source file). This macro should be surrounded by a #if X / #endif pair, and the configuration option
X must be set to 1 using CFLAGS_EXTRA to make the module available. If there is no #if X / #endif pair then the
module is enabled by default.
For example, the examples/usercmodule/cexample module is enabled by default so has the following line in
its source code:

4.10. Extending MicroPython in C 313

MicroPython Documentation, Release v1.20.0

MP_REGISTER_MODULE(MP_QSTR_cexample, example_user_cmodule);

Alternatively, to make this module disabled by default but selectable through a preprocessor configuration option, it would
be:

#if MODULE_CEXAMPLE_ENABLED
MP_REGISTER_MODULE(MP_QSTR_cexample, example_user_cmodule);
#endif

In this case the module is enabled by adding CFLAGS_EXTRA=-DMODULE_CEXAMPLE_ENABLED=1 to the make
command, or editing mpconfigport.h or mpconfigboard.h to add

#define MODULE_CEXAMPLE_ENABLED (1)

Note that the exact method depends on the port as they have different structures. If not done correctly it will compile but
importing will fail to find the module.

Module usage in MicroPython

Once built into your copy of MicroPython, the module can now be accessed in Python just like any other builtin module,
e.g.

import cexample
print(cexample.add_ints(1, 3))
should display 4

from cexample import Timer
from time import sleep_ms

watch = Timer()
sleep_ms(1000)
print(watch.time())
should display approximately 1000

4.10.2 Native machine code in .mpy files

This section describes how to build and work with .mpy files that contain native machine code from a language other than
Python. This allows you to write code in a language like C, compile and link it into a .mpy file, and then import this
file like a normal Python module. This can be used for implementing functionality which is performance critical, or for
including an existing library written in another language.
One of the main advantages of using native .mpy files is that native machine code can be imported by a script dynamically,
without the need to rebuild the main MicroPython firmware. This is in contrast toMicroPython external C modules which
also allows defining custom modules in C but they must be compiled into the main firmware image.
The focus here is on using C to build native modules, but in principle any language which can be compiled to stand-alone
machine code can be put into a .mpy file.
A native .mpy module is built using the mpy_ld.py tool, which is found in the tools/ directory of the project. This
tool takes a set of object files (.o files) and links them together to create a native .mpy files. It requires CPython 3 and the
library pyelftools v0.25 or greater.

314 Chapter 4. MicroPython Internals

MicroPython Documentation, Release v1.20.0

Supported features and limitations

A .mpy file can contain MicroPython bytecode and/or native machine code. If it contains native machine code then the
.mpy file has a specific architecture associated with it. Current supported architectures are (these are the valid options for
the ARCH variable, see below):

• x86 (32 bit)
• x64 (64 bit x86)
• armv6m (ARM Thumb, eg Cortex-M0)
• armv7m (ARM Thumb 2, eg Cortex-M3)
• armv7emsp (ARM Thumb 2, single precision float, eg Cortex-M4F, Cortex-M7)
• armv7emdp (ARM Thumb 2, double precision float, eg Cortex-M7)
• xtensa (non-windowed, eg ESP8266)
• xtensawin (windowed with window size 8, eg ESP32)

When compiling and linking the native .mpy file the architecture must be chosen and the corresponding file can only be
imported on that architecture. For more details about .mpy files see MicroPython .mpy files.
Native code must be compiled as position independent code (PIC) and use a global offset table (GOT), although the details
of this varies from architecture to architecture. When importing .mpy files with native code the import machinery is able
to do some basic relocation of the native code. This includes relocating text, rodata and BSS sections.
Supported features of the linker and dynamic loader are:

• executable code (text)
• read-only data (rodata), including strings and constant data (arrays, structs, etc)
• zeroed data (BSS)
• pointers in text to text, rodata and BSS
• pointers in rodata to text, rodata and BSS

The known limitations are:
• data sections are not supported; workaround: use BSS data and initialise the data values explicitly
• static BSS variables are not supported; workaround: use global BSS variables

So, if your C code has writable data, make sure the data is defined globally, without an initialiser, and only written to
within functions.
Linker limitation: the native module is not linked against the symbol table of the full MicroPython firmware. Rather, it is
linked against an explicit table of exported symbols found in mp_fun_table (in py/nativeglue.h), that is fixed
at firmware build time. It is thus not possible to simply call some arbitrary HAL/OS/RTOS/system function, for example.
New symbols can be added to the end of the table and the firmware rebuilt. The symbols also need to be added to tools/
mpy_ld.py’s fun_table dict in the same location. This allows mpy_ld.py to be able to pick the new symbols up
and provide relocations for them when the mpy is imported. Finally, if the symbol is a function, a macro or stub should
be added to py/dynruntime.h to make it easy to call the function.

4.10. Extending MicroPython in C 315

MicroPython Documentation, Release v1.20.0

Defining a native module

A native .mpy module is defined by a set of files that are used to build the .mpy. The filesystem layout consists of two
main parts, the source files and the Makefile:

• In the simplest case only a single C source file is required, which contains all the code that will be compiled into the
.mpy module. This C source code must include the py/dynruntime.h file to access the MicroPython dynamic
API, and must at least define a function called mpy_init. This function will be the entry point of the module,
called when the module is imported.
The module can be split into multiple C source files if desired. Parts of the module can also be implemented in
Python. All source files should be listed in the Makefile, by adding them to the SRC variable (see below). This
includes both C source files as well as any Python files which will be included in the resulting .mpy file.

• The Makefile contains the build configuration for the module and list the source files used to build the .mpy
module. It should define MPY_DIR as the location of the MicroPython repository (to find header files, the relevant
Makefile fragment, and the mpy_ld.py tool), MOD as the name of the module, SRC as the list of source files,
optionally specify the machine architecture via ARCH, and then include py/dynruntime.mk.

Minimal example

This section provides a fully working example of a simple module named factorial. This module provides a single
function factorial.factorial(x) which computes the factorial of the input and returns the result.
Directory layout:

factorial/
├── factorial.c
└── Makefile

The file factorial.c contains:

// Include the header file to get access to the MicroPython API
#include "py/dynruntime.h"

// Helper function to compute factorial
STATIC mp_int_t factorial_helper(mp_int_t x) {

if (x == 0) {
return 1;

}
return x * factorial_helper(x - 1);

}

// This is the function which will be called from Python, as factorial(x)
STATIC mp_obj_t factorial(mp_obj_t x_obj) {

// Extract the integer from the MicroPython input object
mp_int_t x = mp_obj_get_int(x_obj);
// Calculate the factorial
mp_int_t result = factorial_helper(x);
// Convert the result to a MicroPython integer object and return it
return mp_obj_new_int(result);

}
// Define a Python reference to the function above
STATIC MP_DEFINE_CONST_FUN_OBJ_1(factorial_obj, factorial);

// This is the entry point and is called when the module is imported
mp_obj_t mpy_init(mp_obj_fun_bc_t *self, size_t n_args, size_t n_kw, mp_obj_t *args) {

(continues on next page)

316 Chapter 4. MicroPython Internals

MicroPython Documentation, Release v1.20.0

(continued from previous page)
// This must be first, it sets up the globals dict and other things
MP_DYNRUNTIME_INIT_ENTRY

// Make the function available in the module's namespace
mp_store_global(MP_QSTR_factorial, MP_OBJ_FROM_PTR(&factorial_obj));

// This must be last, it restores the globals dict
MP_DYNRUNTIME_INIT_EXIT

}

The file Makefile contains:

Location of top-level MicroPython directory
MPY_DIR = ../../..

Name of module
MOD = factorial

Source files (.c or .py)
SRC = factorial.c

Architecture to build for (x86, x64, armv6m, armv7m, xtensa, xtensawin)
ARCH = x64

Include to get the rules for compiling and linking the module
include $(MPY_DIR)/py/dynruntime.mk

Compiling the module

The prerequisite tools needed to build a native .mpy file are:
• The MicroPython repository (at least the py/ and tools/ directories).
• CPython 3, and the library pyelftools (eg pip install 'pyelftools>=0.25').
• GNU make.
• A C compiler for the target architecture (if C source is used).
• Optionally mpy-cross, built from the MicroPython repository (if .py source is used).

Be sure to select the correct ARCH for the target you are going to run on. Then build with:

$ make

Without modifying the Makefile you can specify the target architecture via:

$ make ARCH=armv7m

4.10. Extending MicroPython in C 317

MicroPython Documentation, Release v1.20.0

Module usage in MicroPython

Once the module is built there should be a file called factorial.mpy. Copy this so it is accessible on the filesystem
of your MicroPython system and can be found in the import path. The module can now be accessed in Python just like
any other module, for example:

import factorial
print(factorial.factorial(10))
should display 3628800

Further examples

See examples/natmod/ for further examples which show many of the available features of native .mpy modules.
Such features include:

• using multiple C source files
• including Python code alongside C code
• rodata and BSS data
• memory allocation
• use of floating point
• exception handling
• including external C libraries

4.11 Porting MicroPython

TheMicroPython project contains several ports to different microcontroller families and architectures. The project repos-
itory has a ports directory containing a subdirectory for each supported port.
A port will typically contain definitions for multiple “boards”, each of which is a specific piece of hardware that that port
can run on, e.g. a development kit or device.
The minimal port is available as a simplified reference implementation of a MicroPython port. It can run on both the host
system and an STM32F4xx MCU.
In general, starting a port requires:

• Setting up the toolchain (configuring Makefiles, etc).
• Implementing boot configuration and CPU initialization.
• Initialising basic drivers required for development and debugging (e.g. GPIO, UART).
• Performing the board-specific configurations.
• Implementing the port-specific modules.

318 Chapter 4. MicroPython Internals

https://github.com/micropython/micropython/tree/master/ports
https://github.com/micropython/micropython/tree/master/ports/minimal

MicroPython Documentation, Release v1.20.0

4.11.1 Minimal MicroPython firmware

The best way to start porting MicroPython to a new board is by integrating a minimal MicroPython interpreter. For this
walkthrough, create a subdirectory for the new port in the ports directory:

$ cd ports
$ mkdir example_port

The basic MicroPython firmware is implemented in the main port file, e.g main.c:

#include "py/compile.h"
#include "py/gc.h"
#include "py/mperrno.h"
#include "py/stackctrl.h"
#include "shared/runtime/gchelper.h"
#include "shared/runtime/pyexec.h"

// Allocate memory for the MicroPython GC heap.
static char heap[4096];

int main(int argc, char **argv) {
// Initialise the MicroPython runtime.
mp_stack_ctrl_init();
gc_init(heap, heap + sizeof(heap));
mp_init();

// Start a normal REPL; will exit when ctrl-D is entered on a blank line.
pyexec_friendly_repl();

// Deinitialise the runtime.
gc_sweep_all();
mp_deinit();
return 0;

}

// Handle uncaught exceptions (should never be reached in a correct C implementation).
void nlr_jump_fail(void *val) {

for (;;) {
}

}

// Do a garbage collection cycle.
void gc_collect(void) {

gc_collect_start();
gc_helper_collect_regs_and_stack();
gc_collect_end();

}

// There is no filesystem so stat'ing returns nothing.
mp_import_stat_t mp_import_stat(const char *path) {

return MP_IMPORT_STAT_NO_EXIST;
}

// There is no filesystem so opening a file raises an exception.
mp_lexer_t *mp_lexer_new_from_file(const char *filename) {

mp_raise_OSError(MP_ENOENT);
}

4.11. Porting MicroPython 319

MicroPython Documentation, Release v1.20.0

We also need a Makefile at this point for the port:

Include the core environment definitions; this will set $(TOP).
include ../../py/mkenv.mk

Include py core make definitions.
include $(TOP)/py/py.mk
include $(TOP)/extmod/extmod.mk

Set CFLAGS and libraries.
CFLAGS += -I. -I$(BUILD) -I$(TOP)
LIBS += -lm

Define the required source files.
SRC_C = \

main.c \
mphalport.c \
shared/readline/readline.c \
shared/runtime/gchelper_generic.c \
shared/runtime/pyexec.c \
shared/runtime/stdout_helpers.c \

Define the required object files.
OBJ = $(PY_CORE_O) $(addprefix $(BUILD)/, $(SRC_C:.c=.o))

Define the top-level target, the main firmware.
all: $(BUILD)/firmware.elf

Define how to build the firmware.
$(BUILD)/firmware.elf: $(OBJ)

$(ECHO) "LINK $@"
(Q)(CC) $(LDFLAGS) -o $@ $^ $(LIBS)
(Q)(SIZE) $@

Include remaining core make rules.
include $(TOP)/py/mkrules.mk

Remember to use proper tabs to indent the Makefile.

4.11.2 MicroPython Configurations

After integrating the minimal code above, the next step is to create the MicroPython configuration files for the port. The
compile-time configurations are specified in mpconfigport.h and additional hardware-abstraction functions, such as
time keeping, in mphalport.h.
The following is an example of an mpconfigport.h file:

#include <stdint.h>

// Python internal features.
#define MICROPY_ENABLE_GC (1)
#define MICROPY_HELPER_REPL (1)
#define MICROPY_ERROR_REPORTING (MICROPY_ERROR_REPORTING_TERSE)
#define MICROPY_FLOAT_IMPL (MICROPY_FLOAT_IMPL_FLOAT)

// Enable u-modules to be imported with their standard name, like sys.
#define MICROPY_MODULE_WEAK_LINKS (1)

(continues on next page)

320 Chapter 4. MicroPython Internals

MicroPython Documentation, Release v1.20.0

(continued from previous page)

// Fine control over Python builtins, classes, modules, etc.
#define MICROPY_PY_ASYNC_AWAIT (0)
#define MICROPY_PY_BUILTINS_SET (0)
#define MICROPY_PY_ATTRTUPLE (0)
#define MICROPY_PY_COLLECTIONS (0)
#define MICROPY_PY_MATH (0)
#define MICROPY_PY_IO (0)
#define MICROPY_PY_STRUCT (0)

// Type definitions for the specific machine.

typedef intptr_t mp_int_t; // must be pointer size
typedef uintptr_t mp_uint_t; // must be pointer size
typedef long mp_off_t;

// We need to provide a declaration/definition of alloca().
#include <alloca.h>

// Define the port's name and hardware.
#define MICROPY_HW_BOARD_NAME "example-board"
#define MICROPY_HW_MCU_NAME "unknown-cpu"

#define MP_STATE_PORT MP_STATE_VM

This configuration file contains machine-specific configurations including aspects like if different MicroPython features
should be enabled e.g. #define MICROPY_ENABLE_GC (1). Making this Setting (0) disables the feature.
Other configurations include type definitions, root pointers, board name, microcontroller name etc.
Similarly, an minimal example mphalport.h file looks like this:

static inline void mp_hal_set_interrupt_char(char c) {}

4.11.3 Support for standard input/output

MicroPython requires at least a way to output characters, and to have a REPL it also requires a way to input characters.
Functions for this can be implemented in the file mphalport.c, for example:

#include <unistd.h>
#include "py/mpconfig.h"

// Receive single character, blocking until one is available.
int mp_hal_stdin_rx_chr(void) {

unsigned char c = 0;
int r = read(STDIN_FILENO, &c, 1);
(void)r;
return c;

}

// Send the string of given length.
void mp_hal_stdout_tx_strn(const char *str, mp_uint_t len) {

int r = write(STDOUT_FILENO, str, len);
(void)r;

}

4.11. Porting MicroPython 321

MicroPython Documentation, Release v1.20.0

These input and output functions have to be modified depending on the specific board API. This example uses the standard
input/output stream.

4.11.4 Building and running

At this stage the directory of the new port should contain:

ports/example_port/
├── main.c
├── Makefile
├── mpconfigport.h
├── mphalport.c
└── mphalport.h

The port can now be built by running make (or otherwise, depending on your system).
If you are using the default compiler settings in theMakefile given above then this will create an executable called build/
firmware.elf which can be executed directly. To get a functional REPL you may need to first configure the terminal
to raw mode:

$ stty raw opost -echo
$./build/firmware.elf

That should give a MicroPython REPL. You can then run commands like:

MicroPython v1.13 on 2021-01-01; example-board with unknown-cpu
>>> import sys
>>> sys.implementation
('micropython', (1, 13, 0))
>>>

Use Ctrl-D to exit, and then run reset to reset the terminal.

4.11.5 Adding a module to the port

To add a custom module like myport, first add the module definition in a file modmyport.c:

#include "py/runtime.h"

STATIC mp_obj_t myport_info(void) {
mp_printf(&mp_plat_print, "info about my port\n");
return mp_const_none;

}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(myport_info_obj, myport_info);

STATIC const mp_rom_map_elem_t myport_module_globals_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_myport) },
{ MP_ROM_QSTR(MP_QSTR_info), MP_ROM_PTR(&myport_info_obj) },

};
STATIC MP_DEFINE_CONST_DICT(myport_module_globals, myport_module_globals_table);

const mp_obj_module_t myport_module = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t *)&myport_module_globals,

};

(continues on next page)

322 Chapter 4. MicroPython Internals

MicroPython Documentation, Release v1.20.0

(continued from previous page)

MP_REGISTER_MODULE(MP_QSTR_myport, myport_module);

You will also need to edit the Makefile to add modmyport.c to the SRC_C list, and a new line adding the same file to
SRC_QSTR (so qstrs are searched for in this new file), like this:

SRC_C = \
main.c \
modmyport.c \
mphalport.c \
...

SRC_QSTR += modmyport.c

If all went correctly then, after rebuilding, you should be able to import the new module:

>>> import myport
>>> myport.info()
info about my port
>>>

4.11. Porting MicroPython 323

MicroPython Documentation, Release v1.20.0

324 Chapter 4. MicroPython Internals

CHAPTER

FIVE

MICROPYTHON LICENSE INFORMATION

The MIT License (MIT)
Copyright (c) 2013-2017 Damien P. George, and others
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

325

MicroPython Documentation, Release v1.20.0

326 Chapter 5. MicroPython license information

CHAPTER

SIX

QUICK REFERENCE FOR THE PYBOARD

The below pinout is for PYBv1.1. You can also view pinouts for other versions of the pyboard: PYBv1.0 or
PYBLITEv1.0-AC or PYBLITEv1.0.

Below is a quick reference for the pyboard. If it is your first time working with this board please consider reading the
following sections first:

327

http://micropython.org/resources/pybv10-pinout.jpg
http://micropython.org/resources/pyblitev10ac-pinout.jpg
http://micropython.org/resources/pyblitev10-pinout.jpg

MicroPython Documentation, Release v1.20.0

6.1 General information about the pyboard

Contents

• General information about the pyboard

– Local filesystem and SD card

– Boot modes

– Errors: flashing LEDs

– Guide for using the pyboard with Windows

– The pyboard hardware

– Datasheets for the components on the pyboard

– Datasheets for other components

6.1.1 Local filesystem and SD card

There is a small internal filesystem (a drive) on the pyboard, called /flash, which is stored within the microcontroller’s
flash memory. If a micro SD card is inserted into the slot, it is available as /sd.
When the pyboard boots up, it needs to choose a filesystem to boot from. If there is no SD card, then it uses the internal
filesystem /flash as the boot filesystem, otherwise, it uses the SD card /sd. After the boot, the current directory is
set to one of the directories above.
If needed, you can prevent the use of the SD card by creating an empty file called /flash/SKIPSD. If this file exists
when the pyboard boots up then the SD card will be skipped and the pyboard will always boot from the internal filesystem
(in this case the SD card won’t be mounted but you can still mount and use it later in your program using os.mount).
(Note that on older versions of the board, /flash is called 0:/ and /sd is called 1:/).
The boot filesystem is used for 2 things: it is the filesystem from which the boot.py and main.py files are searched
for, and it is the filesystem which is made available on your PC over the USB cable.
The filesystem will be available as a USB flash drive on your PC. You can save files to the drive, and edit boot.py and
main.py.
Remember to eject (on Linux, unmount) the USB drive before you reset your pyboard.

6.1.2 Boot modes

If you power up normally, or press the reset button, the pyboard will boot into standard mode: the boot.py file will be
executed first, then the USB will be configured, then main.py will run.
You can override this boot sequence by holding down the user switch as the board is booting up. Hold down user switch
and press reset, and then as you continue to hold the user switch, the LEDs will count in binary. When the LEDs have
reached the mode you want, let go of the user switch, the LEDs for the selected mode will flash quickly, and the board
will boot.
The modes are:

1. Green LED only, standard boot: run boot.py then main.py.
2. Orange LED only, safe boot: don’t run any scripts on boot-up.

328 Chapter 6. Quick reference for the pyboard

MicroPython Documentation, Release v1.20.0

3. Green and orange LED together, filesystem reset: resets the flash filesystem to its factory state, then boots in safe
mode.

If your filesystem becomes corrupt, boot into mode 3 to fix it. If resetting the filesystem while plugged into your compute
doesn’t work, you can try doing the same procedure while the board is plugged into a USB charger, or other USB power
supply without data connection.

6.1.3 Errors: flashing LEDs

There are currently 2 kinds of errors that you might see:
1. If the red and green LEDs flash alternatively, then a Python script (eg main.py) has an error. Use the

REPL to debug it.
2. If all 4 LEDs cycle on and off slowly, then there was a hard fault. This cannot be recovered from and you need to

do a hard reset.

6.1.4 Guide for using the pyboard with Windows

The following PDF guide gives information about using the pyboard with Windows, including setting up the serial prompt
and downloading new firmware using DFU programming: PDF guide.

6.1.5 The pyboard hardware

For the pyboard:
• v1.1

– PYBv1.1 schematics and layout (2.9MiB PDF)
• v1.0

– PYBv1.0 schematics and layout (2.4MiB PDF)
– PYBv1.0 metric dimensions (360KiB PDF)
– PYBv1.0 imperial dimensions (360KiB PDF)

For the official skin modules:
• LCD32MKv1.0 schematics (194KiB PDF)
• AMPv1.0 schematics (209KiB PDF)
• LCD160CRv1.0: see lcd160cr

6.1.6 Datasheets for the components on the pyboard

• The microcontroller: STM32F405RGT6 (link to manufacturer’s site)
• The accelerometer: Freescale MMA7660 (800kiB PDF)
• The LDO voltage regulator: Microchip MCP1802 (400kiB PDF)

6.1. General information about the pyboard 329

http://micropython.org/resources/Micro-Python-Windows-setup.pdf
https://micropython.org/resources/PYBv11.pdf
http://micropython.org/resources/PYBv10b.pdf
http://micropython.org/resources/PYBv10b-metric-dimensions.pdf
http://micropython.org/resources/PYBv10b-imperial-dimensions.pdf
http://micropython.org/resources/LCD32MKv10-schematics.pdf
http://micropython.org/resources/AMPv10-schematics.pdf
http://www.st.com/web/catalog/mmc/FM141/SC1169/SS1577/LN1035/PF252144
http://micropython.org/resources/datasheets/MMA7660FC.pdf
http://micropython.org/resources/datasheets/MCP1802-22053C.pdf

MicroPython Documentation, Release v1.20.0

6.1.7 Datasheets for other components

• The LCD display on the LCD touch-sensor skin: Newhaven Display NHD-C12832A1Z-FSW-FBW-3V3 (460KiB
PDF)

• The touch sensor chip on the LCD touch-sensor skin: Freescale MPR121 (280KiB PDF)
• The digital potentiometer on the audio skin: Microchip MCP4541 (2.7MiB PDF)

6.2 MicroPython tutorial for the pyboard

This tutorial is intended to get you started with your pyboard. All you need is a pyboard and a micro-USB cable to connect
it to your PC. If it is your first time, it is recommended to follow the tutorial through in the order below.

6.2.1 Introduction to the pyboard

To get the most out of your pyboard, there are a few basic things to understand about how it works.

Caring for your pyboard

Because the pyboard does not have a housing it needs a bit of care:
• Be gentle when plugging/unplugging the USB cable. Whilst the USB connector is soldered through the board and
is relatively strong, if it breaks off it can be very difficult to fix.

• Static electricity can shock the components on the pyboard and destroy them. If you experience a lot of static
electricity in your area (eg dry and cold climates), take extra care not to shock the pyboard. If your pyboard came
in a black plastic box, then this box is the best way to store and carry the pyboard as it is an anti-static box (it is
made of a conductive plastic, with conductive foam inside).

As long as you take care of the hardware, you should be okay. It’s almost impossible to break the software on the pyboard,
so feel free to play around with writing code as much as you like. If the filesystem gets corrupt, see below on how to reset
it. In the worst case you might need to reflash the MicroPython software, but that can be done over USB.

Layout of the pyboard

The micro USB connector is on the top right, the micro SD card slot on the top left of the board. There are 4 LEDs
between the SD slot and USB connector. The colours are: red on the bottom, then green, orange, and blue on the top.
There are 2 switches: the right one is the reset switch, the left is the user switch.

Plugging in and powering on

The pyboard can be powered via USB. Connect it to your PC via a micro USB cable. There is only one way that the cable
will fit. Once connected, the green LED on the board should flash quickly.

330 Chapter 6. Quick reference for the pyboard

http://micropython.org/resources/datasheets/NHD-C12832A1Z-FSW-FBW-3V3.pdf
http://micropython.org/resources/datasheets/MPR121.pdf
http://micropython.org/resources/datasheets/MCP4541-22107B.pdf

MicroPython Documentation, Release v1.20.0

Powering by an external power source

The pyboard can be powered by a battery or other external power source.
Be sure to connect the positive lead of the power supply to VIN, and ground to GND. There is no polarity pro-
tection on the pyboard so you must be careful when connecting anything to VIN.
The input voltage must be between 3.6V and 10V.

6.2.2 Running your first script

Let’s jump right in and get a Python script running on the pyboard. After all, that’s what it’s all about!

Connecting your pyboard

Connect your pyboard to your PC (Windows, Mac or Linux) with a micro USB cable. There is only one way that the
cable will connect, so you can’t get it wrong.

6.2. MicroPython tutorial for the pyboard 331

MicroPython Documentation, Release v1.20.0

When the pyboard is connected to your PC it will power on and enter the start up process (the boot process). The green
LED should light up for half a second or less, and when it turns off it means the boot process has completed.

332 Chapter 6. Quick reference for the pyboard

MicroPython Documentation, Release v1.20.0

Opening the pyboard USB drive

Your PC should now recognise the pyboard. It depends on the type of PC you have as to what happens next:
• Windows: Your pyboard will appear as a removable USB flash drive. Windows may automatically pop-up a
window, or you may need to go there using Explorer.
Windows will also see that the pyboard has a serial device, and it will try to automatically configure this device. If
it does, cancel the process. We will get the serial device working in the next tutorial.

• Mac: Your pyboard will appear on the desktop as a removable disc. It will probably be called PYBFLASH. Click
on it to open the pyboard folder.

• Linux: Your pyboard will appear as a removable medium. On Ubuntu it will mount automatically and pop-up a
window with the pyboard folder. On other Linux distributions, the pyboard may be mounted automatically, or you
may need to do it manually. At a terminal command line, type lsblk to see a list of connected drives, and then
mount /dev/sdb1 (replace sdb1 with the appropriate device). You may need to be root to do this.

Okay, so you should now have the pyboard connected as a USB flash drive, and a window (or command line) should be
showing the files on the pyboard drive.
The drive you are looking at is known as /flash by the pyboard, and should contain the following 4 files:

• boot.py – the various configuration options for the pyboard. It is executed when the pyboard boots up.
• main.py – the Python program to be run. It is executed after boot.py.
• README.txt – basic information about getting started with the pyboard. This provides pointers for new

users and can be safely deleted.
• pybcdc.inf – the Windows driver file to configure the serial USB device. More about this in the next tutorial.

Editing main.py

Now we are going to write our Python program, so open the main.py file in a text editor. On Windows you can use
notepad, or any other editor. On Mac and Linux, use your favourite text editor. With the file open you will see it contains
1 line:

main.py -- put your code here!

This line starts with a # character, which means that it is a comment. Such lines will not do anything, and are there for
you to write notes about your program.
Let’s add 2 lines to this main.py file, to make it look like this:

main.py -- put your code here!
import pyb
pyb.LED(4).on()

The first line we wrote says that we want to use the pyb module. This module contains all the functions and classes to
control the features of the pyboard.
The second line that we wrote turns the blue LED on: it first gets the LED class from the pyb module, creates LED
number 4 (the blue LED), and then turns it on.

6.2. MicroPython tutorial for the pyboard 333

http://micropython.org/resources/fresh-pyboard/boot.py
http://micropython.org/resources/fresh-pyboard/main.py
http://micropython.org/resources/fresh-pyboard/README.txt
http://micropython.org/resources/fresh-pyboard/pybcdc.inf

MicroPython Documentation, Release v1.20.0

Resetting the pyboard

To run this little script, you need to first save and close the main.py file, and then eject (or unmount) the pyboard USB
drive. Do this like you would a normal USB flash drive.
When the drive is safely ejected/unmounted you can get to the fun part: press the RST switch on the pyboard to reset and
run your script. The RST switch is the small black button just below the USB connector on the board, on the right edge.
When you press RST the green LED will flash quickly, and then the blue LED should turn on and stay on.
Congratulations! You have written and run your very first MicroPython program!

6.2.3 Getting a MicroPython REPL prompt

REPL stands for Read Evaluate Print Loop, and is the name given to the interactive MicroPython prompt that you can
access on the pyboard. Using the REPL is by far the easiest way to test out your code and run commands. You can use
the REPL in addition to writing scripts in main.py.
To use the REPL, you must connect to the serial USB device on the pyboard. How you do this depends on your operating
system.

Windows

You need to install the pyboard driver to use the serial USB device. The driver is on the pyboard’s USB flash drive, and
is called pybcdc.inf.
To install this driver you need to go to Device Manager for your computer, find the pyboard in the list of devices (it should
have a warning sign next to it because it’s not working yet), right click on the pyboard device, select Properties, then Install
Driver. You need to then select the option to find the driver manually (don’t use Windows auto update), navigate to the
pyboard’s USB drive, and select that. It should then install. After installing, go back to the Device Manager to find the
installed pyboard, and see which COM port it is (eg COM4). More comprehensive instructions can be found in the Guide
for pyboard on Windows (PDF). Please consult this guide if you are having problems installing the driver.
You now need to run your terminal program. You can use HyperTerminal if you have it installed, or download the free
program PuTTY: putty.exe. Using your serial program you must connect to the COM port that you found in the previous
step. With PuTTY, click on “Session” in the left-hand panel, then click the “Serial” radio button on the right, then enter
you COM port (eg COM4) in the “Serial Line” box. Finally, click the “Open” button.

Mac OS X

Open a terminal and run:

screen /dev/tty.usbmodem*

When you are finished and want to exit screen, type CTRL-A CTRL-\.

334 Chapter 6. Quick reference for the pyboard

http://micropython.org/resources/Micro-Python-Windows-setup.pdf
http://micropython.org/resources/Micro-Python-Windows-setup.pdf
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

MicroPython Documentation, Release v1.20.0

Linux

Open a terminal and run:

screen /dev/ttyACM0

You can also try picocom or minicom instead of screen. You may have to use /dev/ttyACM1 or a higher number
for ttyACM. And, you may need to give yourself the correct permissions to access this devices (eg group uucp or
dialout, or use sudo).

Using the REPL prompt

Now let’s try running some MicroPython code directly on the pyboard.
With your serial program open (PuTTY, screen, picocom, etc) you may see a blank screen with a flashing cursor. Press
Enter and you should be presented with aMicroPython prompt, i.e. >>>. Let’s make sure it is working with the obligatory
test:

>>> print("hello pyboard!")
hello pyboard!

In the above, you should not type in the >>> characters. They are there to indicate that you should type the text after it at
the prompt. In the end, once you have entered the text print("hello pyboard!") and pressed Enter, the output
on your screen should look like it does above.
If you already know some python you can now try some basic commands here.
If any of this is not working you can try either a hard reset or a soft reset; see below.
Go ahead and try typing in some other commands. For example:

>>> pyb.LED(1).on()
>>> pyb.LED(2).on()
>>> 1 + 2
3
>>> 1 / 2
0.5
>>> 20 * 'py'
'py'

Resetting the board

If something goes wrong, you can reset the board in two ways. The first is to press CTRL-D at the MicroPython prompt,
which performs a soft reset. You will see a message something like

>>>
MPY: sync filesystems
MPY: soft reboot
Micro Python v1.0 on 2014-05-03; PYBv1.0 with STM32F405RG
Type "help()" for more information.
>>>

If that isn’t working you can perform a hard reset (turn-it-off-and-on-again) by pressing the RST switch (the small black
button closest to the micro-USB socket on the board). This will end your session, disconnecting whatever program
(PuTTY, screen, etc) that you used to connect to the pyboard.

6.2. MicroPython tutorial for the pyboard 335

MicroPython Documentation, Release v1.20.0

If you are going to do a hard-reset, it’s recommended to first close your serial program and eject/unmount the pyboard
drive.

6.2.4 Turning on LEDs and basic Python concepts

The easiest thing to do on the pyboard is to turn on the LEDs attached to the board. Connect the board, and log in as
described in tutorial 1. We will start by turning and LED on in the interpreter, type the following

>>> myled = pyb.LED(1)
>>> myled.on()
>>> myled.off()

These commands turn the LED on and off.
This is all very well but we would like this process to be automated. Open the file MAIN.PY on the pyboard in your
favourite text editor. Write or paste the following lines into the file. If you are new to python, then make sure you get the
indentation correct since this matters!

led = pyb.LED(2)
while True:

led.toggle()
pyb.delay(1000)

When you save, the red light on the pyboard should turn on for about a second. To run the script, do a soft reset (CTRL-
D). The pyboard will then restart and you should see a green light continuously flashing on and off. Success, the first step
on your path to building an army of evil robots! When you are bored of the annoying flashing light then press CTRL-C
at your terminal to stop it running.
So what does this code do? First we need some terminology. Python is an object-oriented language, almost everything in
python is a class and when you create an instance of a class you get an object. Classes have methods associated to them.
A method (also called a member function) is used to interact with or control the object.
The first line of code creates an LED object which we have then called led. When we create the object, it takes a single
parameter which must be between 1 and 4, corresponding to the 4 LEDs on the board. The pyb.LED class has three
important member functions that we will use: on(), off() and toggle(). The other function that we use is pyb.delay() this
simply waits for a given time in milliseconds. Once we have created the LED object, the statement while True: creates
an infinite loop which toggles the led between on and off and waits for 1 second.
Exercise: Try changing the time between toggling the led and turning on a different LED.
Exercise: Connect to the pyboard directly, create a pyb.LED object and turn it on using the on() method.

A Disco on your pyboard

So far we have only used a single LED but the pyboard has 4 available. Let’s start by creating an object for each LED so
we can control each of them. We do that by creating a list of LEDS with a list comprehension.

leds = [pyb.LED(i) for i in range(1,5)]

If you call pyb.LED() with a number that isn’t 1,2,3,4 you will get an error message. Next we will set up an infinite loop
that cycles through each of the LEDs turning them on and off.

n = 0
while True:

n = (n + 1) % 4

(continues on next page)

336 Chapter 6. Quick reference for the pyboard

MicroPython Documentation, Release v1.20.0

(continued from previous page)
leds[n].toggle()
pyb.delay(50)

Here, n keeps track of the current LED and every time the loop is executed we cycle to the next n (the % sign is a modulus
operator that keeps n between 0 and 3.) Then we access the nth LED and toggle it. If you run this you should see each of
the LEDs turning on then all turning off again in sequence.
One problem you might find is that if you stop the script and then start it again that the LEDs are stuck on from the
previous run, ruining our carefully choreographed disco. We can fix this by turning all the LEDs off when we initialise
the script and then using a try/finally block. When you press CTRL-C, MicroPython generates a VCPInterrupt exception.
Exceptions normally mean something has gone wrong and you can use a try: command to “catch” an exception. In this
case it is just the user interrupting the script, so we don’t need to catch the error but just tell MicroPython what to do
when we exit. The finally block does this, and we use it to make sure all the LEDs are off. The full code is:

leds = [pyb.LED(i) for i in range(1,5)]
for l in leds:

l.off()

n = 0
try:

while True:
n = (n + 1) % 4
leds[n].toggle()
pyb.delay(50)

finally:
for l in leds:

l.off()

The Special LEDs

The yellow and blue LEDs are special. As well as turning them on and off, you can control their intensity using the
intensity() method. This takes a number between 0 and 255 that determines how bright it is. The following script makes
the blue LED gradually brighter then turns it off again.

led = pyb.LED(4)
intensity = 0
while True:

intensity = (intensity + 1) % 255
led.intensity(intensity)
pyb.delay(20)

You can call intensity() on LEDs 1 and 2 but they can only be off or on. 0 sets them off and any other number up to 255
turns them on.

6.2. MicroPython tutorial for the pyboard 337

MicroPython Documentation, Release v1.20.0

6.2.5 Switches, callbacks and interrupts

The pyboard has 2 small switches, labelled USR and RST. The RST switch is a hard-reset switch, and if you press it then
it restarts the pyboard from scratch, equivalent to turning the power off then back on.
The USR switch is for general use, and is controlled via a Switch object. To make a switch object do:

>>> sw = pyb.Switch()

Remember that you may need to type import pyb if you get an error that the name pyb does not exist.
With the switch object you can get its status:

>>> sw.value()
False

This will print False if the switch is not held, or True if it is held. Try holding the USR switch down while running
the above command.
There is also a shorthand notation to get the switch status, by “calling” the switch object:

>>> sw()
False

Switch callbacks

The switch is a very simple object, but it does have one advanced feature: the sw.callback() function. The callback
function sets up something to run when the switch is pressed, and uses an interrupt. It’s probably best to start with an
example before understanding how interrupts work. Try running the following at the prompt:

>>> sw.callback(lambda:print('press!'))

This tells the switch to print press! each time the switch is pressed down. Go ahead and try it: press the USR switch
and watch the output on your PC. Note that this print will interrupt anything you are typing, and is an example of an
interrupt routine running asynchronously.
As another example try:

>>> sw.callback(lambda:pyb.LED(1).toggle())

This will toggle the red LED each time the switch is pressed. And it will even work while other code is running.
To disable the switch callback, pass None to the callback function:

>>> sw.callback(None)

You can pass any function (that takes zero arguments) to the switch callback. Above we used the lambda feature of
Python to create an anonymous function on the fly. But we could equally do:

>>> def f():
... pyb.LED(1).toggle()
...
>>> sw.callback(f)

This creates a function called f and assigns it to the switch callback. You can do things this way when your function is
more complicated than a lambda will allow.

338 Chapter 6. Quick reference for the pyboard

MicroPython Documentation, Release v1.20.0

Note that your callback functions must not allocate any memory (for example they cannot create a tuple or list). Callback
functions should be relatively simple. If you need to make a list, make it beforehand and store it in a global variable (or
make it local and close over it). If you need to do a long, complicated calculation, then use the callback to set a flag which
some other code then responds to.

Technical details of interrupts

Let’s step through the details of what is happening with the switch callback. When you register a function with sw.
callback(), the switch sets up an external interrupt trigger (falling edge) on the pin that the switch is connected to.
This means that the microcontroller will listen on the pin for any changes, and the following will occur:

1. When the switch is pressed a change occurs on the pin (the pin goes from low to high), and the microcontroller
registers this change.

2. The microcontroller finishes executing the current machine instruction, stops execution, and saves its current state
(pushes the registers on the stack). This has the effect of pausing any code, for example your running Python script.

3. The microcontroller starts executing the special interrupt handler associated with the switch’s external trigger. This
interrupt handler gets the function that you registered with sw.callback() and executes it.

4. Your callback function is executed until it finishes, returning control to the switch interrupt handler.
5. The switch interrupt handler returns, and the microcontroller is notified that the interrupt has been dealt with.
6. The microcontroller restores the state that it saved in step 2.
7. Execution continues of the code that was running at the beginning. Apart from the pause, this code does not notice

that it was interrupted.
The above sequence of events gets a bit more complicated when multiple interrupts occur at the same time. In that case,
the interrupt with the highest priority goes first, then the others in order of their priority. The switch interrupt is set at the
lowest priority.

Further reading

For further information about using hardware interrupts see writing interrupt handlers.

6.2.6 The accelerometer

Here you will learn how to read the accelerometer and signal using LEDs states like tilt left and tilt right.

Using the accelerometer

The pyboard has an accelerometer (a tiny mass on a tiny spring) that can be used to detect the angle of the board and
motion. There is a different sensor for each of the x, y, z directions. To get the value of the accelerometer, create a
pyb.Accel() object and then call the x() method.

>>> accel = pyb.Accel()
>>> accel.x()
7

This returns a signed integer with a value between around -30 and 30. Note that the measurement is very noisy, this means
that even if you keep the board perfectly still there will be some variation in the number that you measure. Because of
this, you shouldn’t use the exact value of the x() method but see if it is in a certain range.
We will start by using the accelerometer to turn on a light if it is not flat.

6.2. MicroPython tutorial for the pyboard 339

MicroPython Documentation, Release v1.20.0

accel = pyb.Accel()
light = pyb.LED(3)
SENSITIVITY = 3

while True:
x = accel.x()
if abs(x) > SENSITIVITY:

light.on()
else:

light.off()

pyb.delay(100)

We create Accel and LED objects, then get the value of the x direction of the accelerometer. If the magnitude of x is
bigger than a certain value SENSITIVITY, then the LED turns on, otherwise it turns off. The loop has a small pyb.
delay() otherwise the LED flashes annoyingly when the value of x is close to SENSITIVITY. Try running this on
the pyboard and tilt the board left and right to make the LED turn on and off.
Exercise: Change the above script so that the blue LED gets brighter the more you tilt the pyboard. HINT: You
will need to rescale the values, intensity goes from 0-255.

Making a spirit level

The example above is only sensitive to the angle in the x direction but if we use the y() value and more LEDs we can
turn the pyboard into a spirit level.

xlights = (pyb.LED(2), pyb.LED(3))
ylights = (pyb.LED(1), pyb.LED(4))

accel = pyb.Accel()
SENSITIVITY = 3

while True:
x = accel.x()
if x > SENSITIVITY:

xlights[0].on()
xlights[1].off()

elif x < -SENSITIVITY:
xlights[1].on()
xlights[0].off()

else:
xlights[0].off()
xlights[1].off()

y = accel.y()
if y > SENSITIVITY:

ylights[0].on()
ylights[1].off()

elif y < -SENSITIVITY:
ylights[1].on()
ylights[0].off()

else:
ylights[0].off()
ylights[1].off()

pyb.delay(100)

340 Chapter 6. Quick reference for the pyboard

MicroPython Documentation, Release v1.20.0

We start by creating a tuple of LED objects for the x and y directions. Tuples are immutable objects in python which
means they can’t be modified once they are created. We then proceed as before but turn on a different LED for positive
and negative x values. We then do the same for the y direction. This isn’t particularly sophisticated but it does the job.
Run this on your pyboard and you should see different LEDs turning on depending on how you tilt the board.

6.2.7 Safe mode and factory reset

If something goes wrong with your pyboard, don’t panic! It is almost impossible for you to break the pyboard by pro-
gramming the wrong thing.
The first thing to try is to enter safe mode: this temporarily skips execution of boot.py and main.py and gives default
USB settings.
If you have problems with the filesystem you can do a factory reset, which restores the filesystem to its original state.

Safe mode

To enter safe mode, do the following steps:
1. Connect the pyboard to USB so it powers up.
2. Hold down the USR switch.
3. While still holding down USR, press and release the RST switch.
4. The LEDs will then cycle green to orange to green+orange and back again.
5. Keep holding down USR until only the orange LED is lit, and then let go of the USR switch.
6. The orange LED should flash quickly 4 times, and then turn off.
7. You are now in safe mode.

In safe mode, the boot.py and main.py files are not executed, and so the pyboard boots up with default settings. This
means you now have access to the filesystem (the USB drive should appear), and you can edit boot.py and main.py
to fix any problems.
Entering safe mode is temporary, and does not make any changes to the files on the pyboard.

Factory reset the filesystem

If you pyboard’s filesystem gets corrupted (for example, you forgot to eject/unmount it), or you have some code in boot.
py or main.py which you can’t escape from, then you can reset the filesystem.
Resetting the filesystem deletes all files on the internal pyboard storage (not the SD card), and restores the files boot.py,
main.py, README.txt and pybcdc.inf back to their original state.
To do a factory reset of the filesystem you follow a similar procedure as you did to enter safe mode, but release USR on
green+orange:

1. Connect the pyboard to USB so it powers up.
2. Hold down the USR switch.
3. While still holding down USR, press and release the RST switch.
4. The LEDs will then cycle green to orange to green+orange and back again.
5. Keep holding down USR until both the green and orange LEDs are lit, and then let go of the USR switch.
6. The green and orange LEDs should flash quickly 4 times.

6.2. MicroPython tutorial for the pyboard 341

MicroPython Documentation, Release v1.20.0

7. The red LED will turn on (so red, green and orange are now on).
8. The pyboard is now resetting the filesystem (this takes a few seconds).
9. The LEDs all turn off.
10. You now have a reset filesystem, and are in safe mode.
11. Press and release the RST switch to boot normally.

6.2.8 Making the pyboard act as a USB mouse

The pyboard is a USB device, and can configured to act as a mouse instead of the default USB flash drive.
To do this we must first edit the boot.py file to change the USB configuration. If you have not yet touched your
boot.py file then it will look something like this:

boot.py -- run on boot to configure USB and filesystem
Put app code in main.py

import pyb
#pyb.main('main.py') # main script to run after this one
#pyb.usb_mode('VCP+MSC') # act as a serial and a storage device
#pyb.usb_mode('VCP+HID') # act as a serial device and a mouse

To enable the mouse mode, uncomment the last line of the file, to make it look like:

pyb.usb_mode('VCP+HID') # act as a serial device and a mouse

If you already changed your boot.py file, then the minimum code it needs to work is:

import pyb
pyb.usb_mode('VCP+HID')

This tells the pyboard to configure itself as a VCP (Virtual COM Port, ie serial port) and HID (human interface device,
in our case a mouse) USB device when it boots up.
Eject/unmount the pyboard drive and reset it using the RST switch. Your PC should now detect the pyboard as a mouse!

Sending mouse events by hand

To get the py-mouse to do anything we need to send mouse events to the PC. We will first do this manually using the
REPL prompt. Connect to your pyboard using your serial program and type the following (no need to type the # and text
following it):

>>> hid = pyb.USB_HID()
>>> hid.send((0, 100, 0, 0)) # (button status, x-direction, y-direction, scroll)

Your mouse should move 100 pixels to the right! In the command above you are sending 4 pieces of information: button
status, x-direction, y-direction, and scroll. The number 100 is telling the PC that the mouse moved 100 pixels in the x
direction.
Let’s make the mouse oscillate left and right:

>>> import math
>>> def osc(n, d):
... for i in range(n):

(continues on next page)

342 Chapter 6. Quick reference for the pyboard

MicroPython Documentation, Release v1.20.0

(continued from previous page)
... hid.send((0, int(20 * math.sin(i / 10)), 0, 0))
... pyb.delay(d)
...
>>> osc(100, 50)

The first argument to the function osc is the number of mouse events to send, and the second argument is the delay (in
milliseconds) between events. Try playing around with different numbers.
Exercise: make the mouse go around in a circle.

Making a mouse with the accelerometer

Now lets make the mouse move based on the angle of the pyboard, using the accelerometer. The following code can be
typed directly at the REPL prompt, or put in the main.py file. Here, we’ll put in in main.py because to do that we
will learn how to go into safe mode.
At the moment the pyboard is acting as a serial USB device and an HID (a mouse). So you cannot access the filesystem
to edit your main.py file.
You also can’t edit your boot.py to get out of HID-mode and back to normal mode with a USB drive…
To get around this we need to go into safe mode. This was described in the [safe mode tutorial](tut-reset), but we repeat
the instructions here:

1. Hold down the USR switch.
2. While still holding down USR, press and release the RST switch.
3. The LEDs will then cycle green to orange to green+orange and back again.
4. Keep holding down USR until only the orange LED is lit, and then let go of the USR switch.
5. The orange LED should flash quickly 4 times, and then turn off.
6. You are now in safe mode.

In safe mode, the boot.py and main.py files are not executed, and so the pyboard boots up with default settings.
This means you now have access to the filesystem (the USB drive should appear), and you can edit main.py. (Leave
boot.py as-is, because we still want to go back to HID-mode after we finish editing main.py.)
In main.py put the following code:

import pyb

switch = pyb.Switch()
accel = pyb.Accel()
hid = pyb.USB_HID()

while not switch():
hid.send((0, accel.x(), accel.y(), 0))
pyb.delay(20)

Save your file, eject/unmount your pyboard drive, and reset it using the RST switch. It should now act as a mouse, and
the angle of the board will move the mouse around. Try it out, and see if you can make the mouse stand still!
Press the USR switch to stop the mouse motion.
You’ll note that the y-axis is inverted. That’s easy to fix: just put a minus sign in front of the y-coordinate in the hid.
send() line above.

6.2. MicroPython tutorial for the pyboard 343

MicroPython Documentation, Release v1.20.0

Restoring your pyboard to normal

If you leave your pyboard as-is, it’ll behave as a mouse everytime you plug it in. You probably want to change it back to
normal. To do this you need to first enter safe mode (see above), and then edit the boot.py file. In the boot.py file,
comment out (put a # in front of) the line with the VCP+HID setting, so it looks like:

#pyb.usb_mode('VCP+HID') # act as a serial device and a mouse

Save your file, eject/unmount the drive, and reset the pyboard. It is now back to normal operating mode.

6.2.9 The Timers

The pyboard has 14 timers which each consist of an independent counter running at a user-defined frequency. They can
be set up to run a function at specific intervals. The 14 timers are numbered 1 through 14, but 3 is reserved for internal
use, and 5 and 6 are used for servo and ADC/DAC control. Avoid using these timers if possible.
Let’s create a timer object:

>>> tim = pyb.Timer(4)

Now let’s see what we just created:

>>> tim
Timer(4)

The pyboard is telling us that tim is attached to timer number 4, but it’s not yet initialised. So let’s initialise it to trigger
at 10 Hz (that’s 10 times per second):

>>> tim.init(freq=10)

Now that it’s initialised, we can see some information about the timer:

>>> tim
Timer(4, prescaler=624, period=13439, mode=UP, div=1)

The information means that this timer is set to run at the peripheral clock speed divided by 624+1, and it will count from 0
up to 13439, at which point it triggers an interrupt, and then starts counting again from 0. These numbers are set to make
the timer trigger at 10 Hz: the source frequency of the timer is 84MHz (found by running tim.source_freq()) so
we get 84MHz / 625 / 13440 = 10Hz.

Timer counter

So what can we do with our timer? The most basic thing is to get the current value of its counter:

>>> tim.counter()
21504

This counter will continuously change, and counts up.

344 Chapter 6. Quick reference for the pyboard

MicroPython Documentation, Release v1.20.0

Timer callbacks

The next thing we can do is register a callback function for the timer to execute when it triggers (see the switch tutorial
for an introduction to callback functions):

>>> tim.callback(lambda t:pyb.LED(1).toggle())

This should start the red LED flashing right away. It will be flashing at 5 Hz (2 toggle’s are needed for 1 flash, so toggling
at 10 Hz makes it flash at 5 Hz). You can change the frequency by re-initialising the timer:

>>> tim.init(freq=20)

You can disable the callback by passing it the value None:

>>> tim.callback(None)

The function that you pass to callback must take 1 argument, which is the timer object that triggered. This allows you to
control the timer from within the callback function.
We can create 2 timers and run them independently:

>>> tim4 = pyb.Timer(4, freq=10)
>>> tim7 = pyb.Timer(7, freq=20)
>>> tim4.callback(lambda t: pyb.LED(1).toggle())
>>> tim7.callback(lambda t: pyb.LED(2).toggle())

Because the callbacks are proper hardware interrupts, we can continue to use the pyboard for other things while these
timers are running.

Making a microsecond counter

You can use a timer to create a microsecond counter, which might be useful when you are doing something which requires
accurate timing. We will use timer 2 for this, since timer 2 has a 32-bit counter (so does timer 5, but if you use timer 5
then you can’t use the Servo driver at the same time).
We set up timer 2 as follows:

>>> micros = pyb.Timer(2, prescaler=83, period=0x3fffffff)

The prescaler is set at 83, which makes this timer count at 1 MHz. This is because the CPU clock, running at 168 MHz,
is divided by 2 and then by prescaler+1, giving a frequency of 168 MHz/2/(83+1)=1 MHz for timer 2. The period is set
to a large number so that the timer can count up to a large number before wrapping back around to zero. In this case it
will take about 17 minutes before it cycles back to zero.
To use this timer, it’s best to first reset it to 0:

>>> micros.counter(0)

and then perform your timing:

>>> start_micros = micros.counter()

... do some stuff ...

>>> end_micros = micros.counter()

6.2. MicroPython tutorial for the pyboard 345

MicroPython Documentation, Release v1.20.0

6.2.10 Inline assembler

Here you will learn how to write inline assembler in MicroPython.
Note: this is an advanced tutorial, intended for those who already know a bit about microcontrollers and assembly lan-
guage.
MicroPython includes an inline assembler. It allows you to write assembly routines as a Python function, and you can call
them as you would a normal Python function.

Returning a value

Inline assembler functions are denoted by a special function decorator. Let’s start with the simplest example:

@micropython.asm_thumb
def fun():

movw(r0, 42)

You can enter this in a script or at the REPL. This function takes no arguments and returns the number 42. r0 is a register,
and the value in this register when the function returns is the value that is returned. MicroPython always interprets the
r0 as an integer, and converts it to an integer object for the caller.
If you run print(fun()) you will see it print out 42.

Accessing peripherals

For something a bit more complicated, let’s turn on an LED:

@micropython.asm_thumb
def led_on():

movwt(r0, stm.GPIOA)
movw(r1, 1 << 13)
strh(r1, [r0, stm.GPIO_BSRRL])

This code uses a few new concepts:
• stm is a module which provides a set of constants for easy access to the registers of the pyboard’s microcontroller.
Try running import stm and then help(stm) at the REPL. It will give you a list of all the available constants.

• stm.GPIOA is the address in memory of the GPIOA peripheral. On the pyboard, the red LED is on port A, pin
PA13.

• movwt moves a 32-bit number into a register. It is a convenience function that turns into 2 thumb instructions:
movw followed by movt. The movt also shifts the immediate value right by 16 bits.

• strh stores a half-word (16 bits). The instruction above stores the lower 16-bits of r1 into the memory location
r0 + stm.GPIO_BSRRL. This has the effect of setting high all those pins on port A for which the corresponding
bit in r0 is set. In our example above, the 13th bit in r0 is set, so PA13 is pulled high. This turns on the red LED.

346 Chapter 6. Quick reference for the pyboard

MicroPython Documentation, Release v1.20.0

Accepting arguments

Inline assembler functions can accept up to 4 arguments. If they are used, they must be named r0, r1, r2 and r3 to
reflect the registers and the calling conventions.
Here is a function that adds its arguments:

@micropython.asm_thumb
def asm_add(r0, r1):

add(r0, r0, r1)

This performs the computation r0 = r0 + r1. Since the result is put in r0, that is what is returned. Try asm_add(1,
2), it should return 3.

Loops

We can assign labels with label(my_label), and branch to them using b(my_label), or a conditional branch
like bgt(my_label).
The following example flashes the green LED. It flashes it r0 times.

@micropython.asm_thumb
def flash_led(r0):

get the GPIOA address in r1
movwt(r1, stm.GPIOA)

get the bit mask for PA14 (the pin LED #2 is on)
movw(r2, 1 << 14)

b(loop_entry)

label(loop1)

turn LED on
strh(r2, [r1, stm.GPIO_BSRRL])

delay for a bit
movwt(r4, 5599900)
label(delay_on)
sub(r4, r4, 1)
cmp(r4, 0)
bgt(delay_on)

turn LED off
strh(r2, [r1, stm.GPIO_BSRRH])

delay for a bit
movwt(r4, 5599900)
label(delay_off)
sub(r4, r4, 1)
cmp(r4, 0)
bgt(delay_off)

loop r0 times
sub(r0, r0, 1)
label(loop_entry)

(continues on next page)

6.2. MicroPython tutorial for the pyboard 347

MicroPython Documentation, Release v1.20.0

(continued from previous page)
cmp(r0, 0)
bgt(loop1)

Further reading

For further information about supported instructions of the inline assembler, see the reference documentation.

6.2.11 Power control

pyb.wfi() is used to reduce power consumption while waiting for an event such as an interrupt. You would use it in
the following situation:

while True:
do_some_processing()
pyb.wfi()

Control the frequency using pyb.freq():

pyb.freq(30000000) # set CPU frequency to 30MHz

6.2.12 Tutorials requiring extra components

Controlling hobby servo motors

There are 4 dedicated connection points on the pyboard for connecting up hobby servo motors (see eg Wikipedia). These
motors have 3 wires: ground, power and signal. On the pyboard you can connect them in the bottom right corner, with
the signal pin on the far right. Pins X1, X2, X3 and X4 are the 4 dedicated servo signal pins.

348 Chapter 6. Quick reference for the pyboard

http://en.wikipedia.org/wiki/Servo_%28radio_control%29

MicroPython Documentation, Release v1.20.0

In this picture there are male-male double adaptors to connect the servos to the header pins on the pyboard.
The ground wire on a servo is usually the darkest coloured one, either black or dark brown. The power wire will most
likely be red.
The power pin for the servos (labelled VIN) is connected directly to the input power source of the pyboard. When powered
via USB, VIN is powered through a diode by the 5V USB power line. Connect to USB, the pyboard can power at least 4
small to medium sized servo motors.

6.2. MicroPython tutorial for the pyboard 349

MicroPython Documentation, Release v1.20.0

If using a battery to power the pyboard and run servomotors, make sure it is not greater than 6V, since this is themaximum
voltage most servo motors can take. (Some motors take only up to 4.8V, so check what type you are using.)

Creating a Servo object

Plug in a servo to position 1 (the one with pin X1) and create a servo object using:

>>> servo1 = pyb.Servo(1)

To change the angle of the servo use the angle method:

>>> servo1.angle(45)
>>> servo1.angle(-60)

The angle here is measured in degrees, and ranges from about -90 to +90, depending on the motor. Calling angle
without parameters will return the current angle:

>>> servo1.angle()
-60

Note that for some angles, the returned angle is not exactly the same as the angle you set, due to rounding errors in setting
the pulse width.
You can pass a second parameter to the angle method, which specifies how long to take (in milliseconds) to reach the
desired angle. For example, to take 1 second (1000 milliseconds) to go from the current position to 50 degrees, use

>>> servo1.angle(50, 1000)

This command will return straight away and the servo will continue to move to the desired angle, and stop when it gets
there. You can use this feature as a speed control, or to synchronise 2 or more servo motors. If we have another servo
motor (servo2 = pyb.Servo(2)) then we can do

>>> servo1.angle(-45, 2000); servo2.angle(60, 2000)

This will move the servos together, making them both take 2 seconds to reach their final angles.
Note: the semicolon between the 2 expressions above is used so that they are executed one after the other when you press
enter at the REPL prompt. In a script you don’t need to do this, you can just write them one line after the other.

Continuous rotation servos

So far we have been using standard servos that move to a specific angle and stay at that angle. These servomotors are useful
to create joints of a robot, or things like pan-tilt mechanisms. Internally, the motor has a variable resistor (potentiometer)
which measures the current angle and applies power to the motor proportional to how far it is from the desired angle. The
desired angle is set by the width of a high-pulse on the servo signal wire. A pulse width of 1500 microsecond corresponds
to the centre position (0 degrees). The pulses are sent at 50 Hz, ie 50 pulses per second.
You can also get continuous rotation servomotors which turn continuously clockwise or counterclockwise. The direction
and speed of rotation is set by the pulse width on the signal wire. A pulse width of 1500 microseconds corresponds to a
stopped motor. A pulse width smaller or larger than this means rotate one way or the other, at a given speed.
On the pyboard, the servo object for a continuous rotation motor is the same as before. In fact, using angle you can set
the speed. But to make it easier to understand what is intended, there is another method called speed which sets the
speed:

350 Chapter 6. Quick reference for the pyboard

MicroPython Documentation, Release v1.20.0

>>> servo1.speed(30)

speed has the same functionality as angle: you can get the speed, set it, and set it with a time to reach the final speed.

>>> servo1.speed()
30
>>> servo1.speed(-20)
>>> servo1.speed(0, 2000)

The final command above will set the motor to stop, but take 2 seconds to do it. This is essentially a control over the
acceleration of the continuous servo.
A servo speed of 100 (or -100) is considered maximum speed, but actually you can go a bit faster than that, depending
on the particular motor.
The only difference between the angle and speedmethods (apart from the name) is the way the input numbers (angle
or speed) are converted to a pulse width.

Calibration

The conversion from angle or speed to pulse width is done by the servo object using its calibration values. To get the
current calibration, use

>>> servo1.calibration()
(640, 2420, 1500, 2470, 2200)

There are 5 numbers here, which have meaning:
1. Minimum pulse width; the smallest pulse width that the servo accepts.
2. Maximum pulse width; the largest pulse width that the servo accepts.
3. Centre pulse width; the pulse width that puts the servo at 0 degrees or 0 speed.
4. The pulse width corresponding to 90 degrees. This sets the conversion in the method angle of angle to pulse

width.
5. The pulse width corresponding to a speed of 100. This sets the conversion in the method speed of speed to pulse

width.
You can recalibrate the servo (change its default values) by using:

>>> servo1.calibration(700, 2400, 1510, 2500, 2000)

Of course, you would change the above values to suit your particular servo motor.

Fading LEDs

In addition to turning LEDs on and off, it is also possible to control the brightness of an LED using Pulse-Width Modu-
lation (PWM), a common technique for obtaining variable output from a digital pin. This allows us to fade an LED:

6.2. MicroPython tutorial for the pyboard 351

http://en.wikipedia.org/wiki/Pulse-width_modulation
http://en.wikipedia.org/wiki/Pulse-width_modulation

MicroPython Documentation, Release v1.20.0

Components

You will need:
• Standard 5 or 3 mm LED
• 100 Ohm resistor
• Wires
• Breadboard (optional, but makes things easier)

Connecting Things Up

For this tutorial, we will use the X1 pin. Connect one end of the resistor to X1, and the other end to the anode of the
LED, which is the longer leg. Connect the cathode of the LED to ground.

Code

By examining the Quick reference for the pyboard, we see that X1 is connected to channel 1 of timer 5 (TIM5 CH1).
Therefore we will first create a Timer object for timer 5, then create a TimerChannel object for channel 1:

from pyb import Timer
from time import sleep

timer 5 will be created with a frequency of 100 Hz
tim = pyb.Timer(5, freq=100)
tchannel = tim.channel(1, Timer.PWM, pin=pyb.Pin.board.X1, pulse_width=0)

352 Chapter 6. Quick reference for the pyboard

http://en.wikipedia.org/wiki/Breadboard

MicroPython Documentation, Release v1.20.0

Brightness of the LED in PWM is controlled by controlling the pulse-width, that is the amount of time the LED is on
every cycle. With a timer frequency of 100 Hz, each cycle takes 0.01 second, or 10 ms.
To achieve the fading effect shown at the beginning of this tutorial, we want to set the pulse-width to a small value, then
slowly increase the pulse-width to brighten the LED, and start over when we reach some maximum brightness:

maximum and minimum pulse-width, which corresponds to maximum
and minimum brightness
max_width = 200000
min_width = 20000

how much to change the pulse-width by each step
wstep = 1500
cur_width = min_width

while True:
tchannel.pulse_width(cur_width)

this determines how often we change the pulse-width. It is
analogous to frames-per-second
sleep(0.01)

cur_width += wstep

if cur_width > max_width:
cur_width = min_width

Breathing Effect

If we want to have a breathing effect, where the LED fades from dim to bright then bright to dim, then we simply need to
reverse the sign of wstep when we reach maximum brightness, and reverse it again at minimum brightness. To do this
we modify the while loop to be:

while True:
tchannel.pulse_width(cur_width)

sleep(0.01)

cur_width += wstep

if cur_width > max_width:
cur_width = max_width
wstep *= -1

elif cur_width < min_width:
cur_width = min_width
wstep *= -1

6.2. MicroPython tutorial for the pyboard 353

MicroPython Documentation, Release v1.20.0

Advanced Exercise

You may have noticed that the LED brightness seems to fade slowly, but increases quickly. This is because our eyes
interprets brightness logarithmically (Weber’s Law), while the LED’s brightness changes linearly, that is by the same
amount each time. How do you solve this problem? (Hint: what is the opposite of the logarithmic function?)

Addendum

We could have also used the digital-to-analog converter (DAC) to achieve the same effect. The PWM method has the
advantage that it drives the LED with the same current each time, but for different lengths of time. This allows better
control over the brightness, because LEDs do not necessarily exhibit a linear relationship between the driving current and
brightness.

The LCD and touch-sensor skin

Soldering and using the LCD and touch-sensor skin.

The following video shows how to solder the headers onto the LCD skin. At the end of the video, it shows you how to
correctly connect the LCD skin to the pyboard.
For circuit schematics and datasheets for the components on the skin see The pyboard hardware.

354 Chapter 6. Quick reference for the pyboard

http://www.telescope-optics.net/eye_intensity_response.htm

MicroPython Documentation, Release v1.20.0

Using the LCD

To get started using the LCD, try the following at the MicroPython prompt. Make sure the LCD skin is attached to the
pyboard as pictured at the top of this page.

>>> import pyb
>>> lcd = pyb.LCD('X')
>>> lcd.light(True)
>>> lcd.write('Hello uPy!\n')

You can make a simple animation using the code:

import pyb
lcd = pyb.LCD('X')
lcd.light(True)
for x in range(-80, 128):

lcd.fill(0)
lcd.text('Hello uPy!', x, 10, 1)
lcd.show()
pyb.delay(25)

Using the touch sensor

To read the touch-sensor data you need to use the I2C bus. The MPR121 capacitive touch sensor has address 90.
To get started, try:

>>> import pyb
>>> i2c = pyb.I2C(1, pyb.I2C.CONTROLLER)
>>> i2c.mem_write(4, 90, 0x5e)
>>> touch = i2c.mem_read(1, 90, 0)[0]

The first line above makes an I2C object, and the second line enables the 4 touch sensors. The third line reads the touch
status and the touch variable holds the state of the 4 touch buttons (A, B, X, Y).
There is a simple driver here which allows you to set the threshold and debounce parameters, and easily read the touch
status and electrode voltage levels. Copy this script to your pyboard (either flash or SD card, in the top directory or lib/
directory) and then try:

>>> import pyb
>>> import mpr121
>>> m = mpr121.MPR121(pyb.I2C(1, pyb.I2C.CONTROLLER))
>>> for i in range(100):
... print(m.touch_status())
... pyb.delay(100)
...

This will continuously print out the touch status of all electrodes. Try touching each one in turn.
Note that if you put the LCD skin in the Y-position, then you need to initialise the I2C bus using:

>>> m = mpr121.MPR121(pyb.I2C(2, pyb.I2C.CONTROLLER))

There is also a demo which uses the LCD and the touch sensors together, and can be found here.

6.2. MicroPython tutorial for the pyboard 355

http://micropython.org/resources/examples/mpr121.py
http://micropython.org/resources/examples/lcddemo.py

MicroPython Documentation, Release v1.20.0

The AMP audio skin

Soldering and using the AMP audio skin.

The following video shows how to solder the headers, microphone and speaker onto the AMP skin.
For circuit schematics and datasheets for the components on the skin see The pyboard hardware.

Example code

The AMP skin has a speaker which is connected to DAC(1) via a small power amplifier. The volume of the amplifier is
controlled by a digital potentiometer, which is an I2C device with address 46 on the IC2(1) bus.
To set the volume, define the following function:

import pyb
def volume(val):

pyb.I2C(1, pyb.I2C.CONTROLLER).mem_write(val, 46, 0)

Then you can do:

>>> volume(0) # minimum volume
>>> volume(127) # maximum volume

To play a sound, use the write_timed method of the DAC object. For example:

import math
from pyb import DAC

create a buffer containing a sine-wave
buf = bytearray(100)
for i in range(len(buf)):

buf[i] = 128 + int(127 * math.sin(2 * math.pi * i / len(buf)))

output the sine-wave at 400Hz

(continues on next page)

356 Chapter 6. Quick reference for the pyboard

MicroPython Documentation, Release v1.20.0

(continued from previous page)
dac = DAC(1)
dac.write_timed(buf, 400 * len(buf), mode=DAC.CIRCULAR)

You can also play WAV files using the Python wave module. You can get the wave module here and you will also need
the chunk module available here. Put these on your pyboard (either on the flash or the SD card in the top-level directory).
You will need an 8-bit WAV file to play, such as this one, or to convert any file you have with the command:

avconv -i original.wav -ar 22050 -codec pcm_u8 test.wav

Then you can do:

>>> import wave
>>> from pyb import DAC
>>> dac = DAC(1)
>>> f = wave.open('test.wav')
>>> dac.write_timed(f.readframes(f.getnframes()), f.getframerate())

This should play the WAV file. Note that this will read the whole file into RAM so it has to be small enough to fit in it.
To play larger wave files you will have to use the micro-SD card to store it. Also the file must be read and sent to the
DAC in small chunks that will fit the RAM limit of the microcontroller. Here is an example function that can play 8-bit
wave files with up to 16kHz sampling:

import wave
from pyb import DAC
from pyb import delay
dac = DAC(1)

def play(filename):
f = wave.open(filename, 'r')
total_frames = f.getnframes()
framerate = f.getframerate()

for position in range(0, total_frames, framerate):
f.setpos(position)
dac.write_timed(f.readframes(framerate), framerate)
delay(1000)

This function reads one second worth of data and sends it to DAC. It then waits one second and moves the file cursor to
the new position to read the next second of data in the next iteration of the for-loop. It plays one second of audio at a
time every one second.

6.2. MicroPython tutorial for the pyboard 357

http://micropython.org/resources/examples/wave.py
http://micropython.org/resources/examples/chunk.py
http://micropython.org/resources/examples/test.wav

MicroPython Documentation, Release v1.20.0

The LCD160CR skin

This tutorial shows how to get started using the LCD160CR skin.

For detailed documentation of the driver for the display see the lcd160cr module.

Plugging in the display

The display can be plugged directly into a pyboard (all pyboard versions are supported). You plug the display onto the
top of the pyboard either in the X or Y positions. The display should cover half of the pyboard. See the picture above for
how to achieve this; the left half of the picture shows the X position, and the right half shows the Y position.

Getting the driver

You can control the display directly using a power/enable pin and an I2C bus, but it is much more convenient to use the
driver provided by the lcd160cr module. This driver is included in recent version of the pyboard firmware (see here).
You can also find the driver in the GitHub repository here, and to use this version you will need to copy the file to your
board, into a directory that is searched by import (usually the lib/ directory).
Once you have the driver installed you need to import it to use it:

import lcd160cr

358 Chapter 6. Quick reference for the pyboard

http://micropython.org/download
https://github.com/micropython/micropython/blob/master/drivers/display/lcd160cr.py

MicroPython Documentation, Release v1.20.0

Testing the display

There is a test program which you can use to test the features of the display, and which also serves as a basis to start
creating your own code that uses the LCD. This test program is available on GitHub here. Copy it to the board over USB
mass storage, or by using MicroPython remote control: mpremote.
To run the test from the MicroPython prompt do:

>>> import lcd160cr_test

It will then print some brief instructions. You will need to know which position your display is connected to (X or Y) and
then you can run (assuming you have the display on position X):

>>> test_all('X')

Drawing some graphics

You must first create an LCD160CR object which will control the display. Do this using:

>>> import lcd160cr
>>> lcd = lcd160cr.LCD160CR('X')

This assumes your display is connected in the X position. If it’s in the Y position then use lcd = lcd160cr.
LCD160CR('Y') instead.
To erase the screen and draw a line, try:

>>> lcd.set_pen(lcd.rgb(255, 0, 0), lcd.rgb(64, 64, 128))
>>> lcd.erase()
>>> lcd.line(10, 10, 50, 80)

The next example draws random rectangles on the screen. You can copy-and-paste it into the MicroPython prompt by
first pressing “Ctrl-E” at the prompt, then “Ctrl-D” once you have pasted the text.

from random import randint
for i in range(1000):

fg = lcd.rgb(randint(128, 255), randint(128, 255), randint(128, 255))
bg = lcd.rgb(randint(0, 128), randint(0, 128), randint(0, 128))
lcd.set_pen(fg, bg)
lcd.rect(randint(0, lcd.w), randint(0, lcd.h), randint(10, 40), randint(10, 40))

Using the touch sensor

The display includes a resistive touch sensor that can report the position (in pixels) of a single force-based touch on the
screen. To see if there is a touch on the screen use:

>>> lcd.is_touched()

This will return either False or True. Run the above command while touching the screen to see the result.
To get the location of the touch you can use the method:

>>> lcd.get_touch()

6.2. MicroPython tutorial for the pyboard 359

https://github.com/micropython/micropython/blob/master/drivers/display/lcd160cr_test.py

MicroPython Documentation, Release v1.20.0

This will return a 3-tuple, with the first entry being 0 or 1 depending on whether there is currently anything touching the
screen (1 if there is), and the second and third entries in the tuple being the x and y coordinates of the current (or most
recent) touch.

Directing the MicroPython output to the display

The display supports input from a UART and implements basic VT100 commands, which means it can be used as a
simple, general purpose terminal. Let’s set up the pyboard to redirect its output to the display.
First you need to create a UART object:

>>> import pyb
>>> uart = pyb.UART('XA', 115200)

This assumes your display is connected to position X. If it’s on position Y then use uart = pyb.UART('YA',
115200) instead.
Now, connect the REPL output to this UART:

>>> pyb.repl_uart(uart)

From now on anything you type at the MicroPython prompt, and any output you receive, will appear on the display.
No set-up commands are required for this mode to work and you can use the display to monitor the output of any UART,
not just from the pyboard. All that is needed is for the display to have power, ground and the power/enable pin driven
high. Then any characters on the display’s UART input will be printed to the screen. You can adjust the UART baudrate
from the default of 115200 using the set_uart_baudrate method.

6.2.13 Tips, tricks and useful things to know

Debouncing a pin input

A pin used as input from a switch or other mechanical device can have a lot of noise on it, rapidly changing from low to
high when the switch is first pressed or released. This noise can be eliminated using a capacitor (a debouncing circuit). It
can also be eliminated using a simple function that makes sure the value on the pin is stable.
The following function does just this. It gets the current value of the given pin, and then waits for the value to change.
The new pin value must be stable for a continuous 20ms for it to register the change. You can adjust this time (to say
50ms) if you still have noise.

import pyb

def wait_pin_change(pin):
wait for pin to change value
it needs to be stable for a continuous 20ms
cur_value = pin.value()
active = 0
while active < 20:

if pin.value() != cur_value:
active += 1

else:
active = 0

pyb.delay(1)

Use it something like this:

360 Chapter 6. Quick reference for the pyboard

MicroPython Documentation, Release v1.20.0

import pyb

pin_x1 = pyb.Pin('X1', pyb.Pin.IN, pyb.Pin.PULL_DOWN)
while True:

wait_pin_change(pin_x1)
pyb.LED(4).toggle()

Making a UART - USB pass through

It’s as simple as:

import pyb
import select

def pass_through(usb, uart):
usb.setinterrupt(-1)
while True:

select.select([usb, uart], [], [])
if usb.any():

uart.write(usb.read(256))
if uart.any():

usb.write(uart.read(256))

pass_through(pyb.USB_VCP(), pyb.UART(1, 9600, timeout=0))

6.3 General board control

See pyb.

import pyb

pyb.repl_uart(pyb.UART(1, 9600)) # duplicate REPL on UART(1)
pyb.wfi() # pause CPU, waiting for interrupt
pyb.freq() # get CPU and bus frequencies
pyb.freq(60000000) # set CPU freq to 60MHz
pyb.stop() # stop CPU, waiting for external interrupt

6.4 Delay and timing

Use the time module:

import time

time.sleep(1) # sleep for 1 second
time.sleep_ms(500) # sleep for 500 milliseconds
time.sleep_us(10) # sleep for 10 microseconds
start = time.ticks_ms() # get value of millisecond counter
delta = time.ticks_diff(time.ticks_ms(), start) # compute time difference

6.3. General board control 361

MicroPython Documentation, Release v1.20.0

6.5 Internal LEDs

See pyb.LED.

from pyb import LED

led = LED(1) # 1=red, 2=green, 3=yellow, 4=blue
led.toggle()
led.on()
led.off()

LEDs 3 and 4 support PWM intensity (0-255)
LED(4).intensity() # get intensity
LED(4).intensity(128) # set intensity to half

6.6 Internal switch

See pyb.Switch.

from pyb import Switch

sw = Switch()
sw.value() # returns True or False
sw.callback(lambda: pyb.LED(1).toggle())

6.7 Pins and GPIO

See pyb.Pin.

from pyb import Pin

p_out = Pin('X1', Pin.OUT_PP)
p_out.high()
p_out.low()

p_in = Pin('X2', Pin.IN, Pin.PULL_UP)
p_in.value() # get value, 0 or 1

6.8 Servo control

See pyb.Servo.

from pyb import Servo

s1 = Servo(1) # servo on position 1 (X1, VIN, GND)
s1.angle(45) # move to 45 degrees
s1.angle(-60, 1500) # move to -60 degrees in 1500ms
s1.speed(50) # for continuous rotation servos

362 Chapter 6. Quick reference for the pyboard

MicroPython Documentation, Release v1.20.0

6.9 External interrupts

See pyb.ExtInt.

from pyb import Pin, ExtInt

callback = lambda e: print("intr")
ext = ExtInt(Pin('Y1'), ExtInt.IRQ_RISING, Pin.PULL_NONE, callback)

6.10 Timers

See pyb.Timer.

from pyb import Timer

tim = Timer(1, freq=1000)
tim.counter() # get counter value
tim.freq(0.5) # 0.5 Hz
tim.callback(lambda t: pyb.LED(1).toggle())

6.11 RTC (real time clock)

See pyb.RTC

from pyb import RTC

rtc = RTC()
rtc.datetime((2017, 8, 23, 1, 12, 48, 0, 0)) # set a specific date and time
rtc.datetime() # get date and time

6.12 PWM (pulse width modulation)

See pyb.Pin and pyb.Timer.

from pyb import Pin, Timer

p = Pin('X1') # X1 has TIM2, CH1
tim = Timer(2, freq=1000)
ch = tim.channel(1, Timer.PWM, pin=p)
ch.pulse_width_percent(50)

6.9. External interrupts 363

MicroPython Documentation, Release v1.20.0

6.13 ADC (analog to digital conversion)

See pyb.Pin and pyb.ADC.

from pyb import Pin, ADC

adc = ADC(Pin('X19'))
adc.read() # read value, 0-4095

6.14 DAC (digital to analog conversion)

See pyb.Pin and pyb.DAC.

from pyb import Pin, DAC

dac = DAC(Pin('X5'))
dac.write(120) # output between 0 and 255

6.15 UART (serial bus)

See pyb.UART .

from pyb import UART

uart = UART(1, 9600)
uart.write('hello')
uart.read(5) # read up to 5 bytes

6.16 SPI bus

See pyb.SPI.

from pyb import SPI

spi = SPI(1, SPI.CONTROLLER, baudrate=200000, polarity=1, phase=0)
spi.send('hello')
spi.recv(5) # receive 5 bytes on the bus
spi.send_recv('hello') # send and receive 5 bytes

364 Chapter 6. Quick reference for the pyboard

MicroPython Documentation, Release v1.20.0

6.17 I2C bus

Hardware I2C is available on the X and Y halves of the pyboard via I2C('X') and I2C('Y'). Alternatively pass in
the integer identifier of the peripheral, eg I2C(1). Software I2C is also available by explicitly specifying the scl and
sda pins instead of the bus name. For more details see machine.I2C.

from machine import I2C

i2c = I2C('X', freq=400000) # create hardware I2c object
i2c = I2C(scl='X1', sda='X2', freq=100000) # create software I2C object

i2c.scan() # returns list of peripheral addresses
i2c.writeto(0x42, 'hello') # write 5 bytes to peripheral with address 0x42
i2c.readfrom(0x42, 5) # read 5 bytes from peripheral

i2c.readfrom_mem(0x42, 0x10, 2) # read 2 bytes from peripheral 0x42, peripheral␣
↪→memory 0x10
i2c.writeto_mem(0x42, 0x10, 'xy') # write 2 bytes to peripheral 0x42, peripheral␣
↪→memory 0x10

Note: for legacy I2C support see pyb.I2C.

6.18 I2S bus

See machine.I2S.

from machine import I2S, Pin

i2s = I2S(2, sck=Pin('Y6'), ws=Pin('Y5'), sd=Pin('Y8'), mode=I2S.TX, bits=16,␣
↪→format=I2S.STEREO, rate=44100, ibuf=40000) # create I2S object
i2s.write(buf) # write buffer of audio samples to I2S device

i2s = I2S(1, sck=Pin('X5'), ws=Pin('X6'), sd=Pin('Y4'), mode=I2S.RX, bits=16,␣
↪→format=I2S.MONO, rate=22050, ibuf=40000) # create I2S object
i2s.readinto(buf) # fill buffer with audio samples from I2S device

The I2S class is currently available as a Technical Preview. During the preview period, feedback from users is encouraged.
Based on this feedback, the I2S class API and implementation may be changed.
PYBv1.0/v1.1 has one I2S bus with id=2. PYBD-SFxW has two I2S buses with id=1 and id=2. I2S is shared with SPI.

6.19 CAN bus (controller area network)

See pyb.CAN.

from pyb import CAN

can = CAN(1, CAN.LOOPBACK)
can.setfilter(0, CAN.LIST16, 0, (123, 124, 125, 126))
can.send('message!', 123) # send a message with id 123
can.recv(0) # receive message on FIFO 0

6.17. I2C bus 365

MicroPython Documentation, Release v1.20.0

6.20 Internal accelerometer

See pyb.Accel.

from pyb import Accel

accel = Accel()
print(accel.x(), accel.y(), accel.z(), accel.tilt())

366 Chapter 6. Quick reference for the pyboard

CHAPTER

SEVEN

QUICK REFERENCE FOR THE ESP8266

The Adafruit Feather HUZZAH board (image attribution: Adafruit).
Below is a quick reference for ESP8266-based boards. If it is your first time working with this board please consider
reading the following sections first:

367

MicroPython Documentation, Release v1.20.0

7.1 General information about the ESP8266 port

ESP8266 is a popular WiFi-enabled System-on-Chip (SoC) by Espressif Systems.

7.1.1 Multitude of boards

There is a multitude of modules and boards from different sources which carry the ESP8266 chip. MicroPython tries to
provide a generic port which would run on as many boards/modules as possible, but there may be limitations. Adafruit
Feather HUZZAH board is taken as a reference board for the port (for example, testing is performed on it). If you have
another board, please make sure you have a datasheet, schematics and other reference materials for your board handy to
look up various aspects of your board functioning.
To make a generic ESP8266 port and support as many boards as possible, the following design and implementation
decision were made:

• GPIO pin numbering is based on ESP8266 chip numbering, not some “logical” numbering of a particular board.
Please have the manual/pin diagram of your board at hand to find correspondence between your board pins and
actual ESP8266 pins. We also encourage users of various boards to share this mapping via MicroPython forum,
with the idea to collect community-maintained reference materials eventually.

• All pins which make sense to support, are supported by MicroPython (for example, pins which are used to connect
SPI flash are not exposed, as they’re unlikely useful for anything else, and operating on them will lead to board
lock-up). However, any particular board may expose only subset of pins. Consult your board reference manual.

• Some boards may lack external pins/internal connectivity to support ESP8266 deepsleep mode.

7.1.2 Technical specifications and SoC datasheets

The datasheets and other referencematerial for ESP8266 chip are available from the vendor site: http://bbs.espressif.com/
viewtopic.php?f=67&t=225 . They are the primary reference for the chip technical specifications, capabilities, operating
modes, internal functioning, etc.
For your convenience, some of technical specifications are provided below:

• Architecture: Xtensa lx106
• CPU frequency: 80MHz overclockable to 160MHz
• Total RAM available: 96KB (part of it reserved for system)
• BootROM: 64KB
• Internal FlashROM: None
• External FlashROM: code and data, via SPI Flash. Normal sizes 512KB-4MB.
• GPIO: 16 + 1 (GPIOs are multiplexed with other functions, including external FlashROM, UART, deep sleep
wake-up, etc.)

• UART: One RX/TX UART (no hardware handshaking), one TX-only UART.
• SPI: 2 SPI interfaces (one used for FlashROM).
• I2C: No native external I2C (bitbang implementation available on any pins).
• I2S: 1.
• Programming: using BootROM bootloader from UART. Due to external FlashROM and always-available
BootROM bootloader, ESP8266 is not brickable.

368 Chapter 7. Quick reference for the ESP8266

http://bbs.espressif.com/viewtopic.php?f=67&t=225
http://bbs.espressif.com/viewtopic.php?f=67&t=225

MicroPython Documentation, Release v1.20.0

7.1.3 Scarcity of runtime resources

ESP8266 has very modest resources (first of all, RAM memory). So, please avoid allocating too big container objects
(lists, dictionaries) and buffers. There is also no full-fledged OS to keep track of resources and automatically clean them
up, so that’s the task of a user/user application: please be sure to close open files, sockets, etc. as soon as possible after
use.

7.1.4 Boot process

On boot, MicroPython EPS8266 port executes _boot.py script from internal frozen modules. It mounts filesystem in
FlashROM, or if it’s not available, performs first-time setup of the module and creates the filesystem. This part of the
boot process is considered fixed, and not available for customization for end users (even if you build from source, please
refrain from changes to it; customization of early boot process is available only to advanced users and developers, who
can diagnose themselves any issues arising from modifying the standard process).
Once the filesystem is mounted, boot.py is executed from it. The standard version of this file is created during first-time
module set up and has commands to start aWebREPL daemon (disabled by default, configurable with webrepl_setup
module), etc. This file is customizable by end users (for example, you may want to set some parameters or add other
services which should be run on a module start-up). But keep in mind that incorrect modifications to boot.py may still
lead to boot loops or lock ups, requiring to reflash a module from scratch. (In particular, it’s recommended that you use
either webrepl_setup module or manual editing to configure WebREPL, but not both).
As a final step of boot procedure, main.py is executed from filesystem, if exists. This file is a hook to start up a user
application each time on boot (instead of going to REPL). For small test applications, you may name them directly as
main.py, and upload to module, but instead it’s recommended to keep your application(s) in separate files, and have
just the following in main.py:

import my_app
my_app.main()

This will allow to keep the structure of your application clear, as well as allow to install multiple applications on a board,
and switch among them.

7.1.5 Known Issues

Real-time clock

RTC in ESP8266 has very bad accuracy, drift may be seconds per minute. As a workaround, to measure short enough
intervals you can use time.time(), etc. functions, and for wall clock time, synchronize from the net using included
ntptime.py module.
Due to limitations of the ESP8266 chip the internal real-time clock (RTC) will overflow every 7:45h. If a long-term
working RTC time is required thentime() orlocaltime()must be called at least once within 7 hours. MicroPython
will then handle the overflow.

7.1. General information about the ESP8266 port 369

MicroPython Documentation, Release v1.20.0

Simultaneous operation of STA_IF and AP_IF

Simultaneous operation of STA_IF and AP_IF interfaces is supported.
However, due to restrictions of the hardware, there may be performance issues in the AP_IF, if the STA_IF is not
connected and searching. An application should manage these interfaces and for example deactivate the STA_IF in
environments where only the AP_IF is used.

Sockets and WiFi buffers overflow

Socket instances remain active until they are explicitly closed. This has two consequences. Firstly they occupy RAM,
so an application which opens sockets without closing them may eventually run out of memory. Secondly not properly
closed socket can cause the low-level part of the vendor WiFi stack to emit Lmac errors. This occurs if data comes in for
a socket and is not processed in a timely manner. This can overflow the WiFi stack input queue and lead to a deadlock.
The only recovery is by a hard reset.
The above may also happen after an application terminates and quits to the REPL for any reason including an excep-
tion. Subsequent arrival of data provokes the failure with the above error message repeatedly issued. So, sockets should
be closed in any case, regardless whether an application terminates successfully or by an exception, for example using
try/finally:

sock = socket(...)
try:

Use sock
finally:

sock.close()

SSL/TLS limitations

ESP8266 uses axTLS library, which is one of the smallest TLS libraries with compatible licensing. However, it also has
some known issues/limitations:

1. No support for Diffie-Hellman (DH) key exchange and Elliptic-curve cryptography (ECC). This means it can’t
work with sites which require the use of these features (it works ok with the typical sites that use RSA certificates).

2. Half-duplex communication nature. axTLS uses a single buffer for both sending and receiving, which leads to
considerable memory saving and works well with protocols like HTTP. But there may be problems with protocols
which don’t follow classic request-response model.

Besides axTLS’s own limitations, the configuration used for MicroPython is highly optimized for code size, which leads
to additional limitations (these may be lifted in the future):

3. Optimized RSA algorithms are not enabled, which may lead to slow SSL handshakes.
4. Session Reuse is not enabled, which means every connection must undergo the full, expensive SSL handshake.

Besides axTLS specific limitations described above, there’s another generic limitation with usage of TLS on the low-
memory devices:

5. The TLS standard specifies the maximum length of the TLS record (unit of TLS communication, the entire record
must be buffered before it can be processed) as 16KB. That’s almost half of the available ESP8266 memory, and
inside a more or less advanced application would be hard to allocate due to memory fragmentation issues. As a
compromise, a smaller buffer is used, with the idea that the most interesting usage for SSL would be accessing
various REST APIs, which usually require much smaller messages. The buffers size is on the order of 5KB, and
is adjusted from time to time, taking as a reference being able to access https://google.com . The smaller buffer
however means that some sites can’t be accessed using it, and it’s not possible to stream large amounts of data.

370 Chapter 7. Quick reference for the ESP8266

http://axtls.sourceforge.net/
https://google.com

MicroPython Documentation, Release v1.20.0

axTLS does have support for TLS’s Max Fragment Size extension, but no HTTPS website does, so use of the
extension is really only effective for local communication with other devices.

There are also some not implemented features specifically in MicroPython’s ssl module based on axTLS:
6. Certificates are not validated (this makes connections susceptible to man-in-the-middle attacks).
7. There is no support for client certificates (scheduled to be fixed in 1.9.4 release).

7.2 MicroPython tutorial for ESP8266

This tutorial is intended to get you started using MicroPython on the ESP8266 system-on-a-chip. If it is your first time
it is recommended to follow the tutorial through in the order below. Otherwise the sections are mostly self contained, so
feel free to skip to those that interest you.
The tutorial does not assume that you know Python, but it also does not attempt to explain any of the details of the Python
language. Instead it provides you with commands that are ready to run, and hopes that you will gain a bit of Python
knowledge along the way. To learn more about Python itself please refer to https://www.python.org.

7.2.1 Getting started with MicroPython on the ESP8266

Using MicroPython is a great way to get the most of your ESP8266 board. And vice versa, the ESP8266 chip is a
great platform for using MicroPython. This tutorial will guide you through setting up MicroPython, getting a prompt,
using WebREPL, connecting to the network and communicating with the Internet, using the hardware peripherals, and
controlling some external components.
Let’s get started!

Requirements

The first thing you need is a board with an ESP8266 chip. The MicroPython software supports the ESP8266 chip itself
and any board should work. The main characteristic of a board is howmuch flash it has, how the GPIO pins are connected
to the outside world, and whether it includes a built-in USB-serial convertor to make the UART available to your PC.
The minimum requirement for flash size is 1Mbyte. There is also a special build for boards with 512KB, but it is highly
limited comparing to the normal build: there is no support for filesystem, and thus features which depend on it won’t work
(WebREPL, mip, etc.). As such, 512KB build will be more interesting for users who build from source and fine-tune
parameters for their particular application.
Names of pins will be given in this tutorial using the chip names (eg GPIO0) and it should be straightforward to find
which pin this corresponds to on your particular board.

Powering the board

If your board has a USB connector on it then most likely it is powered through this when connected to your PC. Otherwise
you will need to power it directly. Please refer to the documentation for your board for further details.

7.2. MicroPython tutorial for ESP8266 371

https://www.python.org

MicroPython Documentation, Release v1.20.0

Getting the firmware

The first thing you need to do is download the most recent MicroPython firmware .bin file to load onto your ESP8266
device. You can download it from the MicroPython downloads page. From here, you have 3 main choices

• Stable firmware builds for 1024kb modules and above.
• Daily firmware builds for 1024kb modules and above.
• Daily firmware builds for 512kb modules.

If you are just starting with MicroPython, the best bet is to go for the Stable firmware builds. If you are an advanced,
experiencedMicroPython ESP8266 user who would like to follow development closely and help with testing new features,
there are daily builds (note: you actually may need some development experience, e.g. being ready to follow git history
to know what new changes and features were introduced).
Support for 512kb modules is provided on a feature preview basis. For end users, it’s recommended to use modules with
flash of 1024kb or more. As such, only daily builds for 512kb modules are provided.

Deploying the firmware

Once you have the MicroPython firmware (compiled code), you need to load it onto your ESP8266 device. There are
two main steps to do this: first you need to put your device in boot-loader mode, and second you need to copy across the
firmware. The exact procedure for these steps is highly dependent on the particular board and you will need to refer to its
documentation for details.
If you have a board that has a USB connector, a USB-serial convertor, and has the DTR and RTS pins wired in a special
way then deploying the firmware should be easy as all steps can be done automatically. Boards that have such features
include the Adafruit Feather HUZZAH and NodeMCU boards.
If you do not have such a board, you need keep GPIO0 pulled to ground and reset the device by pulling the reset pin to
ground and releasing it again to enter programming mode.
For best results it is recommended to first erase the entire flash of your device before putting on new MicroPython
firmware.
Currently we only support esptool.py to copy across the firmware. You can find this tool here: https://github.com/
espressif/esptool/, or install it using pip:

pip install esptool

Versions starting with 1.3 support both Python 2.7 and Python 3.4 (or newer). An older version (at least 1.2.1 is needed)
works fine but will require Python 2.7.
Any other flashing program should work, so feel free to try them out or refer to the documentation for your board to see
its recommendations.
Using esptool.py you can erase the flash with the command:

esptool.py --port /dev/ttyUSB0 erase_flash

And then deploy the new firmware using:

esptool.py --port /dev/ttyUSB0 --baud 460800 write_flash --flash_size=detect 0␣
↪→esp8266-20170108-v1.8.7.bin

You might need to change the “port” setting to something else relevant for your PC. You may also need to reduce the
baudrate if you get errors when flashing (eg down to 115200). The filename of the firmware should also match the file
that you have.

372 Chapter 7. Quick reference for the ESP8266

http://micropython.org/download#esp8266
https://github.com/espressif/esptool/
https://github.com/espressif/esptool/

MicroPython Documentation, Release v1.20.0

For some boards with a particular FlashROM configuration (e.g. some variants of a NodeMCU board) you may need to
manually set a compatible SPI Flash Mode. You’d usually pick the fastest option that is compatible with your device, but
the -fm dout option (the slowest option) should have the best compatibility:

esptool.py --port /dev/ttyUSB0 --baud 460800 write_flash --flash_size=detect -fm dout␣
↪→0 esp8266-20170108-v1.8.7.bin

If the above commands run without error then MicroPython should be installed on your board!
If you pulled GPIO0 manually to ground to enter programming mode, release it now and reset the device by again pulling
the reset pin to ground for a short duration.

Serial prompt

Once you have the firmware on the device you can access the REPL (Python prompt) over UART0 (GPIO1=TX,
GPIO3=RX), which might be connected to a USB-serial convertor, depending on your board. The baudrate is 115200.
The next part of the tutorial will discuss the prompt in more detail.

WiFi

After a fresh install and boot the device configures itself as a WiFi access point (AP) that you can connect to. The ESSID
is of the form MicroPython-xxxxxx where the x’s are replaced with part of the MAC address of your device (so will
be the same everytime, and most likely different for all ESP8266 chips). The password for the WiFi is micropythoN
(note the upper-case N). Its IP address will be 192.168.4.1 once you connect to its network. WiFi configuration will be
discussed in more detail later in the tutorial.

Troubleshooting installation problems

If you experience problems during flashing or with running firmware immediately after it, here are troubleshooting rec-
ommendations:

• Be aware of and try to exclude hardware problems. There are 2 common problems: bad power source quality
and worn-out/defective FlashROM. Speaking of power source, not just raw amperage is important, but also low
ripple and noise/EMI in general. If you experience issues with self-made or wall-wart style power supply, try USB
power from a computer. Unearthed power supplies are also known to cause problems as they source of increased
EMI (electromagnetic interference) - at the very least, and may lead to electrical devices breakdown. So, you are
advised to avoid using unearthed power connections when working with ESP8266 and other boards. In regard to
FlashROM hardware problems, there are independent (not related to MicroPython in any way) reports (e.g.) that
on some ESP8266 modules, FlashROM can be programmed as little as 20 times before programming errors occur.
This is much less than 100,000 programming cycles cited for FlashROM chips of a type used with ESP8266 by
reputable vendors, which points to either production rejects, or second-hand worn-out flash chips to be used on some
(apparently cheap) modules/boards. You may want to use your best judgement about source, price, documentation,
warranty, post-sales support for the modules/boards you purchase.

• The flashing instructions above use flashing speed of 460800 baud, which is good compromise between speed and
stability. However, depending on your module/board, USB-UART convertor, cables, host OS, etc., the above baud
rate may be too high and lead to errors. Try a more common 115200 baud rate instead in such cases.

• If lower baud rate didn’t help, you may want to try older version of esptool.py, which had a different programming
algorithm:

pip install esptool==1.0.1

7.2. MicroPython tutorial for ESP8266 373

https://github.com/espressif/esptool/wiki/SPI-Flash-Modes
http://internetofhomethings.com/homethings/?p=538

MicroPython Documentation, Release v1.20.0

This version doesn’t support --flash_size=detect option, so you will need to specify FlashROM size ex-
plicitly (in megabits). It also requires Python 2.7, so you may need to use pip2 instead of pip in the command
above.

• The --flash_size option in the commands above is mandatory. Omitting it will lead to a corrupted firmware.
• To catch incorrect flash content (e.g. from a defective sector on a chip), add --verify switch to the commands
above.

• Additionally, you can check the firmware integrity from a MicroPython REPL prompt (assuming you were able to
flash it and --verify option doesn’t report errors):

import esp
esp.check_fw()

If the last output value is True, the firmware is OK. Otherwise, it’s corrupted and need to be reflashed correctly.
• If you experience any issues with another flashing application (not esptool.py), try esptool.py, it is a generally
accepted flashing application in the ESP8266 community.

• If you still experience problems with even flashing the firmware, please refer to esptool.py project page, https:
//github.com/espressif/esptool for additional documentation and bug tracker where you can report problems.

• If you are able to flash firmware, but --verify option or esp.check_fw() return errors even after multiple
retries, you may have a defective FlashROM chip, as explained above.

7.2.2 Getting a MicroPython REPL prompt

REPL stands for Read Evaluate Print Loop, and is the name given to the interactive MicroPython prompt that you can
access on the ESP8266. Using the REPL is by far the easiest way to test out your code and run commands.
There are two ways to access the REPL: either via a wired connection through the UART serial port, or via WiFi.

REPL over the serial port

The REPL is always available on the UART0 serial peripheral, which is connected to the pins GPIO1 for TX and GPIO3
for RX. The baudrate of the REPL is 115200. If your board has a USB-serial convertor on it then you should be able to
access the REPL directly from your PC. Otherwise you will need to have a way of communicating with the UART.
To access the prompt over USB-serial you need to use a terminal emulator program. On Windows TeraTerm is a good
choice, on Mac you can use the built-in screen program, and Linux has picocom and minicom. Of course, there
are many other terminal programs that will work, so pick your favourite!
For example, on Linux you can try running:

picocom /dev/ttyUSB0 -b115200

Once you have made the connection over the serial port you can test if it is working by hitting enter a few times. You
should see the Python REPL prompt, indicated by >>>.

374 Chapter 7. Quick reference for the ESP8266

https://github.com/espressif/esptool
https://github.com/espressif/esptool

MicroPython Documentation, Release v1.20.0

WebREPL - a prompt over WiFi

WebREPL allows you to use the Python prompt over WiFi, connecting through a browser. The latest versions of Firefox
and Chrome are supported.
For your convenience, WebREPL client is hosted at http://micropython.org/webrepl. Alternatively, you can install it
locally from the the GitHub repository https://github.com/micropython/webrepl.
Before connecting toWebREPL, you should set a password and enable it via a normal serial connection. Initial versions of
MicroPython for ESP8266 came with WebREPL automatically enabled on the boot and with the ability to set a password
via WiFi on the first connection, but as WebREPL was becoming more widely known and popular, the initial setup has
switched to a wired connection for improved security:

import webrepl_setup

Follow the on-screen instructions and prompts. To make any changes active, you will need to reboot your device.
To use WebREPL connect your computer to the ESP8266’s access point (MicroPython-xxxxxx, see the previous section
about this). If you have already reconfigured your ESP8266 to connect to a router then you can skip this part.
Once you are on the same network as the ESP8266 you click the “Connect” button (if you are connecting via a router
then you may need to change the IP address, by default the IP address is correct when connected to the ESP8266’s access
point). If the connection succeeds then you should see a password prompt.
Once you type the password configured at the setup step above, press Enter once more and you should get a prompt
looking like >>>. You can now start typing Python commands!

Using the REPL

Once you have a prompt you can start experimenting! Anything you type at the prompt will be executed after you press
the Enter key. MicroPython will run the code that you enter and print the result (if there is one). If there is an error with
the text that you enter then an error message is printed.
Try typing the following at the prompt:

>>> print('hello esp8266!')
hello esp8266!

Note that you shouldn’t type the >>> arrows, they are there to indicate that you should type the text after it at the
prompt. And then the line following is what the device should respond with. In the end, once you have entered the text
print("hello esp8266!") and pressed the Enter key, the output on your screen should look exactly like it does
above.
If you already know some python you can now try some basic commands here. For example:

>>> 1 + 2
3
>>> 1 / 2
0.5
>>> 12**34
4922235242952026704037113243122008064

If your board has an LED attached to GPIO2 (the ESP-12 modules do) then you can turn it on and off using the following
code:

>>> import machine
>>> pin = machine.Pin(2, machine.Pin.OUT)

(continues on next page)

7.2. MicroPython tutorial for ESP8266 375

http://micropython.org/webrepl
https://github.com/micropython/webrepl

MicroPython Documentation, Release v1.20.0

(continued from previous page)
>>> pin.on()
>>> pin.off()

Note that on method of a Pin might turn the LED off and off might turn it on (or vice versa), depending on how the
LED is wired on your board. To resolve this, machine.Signal class is provided.

Line editing

You can edit the current line that you are entering using the left and right arrow keys to move the cursor, as well as the
delete and backspace keys. Also, pressing Home or ctrl-A moves the cursor to the start of the line, and pressing End or
ctrl-E moves to the end of the line.

Input history

The REPL remembers a certain number of previous lines of text that you entered (up to 8 on the ESP8266). To recall
previous lines use the up and down arrow keys.

Tab completion

Pressing the Tab key will do an auto-completion of the current word that you are entering. This can be very useful to
find out functions and methods that a module or object has. Try it out by typing “ma” and then pressing Tab. It should
complete to “machine” (assuming you imported machine in the above example). Then type “.” and press Tab again to
see a list of all the functions that the machine module has.

Line continuation and auto-indent

Certain things that you type will need “continuing”, that is, will need more lines of text to make a proper Python statement.
In this case the prompt will change to ... and the cursor will auto-indent the correct amount so you can start typing the
next line straight away. Try this by defining the following function:

>>> def toggle(p):
... p.value(not p.value())
...
...
...
>>>

In the above, you needed to press the Enter key three times in a row to finish the compound statement (that’s the three
lines with just dots on them). The other way to finish a compound statement is to press backspace to get to the start of the
line, then press the Enter key. (If you did something wrong and want to escape the continuation mode then press ctrl-C;
all lines will be ignored.)
The function you just defined allows you to toggle a pin. The pin object you created earlier should still exist (recreate it
if it doesn’t) and you can toggle the LED using:

>>> toggle(pin)

Let’s now toggle the LED in a loop (if you don’t have an LED then you can just print some text instead of calling toggle,
to see the effect):

376 Chapter 7. Quick reference for the ESP8266

MicroPython Documentation, Release v1.20.0

>>> import time
>>> while True:
... toggle(pin)
... time.sleep_ms(500)
...
...
...
>>>

This will toggle the LED at 1Hz (half a second on, half a second off). To stop the toggling press ctrl-C, which will raise
a KeyboardInterrupt exception and break out of the loop.
The time module provides some useful functions for making delays and doing timing. Use tab completion to find out what
they are and play around with them!

Paste mode

Pressing ctrl-E will enter a special paste mode. This allows you to copy and paste a chunk of text into the REPL. If you
press ctrl-E you will see the paste-mode prompt:

paste mode; Ctrl-C to cancel, Ctrl-D to finish
===

You can then paste (or type) your text in. Note that none of the special keys or commands work in paste mode (eg Tab
or backspace), they are just accepted as-is. Press ctrl-D to finish entering the text and execute it.

Other control commands

There are four other control commands:
• Ctrl-A on a blank line will enter raw REPL mode. This is like a permanent paste mode, except that characters are
not echoed back.

• Ctrl-B on a blank like goes to normal REPL mode.
• Ctrl-C cancels any input, or interrupts the currently running code.
• Ctrl-D on a blank line will do a soft reset.

Note that ctrl-A and ctrl-D do not work with WebREPL.

7.2.3 The internal filesystem

If your devices has 1Mbyte or more of storage then it will be set up (upon first boot) to contain a filesystem. This filesystem
uses the FAT format and is stored in the flash after the MicroPython firmware.

7.2. MicroPython tutorial for ESP8266 377

MicroPython Documentation, Release v1.20.0

Creating and reading files

MicroPython on the ESP8266 supports the standard way of accessing files in Python, using the built-in open() function.
To create a file try:

>>> f = open('data.txt', 'w')
>>> f.write('some data')
9
>>> f.close()

The “9” is the number of bytes that were written with the write() method. Then you can read back the contents of
this new file using:

>>> f = open('data.txt')
>>> f.read()
'some data'
>>> f.close()

Note that the default mode when opening a file is to open it in read-only mode, and as a text file. Specify 'wb' as the
second argument to open() to open for writing in binary mode, and 'rb' to open for reading in binary mode.

Listing file and more

The os module can be used for further control over the filesystem. First import the module:

>>> import os

Then try listing the contents of the filesystem:

>>> os.listdir()
['boot.py', 'port_config.py', 'data.txt']

You can make directories:

>>> os.mkdir('dir')

And remove entries:

>>> os.remove('data.txt')

Start up scripts

There are two files that are treated specially by the ESP8266 when it starts up: boot.py and main.py. The boot.py script
is executed first (if it exists) and then once it completes the main.py script is executed. You can create these files yourself
and populate them with the code that you want to run when the device starts up.

378 Chapter 7. Quick reference for the ESP8266

MicroPython Documentation, Release v1.20.0

Accessing the filesystem via WebREPL

You can access the filesystem over WebREPL using the web client in a browser or via the command-line tool. Please
refer to Quick Reference and Tutorial sections for more information about WebREPL.

7.2.4 Network basics

The network module is used to configure the WiFi connection. There are two WiFi interfaces, one for the station (when
the ESP8266 connects to a router) and one for the access point (for other devices to connect to the ESP8266). Create
instances of these objects using:

>>> import network
>>> sta_if = network.WLAN(network.STA_IF)
>>> ap_if = network.WLAN(network.AP_IF)

You can check if the interfaces are active by:

>>> sta_if.active()
False
>>> ap_if.active()
True

You can also check the network settings of the interface by:

>>> ap_if.ifconfig()
('192.168.4.1', '255.255.255.0', '192.168.4.1', '8.8.8.8')

The returned values are: IP address, netmask, gateway, DNS.

Configuration of the WiFi

Upon a fresh install the ESP8266 is configured in access point mode, so the AP_IF interface is active and the STA_IF
interface is inactive. You can configure the module to connect to your own network using the STA_IF interface.
First activate the station interface:

>>> sta_if.active(True)

Then connect to your WiFi network:

>>> sta_if.connect('<your SSID>', '<your key>')

To check if the connection is established use:

>>> sta_if.isconnected()

Once established you can check the IP address:

>>> sta_if.ifconfig()
('192.168.0.2', '255.255.255.0', '192.168.0.1', '8.8.8.8')

You can then disable the access-point interface if you no longer need it:

>>> ap_if.active(False)

Here is a function you can run (or put in your boot.py file) to automatically connect to your WiFi network:

7.2. MicroPython tutorial for ESP8266 379

MicroPython Documentation, Release v1.20.0

def do_connect():
import network
sta_if = network.WLAN(network.STA_IF)
if not sta_if.isconnected():

print('connecting to network...')
sta_if.active(True)
sta_if.connect('<ssid>', '<key>')
while not sta_if.isconnected():

pass
print('network config:', sta_if.ifconfig())

Sockets

Once the WiFi is set up the way to access the network is by using sockets. A socket represents an endpoint on a network
device, and when two sockets are connected together communication can proceed. Internet protocols are built on top of
sockets, such as email (SMTP), the web (HTTP), telnet, ssh, among many others. Each of these protocols is assigned a
specific port, which is just an integer. Given an IP address and a port number you can connect to a remote device and
start talking with it.
The next part of the tutorial discusses how to use sockets to do some common and useful network tasks.

7.2.5 Network - TCP sockets

The building block of most of the internet is the TCP socket. These sockets provide a reliable stream of bytes between
the connected network devices. This part of the tutorial will show how to use TCP sockets in a few different cases.

Star Wars Asciimation

The simplest thing to do is to download data from the internet. In this case we will use the Star Wars Asciimation service
provided by the blinkenlights.nl website. It uses the telnet protocol on port 23 to stream data to anyone that connects.
It’s very simple to use because it doesn’t require you to authenticate (give a username or password), you can just start
downloading data straight away.
The first thing to do is make sure we have the socket module available:

>>> import socket

Then get the IP address of the server:

>>> addr_info = socket.getaddrinfo("towel.blinkenlights.nl", 23)

The getaddrinfo function actually returns a list of addresses, and each address has more information than we need.
We want to get just the first valid address, and then just the IP address and port of the server. To do this use:

>>> addr = addr_info[0][-1]

If you type addr_info and addr at the prompt you will see exactly what information they hold.
Using the IP address we can make a socket and connect to the server:

>>> s = socket.socket()
>>> s.connect(addr)

Now that we are connected we can download and display the data:

380 Chapter 7. Quick reference for the ESP8266

MicroPython Documentation, Release v1.20.0

>>> while True:
... data = s.recv(500)
... print(str(data, 'utf8'), end='')
...

When this loop executes it should start showing the animation (use ctrl-C to interrupt it).
You should also be able to run this same code on your PC using normal Python if you want to try it out there.

HTTP GET request

The next example shows how to download a webpage. HTTP uses port 80 and you first need to send a “GET” request
before you can download anything. As part of the request you need to specify the page to retrieve.
Let’s define a function that can download and print a URL:

def http_get(url):
import socket
_, _, host, path = url.split('/', 3)
addr = socket.getaddrinfo(host, 80)[0][-1]
s = socket.socket()
s.connect(addr)
s.send(bytes('GET /%s HTTP/1.0\r\nHost: %s\r\n\r\n' % (path, host), 'utf8'))
while True:

data = s.recv(100)
if data:

print(str(data, 'utf8'), end='')
else:

break
s.close()

Then you can try:

>>> http_get('http://micropython.org/ks/test.html')

This should retrieve the webpage and print the HTML to the console.

Simple HTTP server

The following code creates an simple HTTP server which serves a single webpage that contains a table with the state of
all the GPIO pins:

import machine
pins = [machine.Pin(i, machine.Pin.IN) for i in (0, 2, 4, 5, 12, 13, 14, 15)]

html = """<!DOCTYPE html>
<html>

<head> <title>ESP8266 Pins</title> </head>
<body> <h1>ESP8266 Pins</h1>

<table border="1"> <tr><th>Pin</th><th>Value</th></tr> %s </table>
</body>

</html>
"""

import socket

(continues on next page)

7.2. MicroPython tutorial for ESP8266 381

MicroPython Documentation, Release v1.20.0

(continued from previous page)
addr = socket.getaddrinfo('0.0.0.0', 80)[0][-1]

s = socket.socket()
s.bind(addr)
s.listen(1)

print('listening on', addr)

while True:
cl, addr = s.accept()
print('client connected from', addr)
cl_file = cl.makefile('rwb', 0)
while True:

line = cl_file.readline()
if not line or line == b'\r\n':

break
rows = ['<tr><td>%s</td><td>%d</td></tr>' % (str(p), p.value()) for p in pins]
response = html % '\n'.join(rows)
cl.send('HTTP/1.0 200 OK\r\nContent-type: text/html\r\n\r\n')
cl.send(response)
cl.close()

7.2.6 GPIO Pins

The way to connect your board to the external world, and control other components, is through the GPIO pins. Not all
pins are available to use, in most cases only pins 0, 2, 4, 5, 12, 13, 14, 15, and 16 can be used.
The pins are available in the machine module, so make sure you import that first. Then you can create a pin using:

>>> pin = machine.Pin(0)

Here, the “0” is the pin that you want to access. Usually you want to configure the pin to be input or output, and you do
this when constructing it. To make an input pin use:

>>> pin = machine.Pin(0, machine.Pin.IN, machine.Pin.PULL_UP)

You can either use PULL_UP or None for the input pull-mode. If it’s not specified then it defaults to None, which is no
pull resistor. GPIO16 has no pull-up mode. You can read the value on the pin using:

>>> pin.value()
0

The pin on your board may return 0 or 1 here, depending on what it’s connected to. To make an output pin use:

>>> pin = machine.Pin(0, machine.Pin.OUT)

Then set its value using:

>>> pin.value(0)
>>> pin.value(1)

Or:

>>> pin.off()
>>> pin.on()

382 Chapter 7. Quick reference for the ESP8266

MicroPython Documentation, Release v1.20.0

External interrupts

All pins except number 16 can be configured to trigger a hard interrupt if their input changes. You can set code (a callback
function) to be executed on the trigger.
Let’s first define a callback function, which must take a single argument, being the pin that triggered the function. We will
make the function just print the pin:

>>> def callback(p):
... print('pin change', p)

Next we will create two pins and configure them as inputs:

>>> from machine import Pin
>>> p0 = Pin(0, Pin.IN)
>>> p2 = Pin(2, Pin.IN)

An finally we need to tell the pins when to trigger, and the function to call when they detect an event:

>>> p0.irq(trigger=Pin.IRQ_FALLING, handler=callback)
>>> p2.irq(trigger=Pin.IRQ_RISING | Pin.IRQ_FALLING, handler=callback)

We set pin 0 to trigger only on a falling edge of the input (when it goes from high to low), and set pin 2 to trigger on both
a rising and falling edge. After entering this code you can apply high and low voltages to pins 0 and 2 to see the interrupt
being executed.
A hard interrupt will trigger as soon as the event occurs and will interrupt any running code, including Python code. As
such your callback functions are limited in what they can do (they cannot allocate memory, for example) and should be
as short and simple as possible.

7.2.7 Pulse Width Modulation

Pulse width modulation (PWM) is a way to get an artificial analog output on a digital pin. It achieves this by rapidly
toggling the pin from low to high. There are two parameters associated with this: the frequency of the toggling, and the
duty cycle. The duty cycle is defined to be how long the pin is high compared with the length of a single period (low plus
high time). Maximum duty cycle is when the pin is high all of the time, and minimum is when it is low all of the time.
On the ESP8266 the pins 0, 2, 4, 5, 12, 13, 14 and 15 all support PWM. The limitation is that they must all be at the
same frequency, and the frequency must be between 1Hz and 1kHz.
To use PWM on a pin you must first create the pin object, for example:

>>> import machine
>>> p12 = machine.Pin(12)

Then create the PWM object using:

>>> pwm12 = machine.PWM(p12)

You can set the frequency and duty cycle using:

>>> pwm12.freq(500)
>>> pwm12.duty(512)

Note that the duty cycle is between 0 (all off) and 1023 (all on), with 512 being a 50% duty. Values beyond this min/max
will be clipped. If you print the PWM object then it will tell you its current configuration:

7.2. MicroPython tutorial for ESP8266 383

MicroPython Documentation, Release v1.20.0

>>> pwm12
PWM(12, freq=500, duty=512)

You can also call the freq() and duty() methods with no arguments to get their current values.
The pin will continue to be in PWM mode until you deinitialise it using:

>>> pwm12.deinit()

Fading an LED

Let’s use the PWM feature to fade an LED. Assuming your board has an LED connected to pin 2 (ESP-12 modules do)
we can create an LED-PWM object using:

>>> led = machine.PWM(machine.Pin(2), freq=1000)

Notice that we can set the frequency in the PWM constructor.
For the next part we will use timing and some math, so import these modules:

>>> import time, math

Then create a function to pulse the LED:

>>> def pulse(l, t):
... for i in range(20):
... l.duty(int(math.sin(i / 10 * math.pi) * 500 + 500))
... time.sleep_ms(t)

You can try this function out using:

>>> pulse(led, 50)

For a nice effect you can pulse many times in a row:

>>> for i in range(10):
... pulse(led, 20)

Remember you can use ctrl-C to interrupt the code.

Control a hobby servo

Hobby servo motors can be controlled using PWM. They require a frequency of 50Hz and then a duty between about 40
and 115, with 77 being the centre value. If you connect a servo to the power and ground pins, and then the signal line to
pin 12 (other pins will work just as well), you can control the motor using:

>>> servo = machine.PWM(machine.Pin(12), freq=50)
>>> servo.duty(40)
>>> servo.duty(115)
>>> servo.duty(77)

384 Chapter 7. Quick reference for the ESP8266

MicroPython Documentation, Release v1.20.0

7.2.8 Analog to Digital Conversion

The ESP8266 has a single pin (separate to the GPIO pins) which can be used to read analog voltages and convert them
to a digital value. You can construct such an ADC pin object using:

>>> import machine
>>> adc = machine.ADC(0)

Then read its value with:

>>> adc.read()
58

The values returned from the read() function are between 0 (for 0.0 volts) and 1024 (for 1.0 volts). Please note that
this input can only tolerate a maximum of 1.0 volts and you must use a voltage divider circuit to measure larger voltages.

7.2.9 Power control

The ESP8266 provides the ability to change the CPU frequency on the fly, and enter a deep-sleep state. Both can be used
to manage power consumption.

Changing the CPU frequency

The machine module has a function to get and set the CPU frequency. To get the current frequency use:

>>> import machine
>>> machine.freq()
80000000

By default the CPU runs at 80MHz. It can be changed to 160MHz if you need more processing power, at the expense of
current consumption:

>>> machine.freq(160000000)
>>> machine.freq()
160000000

You can change to the higher frequency just while your code does the heavy processing and then change back when it’s
finished.

Deep-sleep mode

The deep-sleep mode will shut down the ESP8266 and all its peripherals, including the WiFi (but not including the real-
time-clock, which is used to wake the chip). This drastically reduces current consumption and is a good way to make
devices that can run for a while on a battery.
To be able to use the deep-sleep feature youmust connect GPIO16 to the reset pin (RST on the Adafruit Feather HUZZAH
board). Then the following code can be used to sleep and wake the device:

import machine

configure RTC.ALARM0 to be able to wake the device
rtc = machine.RTC()
rtc.irq(trigger=rtc.ALARM0, wake=machine.DEEPSLEEP)

(continues on next page)

7.2. MicroPython tutorial for ESP8266 385

MicroPython Documentation, Release v1.20.0

(continued from previous page)

set RTC.ALARM0 to fire after 10 seconds (waking the device)
rtc.alarm(rtc.ALARM0, 10000)

put the device to sleep
machine.deepsleep()

Note that when the chip wakes from a deep-sleep it is completely reset, including all of the memory. The boot scripts
will run as usual and you can put code in them to check the reset cause to perhaps do something different if the device
just woke from a deep-sleep. For example, to print the reset cause you can use:

if machine.reset_cause() == machine.DEEPSLEEP_RESET:
print('woke from a deep sleep')

else:
print('power on or hard reset')

7.2.10 Controlling 1-wire devices

The 1-wire bus is a serial bus that uses just a single wire for communication (in addition to wires for ground and power).
The DS18B20 temperature sensor is a very popular 1-wire device, and here we show how to use the onewire module to
read from such a device.
For the following code to work you need to have at least one DS18S20 or DS18B20 temperature sensor with its data line
connected to GPIO12. You must also power the sensors and connect a 4.7k Ohm resistor between the data pin and the
power pin.

import time
import machine
import onewire, ds18x20

the device is on GPIO12
dat = machine.Pin(12)

create the onewire object
ds = ds18x20.DS18X20(onewire.OneWire(dat))

scan for devices on the bus
roms = ds.scan()
print('found devices:', roms)

loop 10 times and print all temperatures
for i in range(10):

print('temperatures:', end=' ')
ds.convert_temp()
time.sleep_ms(750)
for rom in roms:

print(ds.read_temp(rom), end=' ')
print()

Note that you must execute the convert_temp() function to initiate a temperature reading, then wait at least 750ms
before reading the value.

386 Chapter 7. Quick reference for the ESP8266

MicroPython Documentation, Release v1.20.0

7.2.11 Controlling NeoPixels

NeoPixels, also known as WS2812 LEDs, are full-colour LEDs that are connected in serial, are individually addressable,
and can have their red, green and blue components set between 0 and 255. They require precise timing to control them
and there is a special neopixel module to do just this.
To create a NeoPixel object do the following:

>>> import machine, neopixel
>>> np = neopixel.NeoPixel(machine.Pin(4), 8)

This configures a NeoPixel strip on GPIO4 with 8 pixels. You can adjust the “4” (pin number) and the “8” (number of
pixel) to suit your set up.
To set the colour of pixels use:

>>> np[0] = (255, 0, 0) # set to red, full brightness
>>> np[1] = (0, 128, 0) # set to green, half brightness
>>> np[2] = (0, 0, 64) # set to blue, quarter brightness

For LEDs with more than 3 colours, such as RGBW pixels or RGBY pixels, the NeoPixel class takes a bpp parameter.
To setup a NeoPixel object for an RGBW Pixel, do the following:

>>> import machine, neopixel
>>> np = neopixel.NeoPixel(machine.Pin(4), 8, bpp=4)

In a 4-bpp mode, remember to use 4-tuples instead of 3-tuples to set the colour. For example to set the first three pixels
use:

>>> np[0] = (255, 0, 0, 128) # Orange in an RGBY Setup
>>> np[1] = (0, 255, 0, 128) # Yellow-green in an RGBY Setup
>>> np[2] = (0, 0, 255, 128) # Green-blue in an RGBY Setup

Then use the write() method to output the colours to the LEDs:

>>> np.write()

The following demo function makes a fancy show on the LEDs:

import time

def demo(np):
n = np.n

cycle
for i in range(4 * n):

for j in range(n):
np[j] = (0, 0, 0)

np[i % n] = (255, 255, 255)
np.write()
time.sleep_ms(25)

bounce
for i in range(4 * n):

for j in range(n):
np[j] = (0, 0, 128)

if (i // n) % 2 == 0:
np[i % n] = (0, 0, 0)

(continues on next page)

7.2. MicroPython tutorial for ESP8266 387

MicroPython Documentation, Release v1.20.0

(continued from previous page)
else:

np[n - 1 - (i % n)] = (0, 0, 0)
np.write()
time.sleep_ms(60)

fade in/out
for i in range(0, 4 * 256, 8):

for j in range(n):
if (i // 256) % 2 == 0:

val = i & 0xff
else:

val = 255 - (i & 0xff)
np[j] = (val, 0, 0)

np.write()

clear
for i in range(n):

np[i] = (0, 0, 0)
np.write()

Execute it using:

>>> demo(np)

7.2.12 Controlling APA102 LEDs

APA102 LEDs, also known as DotStar LEDs, are individually addressable full-colour RGB LEDs, generally in a string
formation. They differ from NeoPixels in that they require two pins to control - both a Clock and Data pin. They can
operate at a much higher data and PWM frequencies than NeoPixels and are more suitable for persistence-of-vision
effects.
To create an APA102 object do the following:

>>> import machine, apa102
>>> strip = apa102.APA102(machine.Pin(5), machine.Pin(4), 60)

This configures an 60 pixel APA102 strip with clock on GPIO5 and data on GPIO4. You can adjust the pin numbers and
the number of pixels to suit your needs.
The RGB colour data, as well as a brightness level, is sent to the APA102 in a certain order. Usually this is (Red,
Green, Blue, Brightness). If you are using one of the newer APA102C LEDs the green and blue are swapped,
so the order is (Red, Blue, Green, Brightness). The APA102 has more of a square lens while the APA102C
has more of a round one. If you are using a APA102C strip and would prefer to provide colours in RGB order instead of
RBG, you can customise the tuple colour order like so:

>>> strip.ORDER = (0, 2, 1, 3)

To set the colour of pixels use:

>>> strip[0] = (255, 255, 255, 31) # set to white, full brightness
>>> strip[1] = (255, 0, 0, 31) # set to red, full brightness
>>> strip[2] = (0, 255, 0, 15) # set to green, half brightness
>>> strip[3] = (0, 0, 255, 7) # set to blue, quarter brightness

Use the write() method to output the colours to the LEDs:

388 Chapter 7. Quick reference for the ESP8266

MicroPython Documentation, Release v1.20.0

>>> strip.write()

Demonstration:

import time
import machine, apa102

1M strip with 60 LEDs
strip = apa102.APA102(machine.Pin(5), machine.Pin(4), 60)

brightness = 1 # 0 is off, 1 is dim, 31 is max

Helper for converting 0-255 offset to a colour tuple
def wheel(offset, brightness):

The colours are a transition r - g - b - back to r
offset = 255 - offset
if offset < 85:

return (255 - offset * 3, 0, offset * 3, brightness)
if offset < 170:

offset -= 85
return (0, offset * 3, 255 - offset * 3, brightness)

offset -= 170
return (offset * 3, 255 - offset * 3, 0, brightness)

Demo 1: RGB RGB RGB
red = 0xff0000
green = red >> 8
blue = red >> 16
for i in range(strip.n):

colour = red >> (i % 3) * 8
strip[i] = ((colour & red) >> 16, (colour & green) >> 8, (colour & blue),␣

↪→brightness)
strip.write()

Demo 2: Show all colours of the rainbow
for i in range(strip.n):

strip[i] = wheel((i * 256 // strip.n) % 255, brightness)
strip.write()

Demo 3: Fade all pixels together through rainbow colours, offset each pixel
for r in range(5):

for n in range(256):
for i in range(strip.n):

strip[i] = wheel(((i * 256 // strip.n) + n) & 255, brightness)
strip.write()

time.sleep_ms(25)

Demo 4: Same colour, different brightness levels
for b in range(31,-1,-1):

strip[0] = (255, 153, 0, b)
strip.write()
time.sleep_ms(250)

End: Turn off all the LEDs
strip.fill((0, 0, 0, 0))
strip.write()

7.2. MicroPython tutorial for ESP8266 389

MicroPython Documentation, Release v1.20.0

7.2.13 Temperature and Humidity

DHT (Digital Humidity & Temperature) sensors are low cost digital sensors with capacitive humidity sensors and ther-
mistors to measure the surrounding air. They feature a chip that handles analog to digital conversion and provide a 1-wire
interface. Newer sensors additionally provide an I2C interface.
TheDHT11 (blue) andDHT22 (white) sensors provide the same 1-wire interface, however, theDHT22 requires a separate
object as it has more complex calculation. DHT22 have 1 decimal place resolution for both humidity and temperature
readings. DHT11 have whole number for both.
A custom 1-wire protocol, which is different to Dallas 1-wire, is used to get the measurements from the sensor. The
payload consists of a humidity value, a temperature value and a checksum.
To use the 1-wire interface, construct the objects referring to their data pin:

>>> import dht
>>> import machine
>>> d = dht.DHT11(machine.Pin(4))

>>> import dht
>>> import machine
>>> d = dht.DHT22(machine.Pin(4))

Then measure and read their values with:

>>> d.measure()
>>> d.temperature()
>>> d.humidity()

Values returned fromtemperature() are in degrees Celsius and values returned fromhumidity() are a percentage
of relative humidity.
The DHT11 can be called no more than once per second and the DHT22 once every two seconds for most accurate results.
Sensor accuracy will degrade over time. Each sensor supports a different operating range. Refer to the product datasheets
for specifics.
In 1-wire mode, only three of the four pins are used and in I2C mode, all four pins are used. Older sensors may still have
4 pins even though they do not support I2C. The 3rd pin is simply not connected.
Pin configurations:
Sensor without I2C in 1-wire mode (eg. DHT11, DHT22, AM2301, AM2302):

1=VDD, 2=Data, 3=NC, 4=GND
Sensor with I2C in 1-wire mode (eg. DHT12, AM2320, AM2321, AM2322):

1=VDD, 2=Data, 3=GND, 4=GND
Sensor with I2C in I2C mode (eg. DHT12, AM2320, AM2321, AM2322):

1=VDD, 2=SDA, 3=GND, 4=SCL
You should use pull-up resistors for the Data, SDA and SCL pins.
To make newer I2C sensors work in backwards compatible 1-wire mode, you must connect both pins 3 and 4 to GND.
This disables the I2C interface.
DHT22 sensors are now sold under the name AM2302 and are otherwise identical.

390 Chapter 7. Quick reference for the ESP8266

MicroPython Documentation, Release v1.20.0

7.2.14 Using a SSD1306 OLED display

The SSD1306 OLED display uses either a SPI or I2C interface and comes in a variety of sizes (128x64, 128x32, 72x40,
64x48) and colours (white, yellow, blue, yellow + blue).
Hardware SPI interface:

from machine import Pin, SPI
import ssd1306

hspi = SPI(1) # sck=14 (scl), mosi=13 (sda), miso=12 (unused)

dc = Pin(4) # data/command
rst = Pin(5) # reset
cs = Pin(15) # chip select, some modules do not have a pin for this

display = ssd1306.SSD1306_SPI(128, 64, hspi, dc, rst, cs)

Software SPI interface:

from machine import Pin, SoftSPI
import ssd1306

spi = SoftSPI(baudrate=500000, polarity=1, phase=0, sck=Pin(14), mosi=Pin(13),␣
↪→miso=Pin(12))

dc = Pin(4) # data/command
rst = Pin(5) # reset
cs = Pin(15) # chip select, some modules do not have a pin for this

display = ssd1306.SSD1306_SPI(128, 64, spi, dc, rst, cs)

I2C interface:

from machine import Pin, I2C
import ssd1306

using default address 0x3C
i2c = I2C(sda=Pin(4), scl=Pin(5))
display = ssd1306.SSD1306_I2C(128, 64, i2c)

Print Hello World on the first line:

display.text('Hello, World!', 0, 0, 1)
display.show()

Basic functions:

display.poweroff() # power off the display, pixels persist in memory
display.poweron() # power on the display, pixels redrawn
display.contrast(0) # dim
display.contrast(255) # bright
display.invert(1) # display inverted
display.invert(0) # display normal
display.rotate(True) # rotate 180 degrees
display.rotate(False) # rotate 0 degrees
display.show() # write the contents of the FrameBuffer to display memory

Subclassing FrameBuffer provides support for graphics primitives:

7.2. MicroPython tutorial for ESP8266 391

MicroPython Documentation, Release v1.20.0

display.fill(0) # fill entire screen with colour=0
display.pixel(0, 10) # get pixel at x=0, y=10
display.pixel(0, 10, 1) # set pixel at x=0, y=10 to colour=1
display.hline(0, 8, 4, 1) # draw horizontal line x=0, y=8, width=4,␣
↪→colour=1
display.vline(0, 8, 4, 1) # draw vertical line x=0, y=8, height=4,␣
↪→colour=1
display.line(0, 0, 127, 63, 1) # draw a line from 0,0 to 127,63
display.rect(10, 10, 107, 43, 1) # draw a rectangle outline 10,10 to 117,53,␣
↪→colour=1
display.fill_rect(10, 10, 107, 43, 1) # draw a solid rectangle 10,10 to 117,53,␣
↪→colour=1
display.text('Hello World', 0, 0, 1) # draw some text at x=0, y=0, colour=1
display.scroll(20, 0) # scroll 20 pixels to the right

draw another FrameBuffer on top of the current one at the given coordinates
import framebuf
fbuf = framebuf.FrameBuffer(bytearray(8 * 8 * 1), 8, 8, framebuf.MONO_VLSB)
fbuf.line(0, 0, 7, 7, 1)
display.blit(fbuf, 10, 10, 0) # draw on top at x=10, y=10, key=0
display.show()

Draw the MicroPython logo and print some text:

display.fill(0)
display.fill_rect(0, 0, 32, 32, 1)
display.fill_rect(2, 2, 28, 28, 0)
display.vline(9, 8, 22, 1)
display.vline(16, 2, 22, 1)
display.vline(23, 8, 22, 1)
display.fill_rect(26, 24, 2, 4, 1)
display.text('MicroPython', 40, 0, 1)
display.text('SSD1306', 40, 12, 1)
display.text('OLED 128x64', 40, 24, 1)
display.show()

7.2.15 Next steps

That brings us to the end of the tutorial! Hopefully by now you have a good feel for the capabilities of MicroPython on
the ESP8266 and understand how to control both the WiFi and IO aspects of the chip.
There are many features that were not covered in this tutorial. The best way to learn about them is to read the full
documentation of the modules, and to experiment!
Good luck creating your Internet of Things devices!

392 Chapter 7. Quick reference for the ESP8266

MicroPython Documentation, Release v1.20.0

7.3 Installing MicroPython

See the corresponding section of tutorial: Getting started with MicroPython on the ESP8266. It also includes a trou-
bleshooting subsection.

7.4 General board control

The MicroPython REPL is on UART0 (GPIO1=TX, GPIO3=RX) at baudrate 115200. Tab-completion is useful to find
out what methods an object has. Paste mode (ctrl-E) is useful to paste a large slab of Python code into the REPL.
The machine module:

import machine

machine.freq() # get the current frequency of the CPU
machine.freq(160000000) # set the CPU frequency to 160 MHz

The esp module:

import esp

esp.osdebug(None) # turn off vendor O/S debugging messages
esp.osdebug(0) # redirect vendor O/S debugging messages to UART(0)

7.5 Networking

The network module:

import network

wlan = network.WLAN(network.STA_IF) # create station interface
wlan.active(True) # activate the interface
wlan.scan() # scan for access points
wlan.isconnected() # check if the station is connected to an AP
wlan.connect('ssid', 'key') # connect to an AP
wlan.config('mac') # get the interface's MAC address
wlan.ifconfig() # get the interface's IP/netmask/gw/DNS addresses

ap = network.WLAN(network.AP_IF) # create access-point interface
ap.active(True) # activate the interface
ap.config(ssid='ESP-AP') # set the SSID of the access point

A useful function for connecting to your local WiFi network is:

def do_connect():
import network
wlan = network.WLAN(network.STA_IF)
wlan.active(True)
if not wlan.isconnected():

print('connecting to network...')
wlan.connect('ssid', 'key')
while not wlan.isconnected():

(continues on next page)

7.3. Installing MicroPython 393

MicroPython Documentation, Release v1.20.0

(continued from previous page)
pass

print('network config:', wlan.ifconfig())

Once the network is established the socket module can be used to create and use TCP/UDP sockets as usual.

7.6 Delay and timing

Use the time module:

import time

time.sleep(1) # sleep for 1 second
time.sleep_ms(500) # sleep for 500 milliseconds
time.sleep_us(10) # sleep for 10 microseconds
start = time.ticks_ms() # get millisecond counter
delta = time.ticks_diff(time.ticks_ms(), start) # compute time difference

7.7 Timers

Virtual (RTOS-based) timers are supported. Use the machine.Timer class with timer ID of -1:

from machine import Timer

tim = Timer(-1)
tim.init(period=5000, mode=Timer.ONE_SHOT, callback=lambda t:print(1))
tim.init(period=2000, mode=Timer.PERIODIC, callback=lambda t:print(2))

The period is in milliseconds.

7.8 Pins and GPIO

Use the machine.Pin class:

from machine import Pin

p0 = Pin(0, Pin.OUT) # create output pin on GPIO0
p0.on() # set pin to "on" (high) level
p0.off() # set pin to "off" (low) level
p0.value(1) # set pin to on/high

p2 = Pin(2, Pin.IN) # create input pin on GPIO2
print(p2.value()) # get value, 0 or 1

p4 = Pin(4, Pin.IN, Pin.PULL_UP) # enable internal pull-up resistor
p5 = Pin(5, Pin.OUT, value=1) # set pin high on creation

Available pins are: 0, 1, 2, 3, 4, 5, 12, 13, 14, 15, 16, which correspond to the actual GPIO pin numbers of ESP8266
chip. Note that many end-user boards use their own adhoc pin numbering (marked e.g. D0, D1, …). As MicroPython
supports different boards and modules, physical pin numbering was chosen as the lowest common denominator. For
mapping between board logical pins and physical chip pins, consult your board documentation.

394 Chapter 7. Quick reference for the ESP8266

MicroPython Documentation, Release v1.20.0

Note that Pin(1) and Pin(3) are REPL UART TX and RX respectively. Also note that Pin(16) is a special pin (used for
wakeup from deepsleep mode) and may be not available for use with higher-level classes like Neopixel.
There’s a higher-level abstraction machine.Signal which can be used to invert a pin. Useful for illuminating active-low
LEDs using on() or value(1).

7.9 UART (serial bus)

See machine.UART .

from machine import UART
uart = UART(0, baudrate=9600)
uart.write('hello')
uart.read(5) # read up to 5 bytes

Two UARTs are available. UART0 is on Pins 1 (TX) and 3 (RX). UART0 is bidirectional, and by default is used for the
REPL. UART1 is on Pins 2 (TX) and 8 (RX) however Pin 8 is used to connect the flash chip, so UART1 is TX only.
When UART0 is attached to the REPL, all incoming chars on UART(0) go straight to stdin so uart.read() will always
return None. Use sys.stdin.read() if it’s needed to read characters from the UART(0) while it’s also used for the REPL
(or detach, read, then reattach). When detached the UART(0) can be used for other purposes.
If there are no objects in any of the dupterm slots when the REPL is started (on hard or soft reset) then UART(0) is
automatically attached. Without this, the only way to recover a board without a REPL would be to completely erase and
reflash (which would install the default boot.py which attaches the REPL).
To detach the REPL from UART0, use:

import os
os.dupterm(None, 1)

The REPL is attached by default. If you have detached it, to reattach it use:

import os, machine
uart = machine.UART(0, 115200)
os.dupterm(uart, 1)

7.10 PWM (pulse width modulation)

PWM can be enabled on all pins except Pin(16). There is a single frequency for all channels, with range between 1 and
1000 (measured in Hz). The duty cycle is between 0 and 1023 inclusive.
Use the machine.PWM class:

from machine import Pin, PWM

pwm0 = PWM(Pin(0)) # create PWM object from a pin
pwm0.freq() # get current frequency
pwm0.freq(1000) # set frequency
pwm0.duty() # get current duty cycle
pwm0.duty(200) # set duty cycle
pwm0.deinit() # turn off PWM on the pin

pwm2 = PWM(Pin(2), freq=500, duty=512) # create and configure in one go

7.9. UART (serial bus) 395

MicroPython Documentation, Release v1.20.0

7.11 ADC (analog to digital conversion)

ADC is available on a dedicated pin. Note that input voltages on the ADC pin must be between 0v and 1.0v.
Use the machine.ADC class:

from machine import ADC

adc = ADC(0) # create ADC object on ADC pin
adc.read() # read value, 0-1024

7.12 Software SPI bus

There are two SPI drivers. One is implemented in software (bit-banging) and works on all pins, and is accessed via the
machine.SoftSPI class:

from machine import Pin, SoftSPI

construct an SPI bus on the given pins
polarity is the idle state of SCK
phase=0 means sample on the first edge of SCK, phase=1 means the second
spi = SoftSPI(baudrate=100000, polarity=1, phase=0, sck=Pin(0), mosi=Pin(2),␣
↪→miso=Pin(4))

spi.init(baudrate=200000) # set the baudrate

spi.read(10) # read 10 bytes on MISO
spi.read(10, 0xff) # read 10 bytes while outputting 0xff on MOSI

buf = bytearray(50) # create a buffer
spi.readinto(buf) # read into the given buffer (reads 50 bytes in this case)
spi.readinto(buf, 0xff) # read into the given buffer and output 0xff on MOSI

spi.write(b'12345') # write 5 bytes on MOSI

buf = bytearray(4) # create a buffer
spi.write_readinto(b'1234', buf) # write to MOSI and read from MISO into the buffer
spi.write_readinto(buf, buf) # write buf to MOSI and read MISO back into buf

7.13 Hardware SPI bus

The hardware SPI is faster (up to 80Mhz), but only works on following pins: MISO is GPIO12, MOSI is GPIO13, andSCK
is GPIO14. It has the same methods as the bitbanging SPI class above, except for the pin parameters for the constructor
and init (as those are fixed):

from machine import Pin, SPI

hspi = SPI(1, baudrate=80000000, polarity=0, phase=0)

(SPI(0) is used for FlashROM and not available to users.)

396 Chapter 7. Quick reference for the ESP8266

MicroPython Documentation, Release v1.20.0

7.14 I2C bus

The I2C driver is implemented in software and works on all pins, and is accessed via the machine.I2C class (which is an
alias of machine.SoftI2C):

from machine import Pin, I2C

construct an I2C bus
i2c = I2C(scl=Pin(5), sda=Pin(4), freq=100000)

i2c.readfrom(0x3a, 4) # read 4 bytes from peripheral device with address 0x3a
i2c.writeto(0x3a, '12') # write '12' to peripheral device with address 0x3a

buf = bytearray(10) # create a buffer with 10 bytes
i2c.writeto(0x3a, buf) # write the given buffer to the peripheral

7.15 Real time clock (RTC)

See machine.RTC

from machine import RTC

rtc = RTC()
rtc.datetime((2017, 8, 23, 1, 12, 48, 0, 0)) # set a specific date and time
rtc.datetime() # get date and time

synchronize with ntp
need to be connected to wifi
import ntptime
ntptime.settime() # set the rtc datetime from the remote server
rtc.datetime() # get the date and time in UTC

Note: Not all methods are implemented: RTC.now(), RTC.irq(handler=*) (using a custom handler), RTC.
init() and RTC.deinit() are currently not supported.

7.16 WDT (Watchdog timer)

See machine.WDT .

from machine import WDT

enable the WDT
wdt = WDT()
wdt.feed()

7.14. I2C bus 397

MicroPython Documentation, Release v1.20.0

7.17 Deep-sleep mode

Connect GPIO16 to the reset pin (RST on HUZZAH). Then the following code can be used to sleep, wake and check the
reset cause:

import machine

configure RTC.ALARM0 to be able to wake the device
rtc = machine.RTC()
rtc.irq(trigger=rtc.ALARM0, wake=machine.DEEPSLEEP)

check if the device woke from a deep sleep
if machine.reset_cause() == machine.DEEPSLEEP_RESET:

print('woke from a deep sleep')

set RTC.ALARM0 to fire after 10 seconds (waking the device)
rtc.alarm(rtc.ALARM0, 10000)

put the device to sleep
machine.deepsleep()

7.18 OneWire driver

The OneWire driver is implemented in software and works on all pins:

from machine import Pin
import onewire

ow = onewire.OneWire(Pin(12)) # create a OneWire bus on GPIO12
ow.scan() # return a list of devices on the bus
ow.reset() # reset the bus
ow.readbyte() # read a byte
ow.writebyte(0x12) # write a byte on the bus
ow.write('123') # write bytes on the bus
ow.select_rom(b'12345678') # select a specific device by its ROM code

There is a specific driver for DS18S20 and DS18B20 devices:

import time, ds18x20
ds = ds18x20.DS18X20(ow)
roms = ds.scan()
ds.convert_temp()
time.sleep_ms(750)
for rom in roms:

print(ds.read_temp(rom))

Be sure to put a 4.7k pull-up resistor on the data line. Note that the convert_temp() method must be called each
time you want to sample the temperature.

398 Chapter 7. Quick reference for the ESP8266

MicroPython Documentation, Release v1.20.0

7.19 NeoPixel driver

Use the neopixel module:

from machine import Pin
from neopixel import NeoPixel

pin = Pin(0, Pin.OUT) # set GPIO0 to output to drive NeoPixels
np = NeoPixel(pin, 8) # create NeoPixel driver on GPIO0 for 8 pixels
np[0] = (255, 255, 255) # set the first pixel to white
np.write() # write data to all pixels
r, g, b = np[0] # get first pixel colour

Warning: By default NeoPixel is configured to control the more popular 800kHz units. It is possible to use alter-
native timing to control other (typically 400kHz) devices by passing timing=0 when constructing the NeoPixel
object.

For low-level driving of a NeoPixel see machine.bitstream.

7.20 APA102 driver

Use the apa102 module:

from machine import Pin
from apa102 import APA102

clock = Pin(14, Pin.OUT) # set GPIO14 to output to drive the clock
data = Pin(13, Pin.OUT) # set GPIO13 to output to drive the data
apa = APA102(clock, data, 8) # create APA102 driver on the clock and the data pin for␣
↪→8 pixels
apa[0] = (255, 255, 255, 31) # set the first pixel to white with a maximum brightness␣
↪→of 31
apa.write() # write data to all pixels
r, g, b, brightness = apa[0] # get first pixel colour

For low-level driving of an APA102:

import esp
esp.apa102_write(clock_pin, data_pin, rgbi_buf)

7.21 DHT driver

The DHT driver is implemented in software and works on all pins:

import dht
import machine

d = dht.DHT11(machine.Pin(4))
d.measure()
d.temperature() # eg. 23 (°C)

(continues on next page)

7.19. NeoPixel driver 399

MicroPython Documentation, Release v1.20.0

(continued from previous page)
d.humidity() # eg. 41 (% RH)

d = dht.DHT22(machine.Pin(4))
d.measure()
d.temperature() # eg. 23.6 (°C)
d.humidity() # eg. 41.3 (% RH)

7.22 SSD1306 driver

Driver for SSD1306 monochrome OLED displays. See tutorial Using a SSD1306 OLED display.

from machine import Pin, I2C
import ssd1306

i2c = I2C(scl=Pin(5), sda=Pin(4), freq=100000)
display = ssd1306.SSD1306_I2C(128, 64, i2c)

display.text('Hello World', 0, 0, 1)
display.show()

7.23 WebREPL (web browser interactive prompt)

WebREPL (REPL over WebSockets, accessible via a web browser) is an experimental feature available in ESP8266 port.
Download web client from https://github.com/micropython/webrepl (hosted version available at http://micropython.org/
webrepl), and configure it by executing:

import webrepl_setup

and following on-screen instructions. After reboot, it will be available for connection. If you disabled automatic start-up
on boot, you may run configured daemon on demand using:

import webrepl
webrepl.start()

The supported way to use WebREPL is by connecting to ESP8266 access point, but the daemon is also started on STA
interface if it is active, so if your router is set up and works correctly, you may also use WebREPL while connected to
your normal Internet access point (use the ESP8266 AP connection method if you face any issues).
Besides terminal/command prompt access, WebREPL also has provision for file transfer (both upload and download).
Web client has buttons for the corresponding functions, or you can use command-line client webrepl_cli.py from
the repository above.
See the MicroPython forum for other community-supported alternatives to transfer files to ESP8266.

400 Chapter 7. Quick reference for the ESP8266

https://github.com/micropython/webrepl
http://micropython.org/webrepl
http://micropython.org/webrepl

CHAPTER

EIGHT

QUICK REFERENCE FOR THE ESP32

The Espressif ESP32 Development Board (image attribution: Adafruit).
Below is a quick reference for ESP32-based boards. If it is your first time working with this board it may be useful to get
an overview of the microcontroller:

401

MicroPython Documentation, Release v1.20.0

8.1 General information about the ESP32 port

The ESP32 is a popular WiFi and Bluetooth enabled System-on-Chip (SoC) by Espressif Systems.

8.1.1 Multitude of boards

There is a multitude of modules and boards from different sources which carry the ESP32 chip. MicroPython tries to
provide a generic port which would run on as many boards/modules as possible, but there may be limitations. Espressif
development boards are taken as reference for the port (for example, testing is performed on them). For any board
you are using please make sure you have a datasheet, schematics and other reference materials so you can look up any
board-specific functions.
To make a generic ESP32 port and support as many boards as possible the following design and implementation decision
were made:

• GPIO pin numbering is based on ESP32 chip numbering. Please have the manual/pin diagram of your board at
hand to find correspondence between your board pins and actual ESP32 pins.

• All pins are supported by MicroPython but not all are usable on any given board. For example pins that are
connected to external SPI flash should not be used, and a board may only expose a certain selection of pins.

8.1.2 Technical specifications and SoC datasheets

The datasheets and other reference material for ESP32 chip are available from the vendor site: https://www.espressif.
com/en/support/download/documents?keys=esp32 . They are the primary reference for the chip technical specifications,
capabilities, operating modes, internal functioning, etc.
For your convenience, some of technical specifications are provided below:

• Architecture: Xtensa Dual-Core 32-bit LX6
• CPU frequency: up to 240MHz
• Total RAM available: 528KB (part of it reserved for system)
• BootROM: 448KB
• Internal FlashROM: none
• External FlashROM: code and data, via SPI Flash; usual size 4MB
• GPIO: 34 (GPIOs are multiplexed with other functions, including external FlashROM, UART, etc.)
• UART: 3 RX/TX UART (no hardware handshaking), one TX-only UART
• SPI: 4 SPI interfaces (one used for FlashROM)
• I2C: 2 I2C (bitbang implementation available on any pins)
• I2S: 2
• ADC: 12-bit SAR ADC up to 18 channels
• DAC: 2 8-bit DACs
• RMT: 8 channels allowing accurate pulse transmit/receive
• Programming: using BootROM bootloader from UART - due to external FlashROM and always-available
BootROM bootloader, the ESP32 is not brickable

402 Chapter 8. Quick reference for the ESP32

https://www.espressif.com/en/support/download/documents?keys=esp32
https://www.espressif.com/en/support/download/documents?keys=esp32

MicroPython Documentation, Release v1.20.0

For more information see the ESP32 datasheet: https://www.espressif.com/sites/default/files/documentation/esp32_
datasheet_en.pdf
MicroPython is implemented on top of the ESP-IDF, Espressif’s development framework for the ESP32. This is a
FreeRTOS based system. See the ESP-IDF Programming Guide for details.

8.2 MicroPython tutorial for ESP32

This tutorial is intended to get you started using MicroPython on the ESP32 system-on-a-chip. If it is your first time it is
recommended to follow the tutorial through in the order below. Otherwise the sections are mostly self contained, so feel
free to skip to those that interest you.
The tutorial does not assume that you know Python, but it also does not attempt to explain any of the details of the Python
language. Instead it provides you with commands that are ready to run, and hopes that you will gain a bit of Python
knowledge along the way. To learn more about Python itself please refer to https://www.python.org.

8.2.1 Getting started with MicroPython on the ESP32

UsingMicroPython is a great way to get the most of your ESP32 board. And vice versa, the ESP32 chip is a great platform
for using MicroPython. This tutorial will guide you through setting up MicroPython, getting a prompt, using WebREPL,
connecting to the network and communicating with the Internet, using the hardware peripherals, and controlling some
external components.
Let’s get started!

Requirements

The first thing you need is a board with an ESP32 chip. The MicroPython software supports the ESP32 chip itself and
any board should work. The main characteristic of a board is how the GPIO pins are connected to the outside world, and
whether it includes a built-in USB-serial convertor to make the UART available to your PC.
Names of pins will be given in this tutorial using the chip names (eg GPIO2) and it should be straightforward to find
which pin this corresponds to on your particular board.

Powering the board

If your board has a USB connector on it then most likely it is powered through this when connected to your PC. Otherwise
you will need to power it directly. Please refer to the documentation for your board for further details.

Getting the firmware

The first thing you need to do is download the most recent MicroPython firmware .bin file to load onto your ESP32 device.
You can download it from the MicroPython downloads page. From here, you have 3 main choices:

• Stable firmware builds
• Daily firmware builds
• Daily firmware builds with SPIRAM support

8.2. MicroPython tutorial for ESP32 403

https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://docs.espressif.com/projects/esp-idf/en/latest/index.html
https://www.python.org
https://micropython.org/download#esp32

MicroPython Documentation, Release v1.20.0

If you are just starting with MicroPython, the best bet is to go for the Stable firmware builds. If you are an advanced,
experienced MicroPython ESP32 user who would like to follow development closely and help with testing new features,
there are daily builds. If your board has SPIRAM support you can use either the standard firmware or the firmware with
SPIRAM support, and in the latter case you will have access to more RAM for Python objects.

Deploying the firmware

Once you have the MicroPython firmware you need to load it onto your ESP32 device. There are two main steps to do
this: first you need to put your device in bootloader mode, and second you need to copy across the firmware. The exact
procedure for these steps is highly dependent on the particular board and you will need to refer to its documentation for
details.
Fortunately, most boards have a USB connector, a USB-serial convertor, and the DTR and RTS pins wired in a special
way then deploying the firmware should be easy as all steps can be done automatically. Boards that have such features
include the Adafruit Feather HUZZAH32, M5Stack, Wemos LOLIN32, and TinyPICO boards, along with the Espressif
DevKitC, PICO-KIT, WROVER-KIT dev-kits.
For best results it is recommended to first erase the entire flash of your device before putting on new MicroPython
firmware.
Currently we only support esptool.py to copy across the firmware. You can find this tool here: https://github.com/
espressif/esptool/, or install it using pip:

pip install esptool

Versions starting with 1.3 support both Python 2.7 and Python 3.4 (or newer). An older version (at least 1.2.1 is needed)
works fine but will require Python 2.7.
Using esptool.py you can erase the flash with the command:

esptool.py --port /dev/ttyUSB0 erase_flash

And then deploy the new firmware using:

esptool.py --chip esp32 --port /dev/ttyUSB0 write_flash -z 0x1000 esp32-20180511-v1.9.
↪→4.bin

Notes:
• You might need to change the “port” setting to something else relevant for your PC
• You may need to reduce the baudrate if you get errors when flashing (eg down to 115200 by adding --baud
115200 into the command)

• For some boards with a particular FlashROM configuration you may need to change the flash mode (eg by adding
-fm dio into the command)

• The filename of the firmware should match the file that you have
If the above commands run without error then MicroPython should be installed on your board!

404 Chapter 8. Quick reference for the ESP32

https://github.com/espressif/esptool/
https://github.com/espressif/esptool/

MicroPython Documentation, Release v1.20.0

Serial prompt

Once you have the firmware on the device you can access the REPL (Python prompt) over UART0 (GPIO1=TX,
GPIO3=RX), which might be connected to a USB-serial convertor, depending on your board. The baudrate is 115200.
From here you can now follow the ESP8266 tutorial, because these two Espressif chips are very similar when it comes to
usingMicroPython on them. The ESP8266 tutorial is found atMicroPython tutorial for ESP8266 (but skip the Introduction
section).

Troubleshooting installation problems

If you experience problems during flashing or with running firmware immediately after it, here are troubleshooting rec-
ommendations:

• Be aware of and try to exclude hardware problems. There are 2 common problems: bad power source quality, and
worn-out/defective FlashROM. Speaking of power source, not just raw amperage is important, but also low ripple
and noise/EMI in general. The most reliable and convenient power source is a USB port.

• The flashing instructions above use flashing speed of 460800 baud, which is good compromise between speed and
stability. However, depending on your module/board, USB-UART convertor, cables, host OS, etc., the above baud
rate may be too high and lead to errors. Try a more common 115200 baud rate instead in such cases.

• To catch incorrect flash content (e.g. from a defective sector on a chip), add --verify switch to the commands
above.

• If you still experience problems with flashing the firmware please refer to esptool.py project page, https://github.
com/espressif/esptool for additional documentation and a bug tracker where you can report problems.

• If you are able to flash the firmware but the --verify option returns errors even after multiple retries the you
may have a defective FlashROM chip.

8.2.2 Pulse Width Modulation

Pulse width modulation (PWM) is a way to get an artificial analog output on a digital pin. It achieves this by rapidly
toggling the pin from low to high. There are two parameters associated with this: the frequency of the toggling, and the
duty cycle. The duty cycle is defined to be how long the pin is high compared with the length of a single period (low plus
high time). Maximum duty cycle is when the pin is high all of the time, and minimum is when it is low all of the time.

• More comprehensive example with all 16 PWM channels and 8 timers:

from machine import Pin, PWM
try:

f = 100 # Hz
d = 1024 // 16 # 6.25%
pins = (15, 2, 4, 16, 18, 19, 22, 23, 25, 26, 27, 14 , 12, 13, 32, 33)
pwms = []
for i, pin in enumerate(pins):

pwms.append(PWM(Pin(pin), freq=f * (i // 2 + 1), duty= 1023 if i==15 else␣
↪→d * (i + 1)))

print(pwms[i])
finally:

for pwm in pwms:
try:

pwm.deinit()
except:

pass

8.2. MicroPython tutorial for ESP32 405

https://github.com/espressif/esptool
https://github.com/espressif/esptool

MicroPython Documentation, Release v1.20.0

Output is:

PWM(Pin(15), freq=100, duty=64, resolution=10, mode=0, channel=0, timer=0)
PWM(Pin(2), freq=100, duty=128, resolution=10, mode=0, channel=1, timer=0)
PWM(Pin(4), freq=200, duty=192, resolution=10, mode=0, channel=2, timer=1)
PWM(Pin(16), freq=200, duty=256, resolution=10, mode=0, channel=3, timer=1)
PWM(Pin(18), freq=300, duty=320, resolution=10, mode=0, channel=4, timer=2)
PWM(Pin(19), freq=300, duty=384, resolution=10, mode=0, channel=5, timer=2)
PWM(Pin(22), freq=400, duty=448, resolution=10, mode=0, channel=6, timer=3)
PWM(Pin(23), freq=400, duty=512, resolution=10, mode=0, channel=7, timer=3)
PWM(Pin(25), freq=500, duty=576, resolution=10, mode=1, channel=0, timer=0)
PWM(Pin(26), freq=500, duty=640, resolution=10, mode=1, channel=1, timer=0)
PWM(Pin(27), freq=600, duty=704, resolution=10, mode=1, channel=2, timer=1)
PWM(Pin(14), freq=600, duty=768, resolution=10, mode=1, channel=3, timer=1)
PWM(Pin(12), freq=700, duty=832, resolution=10, mode=1, channel=4, timer=2)
PWM(Pin(13), freq=700, duty=896, resolution=10, mode=1, channel=5, timer=2)
PWM(Pin(32), freq=800, duty=960, resolution=10, mode=1, channel=6, timer=3)
PWM(Pin(33), freq=800, duty=1023, resolution=10, mode=1, channel=7, timer=3)

• Example of a smooth frequency change:

from utime import sleep
from machine import Pin, PWM

F_MIN = 500
F_MAX = 1000

f = F_MIN
delta_f = 1

p = PWM(Pin(5), f)
print(p)

while True:
p.freq(f)

sleep(10 / F_MIN)

f += delta_f
if f >= F_MAX or f <= F_MIN:

delta_f = -delta_f

See PWM wave at Pin(5) with an oscilloscope.
• Example of a smooth duty change:

from utime import sleep
from machine import Pin, PWM

DUTY_MAX = 2**16 - 1

duty_u16 = 0
delta_d = 16

p = PWM(Pin(5), 1000, duty_u16=duty_u16)
print(p)

while True:

(continues on next page)

406 Chapter 8. Quick reference for the ESP32

MicroPython Documentation, Release v1.20.0

(continued from previous page)
p.duty_u16(duty_u16)

sleep(1 / 1000)

duty_u16 += delta_d
if duty_u16 >= DUTY_MAX:

duty_u16 = DUTY_MAX
delta_d = -delta_d

elif duty_u16 <= 0:
duty_u16 = 0
delta_d = -delta_d

See PWM wave at Pin(5) with an oscilloscope.
Note: the Pin.OUT mode does not need to be specified. The channel is initialized to PWMmode internally once for each
Pin that is passed to the PWM constructor.
The following code is wrong:

pwm = PWM(Pin(5, Pin.OUT), freq=1000, duty=512) # Pin(5) in PWM mode here
pwm = PWM(Pin(5, Pin.OUT), freq=500, duty=256) # Pin(5) in OUT mode here, PWM is off

Use this code instead:

pwm = PWM(Pin(5), freq=1000, duty=512)
pwm.init(freq=500, duty=256)

8.2.3 Accessing peripherals directly via registers

The ESP32’s peripherals can be controlled via direct register reads and writes. This requires reading the datasheet to
know what registers to use and what values to write to them. The following example shows how to turn on and change
the prescaler of the MCPWM0 peripheral.

from micropython import const
from machine import mem32

Define the register addresses that will be used.
DR_REG_DPORT_BASE = const(0x3FF00000)
DPORT_PERIP_CLK_EN_REG = const(DR_REG_DPORT_BASE + 0x0C0)
DPORT_PERIP_RST_EN_REG = const(DR_REG_DPORT_BASE + 0x0C4)
DPORT_PWM0_CLK_EN = const(1 << 17)
MCPWM0 = const(0x3FF5E000)
MCPWM1 = const(0x3FF6C000)

Enable CLK and disable RST.
print(hex(mem32[DPORT_PERIP_CLK_EN_REG] & 0xffffffff))
print(hex(mem32[DPORT_PERIP_RST_EN_REG] & 0xffffffff))
mem32[DPORT_PERIP_CLK_EN_REG] |= DPORT_PWM0_CLK_EN
mem32[DPORT_PERIP_RST_EN_REG] &= ~DPORT_PWM0_CLK_EN
print(hex(mem32[DPORT_PERIP_CLK_EN_REG] & 0xffffffff))
print(hex(mem32[DPORT_PERIP_RST_EN_REG] & 0xffffffff))

Change the MCPWM0 prescaler.
print(hex(mem32[MCPWM0])) # read PWM_CLK_CFG_REG (reset value = 0)
mem32[MCPWM0] = 0x55 # change PWM_CLK_PRESCALE
print(hex(mem32[MCPWM0])) # read PWM_CLK_CFG_REG

8.2. MicroPython tutorial for ESP32 407

MicroPython Documentation, Release v1.20.0

Note that before a peripheral can be used its clock must be enabled and it must be taken out of reset. In the above example
the following registers are used for this:

• DPORT_PERI_CLK_EN_REG: used to enable a peripheral clock
• DPORT_PERI_RST_EN_REG: used to reset (or take out of reset) a peripheral

The MCPWM0 peripheral is in bit position 17 of the above two registers, hence the value of DPORT_PWM0_CLK_EN.

8.3 Installing MicroPython

See the corresponding section of tutorial: Getting started withMicroPython on the ESP32. It also includes a troubleshooting
subsection.

8.4 General board control

The MicroPython REPL is on UART0 (GPIO1=TX, GPIO3=RX) at baudrate 115200. Tab-completion is useful to find
out what methods an object has. Paste mode (ctrl-E) is useful to paste a large slab of Python code into the REPL.
The machine module:

import machine

machine.freq() # get the current frequency of the CPU
machine.freq(240000000) # set the CPU frequency to 240 MHz

The esp module:

import esp

esp.osdebug(None) # turn off vendor O/S debugging messages
esp.osdebug(0) # redirect vendor O/S debugging messages to UART(0)

low level methods to interact with flash storage
esp.flash_size()
esp.flash_user_start()
esp.flash_erase(sector_no)
esp.flash_write(byte_offset, buffer)
esp.flash_read(byte_offset, buffer)

The esp32 module:

import esp32

esp32.hall_sensor() # read the internal hall sensor
esp32.raw_temperature() # read the internal temperature of the MCU, in Fahrenheit
esp32.ULP() # access to the Ultra-Low-Power Co-processor

Note that the temperature sensor in the ESP32 will typically read higher than ambient due to the IC getting warm while
it runs. This effect can be minimised by reading the temperature sensor immediately after waking up from sleep.

408 Chapter 8. Quick reference for the ESP32

MicroPython Documentation, Release v1.20.0

8.5 Networking

8.5.1 WLAN

The network module:

import network

wlan = network.WLAN(network.STA_IF) # create station interface
wlan.active(True) # activate the interface
wlan.scan() # scan for access points
wlan.isconnected() # check if the station is connected to an AP
wlan.connect('ssid', 'key') # connect to an AP
wlan.config('mac') # get the interface's MAC address
wlan.ifconfig() # get the interface's IP/netmask/gw/DNS addresses

ap = network.WLAN(network.AP_IF) # create access-point interface
ap.config(ssid='ESP-AP') # set the SSID of the access point
ap.config(max_clients=10) # set how many clients can connect to the network
ap.active(True) # activate the interface

A useful function for connecting to your local WiFi network is:

def do_connect():
import network
wlan = network.WLAN(network.STA_IF)
wlan.active(True)
if not wlan.isconnected():

print('connecting to network...')
wlan.connect('ssid', 'key')
while not wlan.isconnected():

pass
print('network config:', wlan.ifconfig())

Once the network is established the socket module can be used to create and use TCP/UDP sockets as usual, and the
urequests module for convenient HTTP requests.
After a call towlan.connect(), the device will by default retry to connect forever, even when the authentication failed
or no AP is in range. wlan.status() will return network.STAT_CONNECTING in this state until a connection
succeeds or the interface gets disabled. This can be changed by calling wlan.config(reconnects=n), where n
are the number of desired reconnect attempts (0 means it won’t retry, -1 will restore the default behaviour of trying to
reconnect forever).

8.5.2 LAN

To use the wired interfaces one has to specify the pins and mode

import network

lan = network.LAN(mdc=PIN_MDC, ...) # Set the pin and mode configuration
lan.active(True) # activate the interface
lan.ifconfig() # get the interface's IP/netmask/gw/DNS␣
↪→addresses

The keyword arguments for the constructor defining the PHY type and interface are:

8.5. Networking 409

MicroPython Documentation, Release v1.20.0

• mdc=pin-object # set the mdc and mdio pins.
• mdio=pin-object
• power=pin-object # set the pin which switches the power of the PHY device.
• phy_type=<type> # Select the PHY device type. Supported devices are PHY_LAN8710, PHY_LAN8720,
PH_IP101, PHY_RTL8201, PHY_DP83848 and PHY_KSZ8041

• phy_addr=number # The address number of the PHY device.
• ref_clk_mode=mode # Defines, whether the ref_clk at the ESP32 is an input or output. Suitable values are Pin.IN
and Pin.OUT.

• ref_clk=pin-object # defines the Pin used for ref_clk.
The options ref_clk_mode and ref_clk require at least esp-idf version 4.4. For earlier esp-idf versions, these parameters
must be defined by kconfig board options.
These are working configurations for LAN interfaces of popular boards:

Olimex ESP32-GATEWAY: power controlled by Pin(5)
Olimex ESP32 PoE and ESP32-PoE ISO: power controlled by Pin(12)

lan = network.LAN(mdc=machine.Pin(23), mdio=machine.Pin(18), power=machine.Pin(5),
phy_type=network.PHY_LAN8720, phy_addr=0)

or with dynamic ref_clk pin configuration

lan = network.LAN(mdc=machine.Pin(23), mdio=machine.Pin(18), power=machine.Pin(5),
phy_type=network.PHY_LAN8720, phy_addr=0,
ref_clk=machine.Pin(17), ref_clk_mode=machine.Pin.OUT)

Wireless-Tag's WT32-ETH01

lan = network.LAN(mdc=machine.Pin(23), mdio=machine.Pin(18),
phy_type=network.PHY_LAN8720, phy_addr=1, power=None)

Espressif ESP32-Ethernet-Kit_A_V1.2

lan = network.LAN(id=0, mdc=Pin(23), mdio=Pin(18), power=Pin(5),
phy_type=network.PHY_IP101, phy_addr=1)

A suitable definition of the PHY interface in a sdkconfig.board file is:

CONFIG_ETH_PHY_INTERFACE_RMII=y
CONFIG_ETH_RMII_CLK_OUTPUT=y
CONFIG_ETH_RMII_CLK_OUT_GPIO=17
CONFIG_LWIP_LOCAL_HOSTNAME="ESP32_POE"

The value assigned to CONFIG_ETH_RMII_CLK_OUT_GPIO may vary depending on the board’s wiring.

410 Chapter 8. Quick reference for the ESP32

MicroPython Documentation, Release v1.20.0

8.6 Delay and timing

Use the time module:

import time

time.sleep(1) # sleep for 1 second
time.sleep_ms(500) # sleep for 500 milliseconds
time.sleep_us(10) # sleep for 10 microseconds
start = time.ticks_ms() # get millisecond counter
delta = time.ticks_diff(time.ticks_ms(), start) # compute time difference

8.7 Timers

The ESP32 port has four hardware timers. Use the machine.Timer class with a timer ID from 0 to 3 (inclusive):

from machine import Timer

tim0 = Timer(0)
tim0.init(period=5000, mode=Timer.ONE_SHOT, callback=lambda t:print(0))

tim1 = Timer(1)
tim1.init(period=2000, mode=Timer.PERIODIC, callback=lambda t:print(1))

The period is in milliseconds.
Virtual timers are not currently supported on this port.

8.8 Pins and GPIO

Use the machine.Pin class:

from machine import Pin

p0 = Pin(0, Pin.OUT) # create output pin on GPIO0
p0.on() # set pin to "on" (high) level
p0.off() # set pin to "off" (low) level
p0.value(1) # set pin to on/high

p2 = Pin(2, Pin.IN) # create input pin on GPIO2
print(p2.value()) # get value, 0 or 1

p4 = Pin(4, Pin.IN, Pin.PULL_UP) # enable internal pull-up resistor
p5 = Pin(5, Pin.OUT, value=1) # set pin high on creation
p6 = Pin(6, Pin.OUT, drive=Pin.DRIVE_3) # set maximum drive strength

Available Pins are from the following ranges (inclusive): 0-19, 21-23, 25-27, 32-39. These correspond to the actual GPIO
pin numbers of ESP32 chip. Note that many end-user boards use their own adhoc pin numbering (marked e.g. D0, D1,
…). For mapping between board logical pins and physical chip pins consult your board documentation.
Four drive strengths are supported, using the drive keyword argument to the Pin() constructor or Pin.init()
method, with different corresponding safe maximum source/sink currents and approximate internal driver resistances:

• Pin.DRIVE_0: 5mA / 130 ohm

8.6. Delay and timing 411

MicroPython Documentation, Release v1.20.0

• Pin.DRIVE_1: 10mA / 60 ohm
• Pin.DRIVE_2: 20mA / 30 ohm (default strength if not configured)
• Pin.DRIVE_3: 40mA / 15 ohm

The hold= keyword argument to Pin() and Pin.init() will enable the ESP32 “pad hold” feature. When set to
True, the pin configuration (direction, pull resistors and output value) will be held and any further changes (including
changing the output level) will not be applied. Setting hold=False will immediately apply any outstanding pin config-
uration changes and release the pin. Using hold=True while a pin is already held will apply any configuration changes
and then immediately reapply the hold.
Notes:

• Pins 1 and 3 are REPL UART TX and RX respectively
• Pins 6, 7, 8, 11, 16, and 17 are used for connecting the embedded flash, and are not recommended for other uses
• Pins 34-39 are input only, and also do not have internal pull-up resistors
• See Deep-sleep mode for a discussion of pin behaviour during sleep

There’s a higher-level abstraction machine.Signal which can be used to invert a pin. Useful for illuminating active-low
LEDs using on() or value(1).

8.9 UART (serial bus)

See machine.UART .

from machine import UART

uart1 = UART(1, baudrate=9600, tx=33, rx=32)
uart1.write('hello') # write 5 bytes
uart1.read(5) # read up to 5 bytes

The ESP32 has three hardware UARTs: UART0, UART1 and UART2. They each have default GPIO assigned to them,
however depending on your ESP32 variant and board, these pins may conflict with embedded flash, onboard PSRAM or
peripherals.
Any GPIO can be used for hardware UARTs using the GPIO matrix, except for input-only pins 34-39 that can be used
as rx. To avoid conflicts simply provide tx and rx pins when constructing. The default pins listed below.

UART0 UART1 UART2

tx 1 10 17
rx 3 9 16

412 Chapter 8. Quick reference for the ESP32

MicroPython Documentation, Release v1.20.0

8.10 PWM (pulse width modulation)

PWM can be enabled on all output-enabled pins. The base frequency can range from 1Hz to 40MHz but there is a
tradeoff; as the base frequency increases the duty resolution decreases. See LED Control for more details.
Use the machine.PWM class:

from machine import Pin, PWM

pwm0 = PWM(Pin(0)) # create PWM object from a pin
freq = pwm0.freq() # get current frequency (default 5kHz)
pwm0.freq(1000) # set PWM frequency from 1Hz to 40MHz

duty = pwm0.duty() # get current duty cycle, range 0-1023 (default 512, 50%)
pwm0.duty(256) # set duty cycle from 0 to 1023 as a ratio duty/1023, (now␣
↪→25%)

duty_u16 = pwm0.duty_u16() # get current duty cycle, range 0-65535
pwm0.duty_u16(2**16*3//4) # set duty cycle from 0 to 65535 as a ratio duty_u16/65535,
↪→ (now 75%)

duty_ns = pwm0.duty_ns() # get current pulse width in ns
pwm0.duty_ns(250_000) # set pulse width in nanoseconds from 0 to 1_000_000_000/
↪→freq, (now 25%)

pwm0.deinit() # turn off PWM on the pin

pwm2 = PWM(Pin(2), freq=20000, duty=512) # create and configure in one go
print(pwm2) # view PWM settings

ESP chips have different hardware peripherals:

Hardware specification ESP32 ESP32-S2 ESP32-C3
Number of groups (speed modes) 2 1 1
Number of timers per group 4 4 4
Number of channels per group 8 8 6
Different PWM frequencies (groups * timers) 8 4 4
Total PWM channels (Pins, duties) (groups * channels) 16 8 6

A maximum number of PWM channels (Pins) are available on the ESP32 - 16 channels, but only 8 different PWM
frequencies are available, the remaining 8 channels must have the same frequency. On the other hand, 16 independent
PWM duty cycles are possible at the same frequency.
See more examples in the Pulse Width Modulation tutorial.

8.10. PWM (pulse width modulation) 413

https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/peripherals/ledc.html

MicroPython Documentation, Release v1.20.0

8.11 ADC (analog to digital conversion)

On the ESP32, ADC functionality is available on pins 32-39 (ADC block 1) and pins 0, 2, 4, 12-15 and 25-27 (ADC
block 2).
Use the machine.ADC class:

from machine import ADC

adc = ADC(pin) # create an ADC object acting on a pin
val = adc.read_u16() # read a raw analog value in the range 0-65535
val = adc.read_uv() # read an analog value in microvolts

ADC block 2 is also used by WiFi and so attempting to read analog values from block 2 pins when WiFi is active will
raise an exception.
The internal ADC reference voltage is typically 1.1V, but varies slightly from package to package. The ADC is less
linear close to the reference voltage (particularly at higher attenuations) and has a minimum measurement voltage around
100mV, voltages at or below this will read as 0. To read voltages accurately, it is recommended to use the read_uv()
method (see below).
ESP32-specific ADC class method reference:
class ADC(pin, *, atten)

Return the ADC object for the specified pin. ESP32 does not support different timings for ADC sampling and so
the sample_ns keyword argument is not supported.
To read voltages above the reference voltage, apply input attenuation with the atten keyword argument. Valid
values (and approximate linear measurement ranges) are:

• ADC.ATTN_0DB: No attenuation (100mV - 950mV)
• ADC.ATTN_2_5DB: 2.5dB attenuation (100mV - 1250mV)
• ADC.ATTN_6DB: 6dB attenuation (150mV - 1750mV)
• ADC.ATTN_11DB: 11dB attenuation (150mV - 2450mV)

Warning: Note that the absolute maximum voltage rating for input pins is 3.6V. Going near to this boundary risks
damage to the IC!

ADC.read_uv()
This method uses the known characteristics of the ADC and per-package eFuse values - set during manufacture - to
return a calibrated input voltage (before attenuation) in microvolts. The returned value has only millivolt resolution
(i.e., will always be a multiple of 1000 microvolts).
The calibration is only valid across the linear range of the ADC. In particular, an input tied to ground will read as a
value above 0 microvolts. Within the linear range, however, more accurate and consistent results will be obtained
than using read_u16() and scaling the result with a constant.

The ESP32 port also supports the machine.ADC API:
class ADCBlock(id, *, bits)

Return the ADC block object with the given id (1 or 2) and initialize it to the specified resolution (9 to 12-bits
depending on the ESP32 series) or the highest supported resolution if not specified.

ADCBlock.connect(pin)
ADCBlock.connect(channel)

414 Chapter 8. Quick reference for the ESP32

MicroPython Documentation, Release v1.20.0

ADCBlock.connect(channel, pin)
Return the ADC object for the specified ADC pin or channel number. Arbitrary connection of ADC channels to
GPIO is not supported and so specifying a pin that is not connected to this block, or specifying a mismatched
channel and pin, will raise an exception.

Legacy methods:
ADC.read()

This method returns the raw ADC value ranged according to the resolution of the block, e.g., 0-4095 for 12-bit
resolution.

ADC.atten(atten)
Equivalent to ADC.init(atten=atten).

ADC.width(bits)
Equivalent to ADC.block().init(bits=bits).

For compatibility, the ADC object also provides constants matching the supported ADC resolutions:
• ADC.WIDTH_9BIT = 9
• ADC.WIDTH_10BIT = 10
• ADC.WIDTH_11BIT = 11
• ADC.WIDTH_12BIT = 12

8.12 Software SPI bus

Software SPI (using bit-banging) works on all pins, and is accessed via the machine.SoftSPI class:

from machine import Pin, SoftSPI

construct a SoftSPI bus on the given pins
polarity is the idle state of SCK
phase=0 means sample on the first edge of SCK, phase=1 means the second
spi = SoftSPI(baudrate=100000, polarity=1, phase=0, sck=Pin(0), mosi=Pin(2),␣
↪→miso=Pin(4))

spi.init(baudrate=200000) # set the baudrate

spi.read(10) # read 10 bytes on MISO
spi.read(10, 0xff) # read 10 bytes while outputting 0xff on MOSI

buf = bytearray(50) # create a buffer
spi.readinto(buf) # read into the given buffer (reads 50 bytes in this case)
spi.readinto(buf, 0xff) # read into the given buffer and output 0xff on MOSI

spi.write(b'12345') # write 5 bytes on MOSI

buf = bytearray(4) # create a buffer
spi.write_readinto(b'1234', buf) # write to MOSI and read from MISO into the buffer
spi.write_readinto(buf, buf) # write buf to MOSI and read MISO back into buf

Warning: Currently all of sck, mosi and miso must be specified when initialising Software SPI.

8.12. Software SPI bus 415

MicroPython Documentation, Release v1.20.0

8.13 Hardware SPI bus

There are two hardware SPI channels that allow faster transmission rates (up to 80Mhz). These may be used on any IO
pins that support the required direction and are otherwise unused (see Pins and GPIO) but if they are not configured to
their default pins then they need to pass through an extra layer of GPIO multiplexing, which can impact their reliability
at high speeds. Hardware SPI channels are limited to 40MHz when used on pins other than the default ones listed below.

HSPI (id=1) VSPI (id=2)

sck 14 18
mosi 13 23
miso 12 19

Hardware SPI is accessed via the machine.SPI class and has the same methods as software SPI above:

from machine import Pin, SPI

hspi = SPI(1, 10000000)
hspi = SPI(1, 10000000, sck=Pin(14), mosi=Pin(13), miso=Pin(12))
vspi = SPI(2, baudrate=80000000, polarity=0, phase=0, bits=8, firstbit=0, sck=Pin(18),
↪→ mosi=Pin(23), miso=Pin(19))

8.14 Software I2C bus

Software I2C (using bit-banging) works on all output-capable pins, and is accessed via the machine.SoftI2C class:

from machine import Pin, SoftI2C

i2c = SoftI2C(scl=Pin(5), sda=Pin(4), freq=100000)

i2c.scan() # scan for devices

i2c.readfrom(0x3a, 4) # read 4 bytes from device with address 0x3a
i2c.writeto(0x3a, '12') # write '12' to device with address 0x3a

buf = bytearray(10) # create a buffer with 10 bytes
i2c.writeto(0x3a, buf) # write the given buffer to the peripheral

8.15 Hardware I2C bus

There are two hardware I2C peripherals with identifiers 0 and 1. Any available output-capable pins can be used for SCL
and SDA but the defaults are given below.

I2C(0) I2C(1)

scl 18 25
sda 19 26

The driver is accessed via the machine.I2C class and has the same methods as software I2C above:

416 Chapter 8. Quick reference for the ESP32

MicroPython Documentation, Release v1.20.0

from machine import Pin, I2C

i2c = I2C(0)
i2c = I2C(1, scl=Pin(5), sda=Pin(4), freq=400000)

8.16 I2S bus

See machine.I2S.

from machine import I2S, Pin

i2s = I2S(0, sck=Pin(13), ws=Pin(14), sd=Pin(34), mode=I2S.TX, bits=16, format=I2S.
↪→STEREO, rate=44100, ibuf=40000) # create I2S object
i2s.write(buf) # write buffer of audio samples to I2S device

i2s = I2S(1, sck=Pin(33), ws=Pin(25), sd=Pin(32), mode=I2S.RX, bits=16, format=I2S.
↪→MONO, rate=22050, ibuf=40000) # create I2S object
i2s.readinto(buf) # fill buffer with audio samples from I2S device

The I2S class is currently available as a Technical Preview. During the preview period, feedback from users is encouraged.
Based on this feedback, the I2S class API and implementation may be changed.
ESP32 has two I2S buses with id=0 and id=1

8.17 Real time clock (RTC)

See machine.RTC

from machine import RTC

rtc = RTC()
rtc.datetime((2017, 8, 23, 1, 12, 48, 0, 0)) # set a specific date and time
rtc.datetime() # get date and time

8.18 WDT (Watchdog timer)

See machine.WDT .

from machine import WDT

enable the WDT with a timeout of 5s (1s is the minimum)
wdt = WDT(timeout=5000)
wdt.feed()

8.16. I2S bus 417

MicroPython Documentation, Release v1.20.0

8.19 Deep-sleep mode

The following code can be used to sleep, wake and check the reset cause:

import machine

check if the device woke from a deep sleep
if machine.reset_cause() == machine.DEEPSLEEP_RESET:

print('woke from a deep sleep')

put the device to sleep for 10 seconds
machine.deepsleep(10000)

Notes:
• Calling deepsleep() without an argument will put the device to sleep indefinitely
• A software reset does not change the reset cause

Some ESP32 pins (0, 2, 4, 12-15, 25-27, 32-39) are connected to the RTC during deep-sleep and can be used to wake
the device with the wake_on_ functions in the esp32 module. The output-capable RTC pins (all except 34-39) will
also retain their pull-up or pull-down resistor configuration when entering deep-sleep.
If the pull resistors are not actively required during deep-sleep and are likely to cause current leakage (for example a
pull-up resistor is connected to ground through a switch), then they should be disabled to save power before entering
deep-sleep mode:

from machine import Pin, deepsleep

configure input RTC pin with pull-up on boot
pin = Pin(2, Pin.IN, Pin.PULL_UP)

disable pull-up and put the device to sleep for 10 seconds
pin.init(pull=None)
machine.deepsleep(10000)

Output-configured RTC pins will also retain their output direction and level in deep-sleep if pad hold is enabled with the
hold=True argument to Pin.init().
Non-RTC GPIO pins will be disconnected by default on entering deep-sleep. Configuration of non-RTC pins - including
output level - can be retained by enabling pad hold on the pin and enabling GPIO pad hold during deep-sleep:

from machine import Pin, deepsleep
import esp32

opin = Pin(19, Pin.OUT, value=1, hold=True) # hold output level
ipin = Pin(21, Pin.IN, Pin.PULL_UP, hold=True) # hold pull-up

enable pad hold in deep-sleep for non-RTC GPIO
esp32.gpio_deep_sleep_hold(True)

put the device to sleep for 10 seconds
deepsleep(10000)

The pin configuration - including the pad hold - will be retained on wake from sleep. See Pins and GPIO above for a
further discussion of pad holding.

418 Chapter 8. Quick reference for the ESP32

MicroPython Documentation, Release v1.20.0

8.20 SD card

See machine.SDCard.

import machine, os

Slot 2 uses pins sck=18, cs=5, miso=19, mosi=23
sd = machine.SDCard(slot=2)
os.mount(sd, '/sd') # mount

os.listdir('/sd') # list directory contents

os.umount('/sd') # eject

8.21 RMT

The RMT is ESP32-specific and allows generation of accurate digital pulses with 12.5ns resolution. See esp32.RMT for
details. Usage is:

import esp32
from machine import Pin

r = esp32.RMT(0, pin=Pin(18), clock_div=8)
r # RMT(channel=0, pin=18, source_freq=80000000, clock_div=8)
The channel resolution is 100ns (1/(source_freq/clock_div)).
r.write_pulses((1, 20, 2, 40), 0) # Send 0 for 100ns, 1 for 2000ns, 0 for 200ns, 1␣
↪→for 4000ns

8.22 OneWire driver

The OneWire driver is implemented in software and works on all pins:

from machine import Pin
import onewire

ow = onewire.OneWire(Pin(12)) # create a OneWire bus on GPIO12
ow.scan() # return a list of devices on the bus
ow.reset() # reset the bus
ow.readbyte() # read a byte
ow.writebyte(0x12) # write a byte on the bus
ow.write('123') # write bytes on the bus
ow.select_rom(b'12345678') # select a specific device by its ROM code

There is a specific driver for DS18S20 and DS18B20 devices:

import time, ds18x20
ds = ds18x20.DS18X20(ow)
roms = ds.scan()
ds.convert_temp()
time.sleep_ms(750)
for rom in roms:

print(ds.read_temp(rom))

8.20. SD card 419

MicroPython Documentation, Release v1.20.0

Be sure to put a 4.7k pull-up resistor on the data line. Note that the convert_temp() method must be called each
time you want to sample the temperature.

8.23 NeoPixel and APA106 driver

Use the neopixel and apa106 modules:

from machine import Pin
from neopixel import NeoPixel

pin = Pin(0, Pin.OUT) # set GPIO0 to output to drive NeoPixels
np = NeoPixel(pin, 8) # create NeoPixel driver on GPIO0 for 8 pixels
np[0] = (255, 255, 255) # set the first pixel to white
np.write() # write data to all pixels
r, g, b = np[0] # get first pixel colour

The APA106 driver extends NeoPixel, but internally uses a different colour order:

from apa106 import APA106
ap = APA106(pin, 8)
r, g, b = ap[0]

Warning: By default NeoPixel is configured to control the more popular 800kHz units. It is possible to use alter-
native timing to control other (typically 400kHz) devices by passing timing=0 when constructing the NeoPixel
object.

For low-level driving of a NeoPixel see machine.bitstream. This low-level driver uses an RMT channel by default.
To configure this see RMT.bitstream_channel.
APA102 (DotStar) uses a different driver as it has an additional clock pin.

8.24 Capacitive touch

Use the TouchPad class in the machine module:

from machine import TouchPad, Pin

t = TouchPad(Pin(14))
t.read() # Returns a smaller number when touched

TouchPad.read returns a value relative to the capacitive variation. Small numbers (typically in the tens) are common
when a pin is touched, larger numbers (above one thousand) when no touch is present. However the values are relative
and can vary depending on the board and surrounding composition so some calibration may be required.
There are ten capacitive touch-enabled pins that can be used on the ESP32: 0, 2, 4, 12, 13 14, 15, 27, 32, 33. Trying to
assign to any other pins will result in a ValueError.
Note that TouchPads can be used to wake an ESP32 from sleep:

import machine
from machine import TouchPad, Pin

(continues on next page)

420 Chapter 8. Quick reference for the ESP32

MicroPython Documentation, Release v1.20.0

(continued from previous page)
import esp32

t = TouchPad(Pin(14))
t.config(500) # configure the threshold at which the pin is considered␣
↪→touched
esp32.wake_on_touch(True)
machine.lightsleep() # put the MCU to sleep until a touchpad is touched

For more details on touchpads refer to Espressif Touch Sensor.

8.25 DHT driver

The DHT driver is implemented in software and works on all pins:

import dht
import machine

d = dht.DHT11(machine.Pin(4))
d.measure()
d.temperature() # eg. 23 (°C)
d.humidity() # eg. 41 (% RH)

d = dht.DHT22(machine.Pin(4))
d.measure()
d.temperature() # eg. 23.6 (°C)
d.humidity() # eg. 41.3 (% RH)

8.26 WebREPL (web browser interactive prompt)

WebREPL (REPL over WebSockets, accessible via a web browser) is an experimental feature available in ESP32 port.
Download web client from https://github.com/micropython/webrepl (hosted version available at http://micropython.org/
webrepl), and configure it by executing:

import webrepl_setup

and following on-screen instructions. After reboot, it will be available for connection. If you disabled automatic start-up
on boot, you may run configured daemon on demand using:

import webrepl
webrepl.start()

or, start with a specific password
webrepl.start(password='mypass')

TheWebREPL daemon listens on all active interfaces, which can be STA or AP. This allows you to connect to the ESP32
via a router (the STA interface) or directly when connected to its access point.
In addition to terminal/command prompt access, WebREPL also has provision for file transfer (both upload and
download). The web client has buttons for the corresponding functions, or you can use the command-line client
webrepl_cli.py from the repository above.
See the MicroPython forum for other community-supported alternatives to transfer files to an ESP32 board.

8.25. DHT driver 421

https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/peripherals/touch_pad.html
https://github.com/micropython/webrepl
http://micropython.org/webrepl
http://micropython.org/webrepl

MicroPython Documentation, Release v1.20.0

422 Chapter 8. Quick reference for the ESP32

CHAPTER

NINE

QUICK REFERENCE FOR THE RP2

The Raspberry Pi Pico Development Board (image attribution: Raspberry Pi Foundation).
Below is a quick reference for Raspberry Pi RP2xxx boards. If it is your first time working with this board it may be
useful to get an overview of the microcontroller:

423

MicroPython Documentation, Release v1.20.0

9.1 General information about the RP2xxx port

The rp2 port supports boards powered by the Raspberry Pi Foundation’s RP2xxx family of microcontrollers, most notably
the Raspberry Pi Pico that employs the RP2040.

9.1.1 Technical specifications and SoC datasheets

For detailed technical specifications, please refer to the datasheets
The RP2040 microcontroller is manufactured on a 40 nm silicon process in a 7x7mm QFN-56 SMD package. The key
features include:

• 133 MHz dual ARM Cortex-M0+ cores (overclockable to over 400 MHz)
• 264KB SRAM in six independent banks
• No internal Flash or EEPROM memory (after reset, the bootloader loads firmware from either the external flash
memory or USB bus into internal SRAM)

• QSPI bus controller, which supports up to 16 MB of external Flash memory
• On-chip programmable LDO to generate core voltage
• 2 on-chip PLLs to generate USB and core clocks
• 30 GPIO pins, of which 4 can optionally be used as analog inputs

The peripherals include:
• 2 UARTs
• 2 SPI controllers
• 2 I2C contollers
• 16 PWM channels
• USB 1.1 controller
• 8 PIO state machines

9.2 Getting started with MicroPython on the RP2xxx

Let’s get started!

9.2.1 Programmable IO

The RP2040 has hardware support for standard communication protocols like I2C, SPI and UART. For protocols where
there is no hardware support, or where there is a requirement of custom I/O behaviour, Programmable Input Output
(PIO) comes into play. Also, some MicroPython applications make use of a technique called bit banging in which pins
are rapidly turned on and off to transmit data. This can make the entire process slow as the processor concentrates on bit
banging rather than executing other logic. However, PIO allows bit banging to happen in the background while the CPU
is executing the main work.
Along with the two central Cortex-M0+ processing cores, the RP2040 has two PIO blocks each of which has four in-
dependent state machines. These state machines can transfer data to/from other entities using First-In-First-Out (FIFO)
buffers, which allow the state machine and main processor to work independently yet also synchronise their data. Each
FIFO has four words (each of 32 bits) which can be linked to the DMA to transfer larger amounts of data.

424 Chapter 9. Quick reference for the RP2

https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf

MicroPython Documentation, Release v1.20.0

All PIO instructions follow a common pattern:

<instruction> .side(<side_set_value>) [<delay_value>]

The side-set .side(...) and delay [...] parts are both optional, and if specified allow the instruction to perform
more than one operation. This keeps PIO programs small and efficient.
There are nine instructions which perform the following tasks:

• jmp() transfers control to a different part of the code
• wait() pauses until a particular action happens
• in_() shifts the bits from a source (scratch register or set of pins) to the input shift register
• out() shifts the bits from the output shift register to a destination
• push() sends data to the RX FIFO
• pull() receives data from the TX FIFO
• mov() moves data from a source to a destination
• irq() sets or clears an IRQ flag
• set() writes a literal value to a destination

The instruction modifiers are:
• .side() sets the side-set pins at the start of the instruction
• [] delays for a certain number of cycles after execution of the instruction

There are also directives:
• wrap_target() specifies where the program execution will get continued from
• wrap() specifies the instruction where the control flow of the program will get wrapped from
• label() sets a label for use with jmp() instructions
• word() emits a raw 16-bit value which acts as an instruction in the program

An example

Take the pio_1hz.py example for a simple understanding of how to use the PIO and state machines. Below is the
code for reference.

Example using PIO to blink an LED and raise an IRQ at 1Hz.

import time
from machine import Pin
import rp2

@rp2.asm_pio(set_init=rp2.PIO.OUT_LOW)
def blink_1hz():

Cycles: 1 + 1 + 6 + 32 * (30 + 1) = 1000
irq(rel(0))
set(pins, 1)
set(x, 31) [5]
label("delay_high")
nop() [29]

(continues on next page)

9.2. Getting started with MicroPython on the RP2xxx 425

MicroPython Documentation, Release v1.20.0

(continued from previous page)
jmp(x_dec, "delay_high")

Cycles: 1 + 1 + 6 + 32 * (30 + 1) = 1000
nop()
set(pins, 0)
set(x, 31) [5]
label("delay_low")
nop() [29]
jmp(x_dec, "delay_low")

Create the StateMachine with the blink_1hz program, outputting on Pin(25).
sm = rp2.StateMachine(0, blink_1hz, freq=2000, set_base=Pin(25))

Set the IRQ handler to print the millisecond timestamp.
sm.irq(lambda p: print(time.ticks_ms()))

Start the StateMachine.
sm.active(1)

This creates an instance of class rp2.StateMachine which runs the blink_1hz program at 2000Hz, and connects
to pin 25. The blink_1hz program uses the PIO to blink an LED connected to this pin at 1Hz, and also raises an IRQ
as the LED turns on. This IRQ then calls the lambda function which prints out a millisecond timestamp.
The blink_1hz program is a PIO assembler routine. It connects to a single pin which is configured as an output and
starts out low. The instructions do the following:

• irq(rel(0)) raises the IRQ associated with the state machine.
• The LED is turned on via the set(pins, 1) instruction.
• The value 31 is put into register X, and then there is a delay for 5 more cycles, specified by the [5].
• The nop() [29] instruction waits for 30 cycles.
• The jmp(x_dec, "delay_high") will keep looping to the delay_high label as long as the register X is
non-zero, and will also post-decrement X. Since X starts with the value 31 this jump will happen 31 times, so the
nop() [29] runs 32 times in total (note there is also one instruction cycle taken by the jmp for each of these
32 loops).

• The single nop() correlates with the cycle used for IRQ raise, and ensures the same number of cycles are used
for LED on and LED off.

• set(pins, 0) will turn the LED off by setting pin 25 low.
• Another 32 loops of nop() [29] and jmp(...) will execute.
• Because wrap_target() and wrap() are not specified, their default will be used and execution of the program
will wrap around from the bottom to the top. This wrapping does not cost any execution cycles.

The entire routine takes exactly 2000 cycles of the state machine. Setting the frequency of the state machine to 2000Hz
makes the LED blink at 1Hz.

426 Chapter 9. Quick reference for the RP2

MicroPython Documentation, Release v1.20.0

9.3 Installing MicroPython

See the corresponding section of tutorial: Getting started with MicroPython on the RP2xxx. It also includes a troubleshoot-
ing subsection.

9.4 General board control

The MicroPython REPL is accessed via the USB serial port. Tab-completion is useful to find out what methods an object
has. Paste mode (ctrl-E) is useful to paste a large slab of Python code into the REPL.
The machine module:

import machine

machine.freq() # get the current frequency of the CPU
machine.freq(240000000) # set the CPU frequency to 240 MHz

The rp2 module:

import rp2

9.5 Delay and timing

Use the time module:

import time

time.sleep(1) # sleep for 1 second
time.sleep_ms(500) # sleep for 500 milliseconds
time.sleep_us(10) # sleep for 10 microseconds
start = time.ticks_ms() # get millisecond counter
delta = time.ticks_diff(time.ticks_ms(), start) # compute time difference

9.6 Timers

RP2040’s system timer peripheral provides a global microsecond timebase and generates interrupts for it. The software
timer is available currently, and there are unlimited number of them (memory permitting). There is no need to specify
the timer id (id=-1 is supported at the moment) as it will default to this.
Use the machine.Timer class:

from machine import Timer

tim = Timer(period=5000, mode=Timer.ONE_SHOT, callback=lambda t:print(1))
tim.init(period=2000, mode=Timer.PERIODIC, callback=lambda t:print(2))

9.3. Installing MicroPython 427

MicroPython Documentation, Release v1.20.0

9.7 Pins and GPIO

Use the machine.Pin class:

from machine import Pin

p0 = Pin(0, Pin.OUT) # create output pin on GPIO0
p0.on() # set pin to "on" (high) level
p0.off() # set pin to "off" (low) level
p0.value(1) # set pin to on/high

p2 = Pin(2, Pin.IN) # create input pin on GPIO2
print(p2.value()) # get value, 0 or 1

p4 = Pin(4, Pin.IN, Pin.PULL_UP) # enable internal pull-up resistor
p5 = Pin(5, Pin.OUT, value=1) # set pin high on creation

9.8 Programmable IO (PIO)

PIO is useful to build low-level IO interfaces from scratch. See the rp2module for detailed explaination of the assembly
instructions.
Example using PIO to blink an LED at 1Hz:

from machine import Pin
import rp2

@rp2.asm_pio(set_init=rp2.PIO.OUT_LOW)
def blink_1hz():

Cycles: 1 + 7 + 32 * (30 + 1) = 1000
set(pins, 1)
set(x, 31) [6]
label("delay_high")
nop() [29]
jmp(x_dec, "delay_high")

Cycles: 1 + 7 + 32 * (30 + 1) = 1000
set(pins, 0)
set(x, 31) [6]
label("delay_low")
nop() [29]
jmp(x_dec, "delay_low")

Create and start a StateMachine with blink_1hz, outputting on Pin(25)
sm = rp2.StateMachine(0, blink_1hz, freq=2000, set_base=Pin(25))
sm.active(1)

428 Chapter 9. Quick reference for the RP2

MicroPython Documentation, Release v1.20.0

9.9 UART (serial bus)

There are two UARTs, UART0 and UART1. UART0 can be mapped to GPIO 0/1, 12/13 and 16/17, and UART1 to
GPIO 4/5 and 8/9.
See machine.UART .

from machine import UART, Pin
uart1 = UART(1, baudrate=9600, tx=Pin(4), rx=Pin(5))
uart1.write('hello') # write 5 bytes
uart1.read(5) # read up to 5 bytes

Note: REPL over UART is disabled by default. You can see the Getting started with MicroPython on the RP2xxx for
details on how to enable REPL over UART.

9.10 PWM (pulse width modulation)

There are 8 independent channels each of which have 2 outputs making it 16 PWM channels in total which can be clocked
from 7Hz to 125Mhz.
Use the machine.PWM class:

from machine import Pin, PWM

pwm0 = PWM(Pin(0)) # create PWM object from a pin
pwm0.freq() # get current frequency
pwm0.freq(1000) # set frequency
pwm0.duty_u16() # get current duty cycle, range 0-65535
pwm0.duty_u16(200) # set duty cycle, range 0-65535
pwm0.deinit() # turn off PWM on the pin

9.11 ADC (analog to digital conversion)

RP2040 has five ADC channels in total, four of which are 12-bit SAR based ADCs: GP26, GP27, GP28 and GP29.
The input signal for ADC0, ADC1, ADC2 and ADC3 can be connected with GP26, GP27, GP28, GP29 respectively
(On Pico board, GP29 is connected to VSYS). The standard ADC range is 0-3.3V. The fifth channel is connected to the
in-built temperature sensor and can be used for measuring the temperature.
Use the machine.ADC class:

from machine import ADC, Pin
adc = ADC(Pin(26)) # create ADC object on ADC pin
adc.read_u16() # read value, 0-65535 across voltage range 0.0v - 3.3v

9.9. UART (serial bus) 429

MicroPython Documentation, Release v1.20.0

9.12 Software SPI bus

Software SPI (using bit-banging) works on all pins, and is accessed via the machine.SoftSPI class:

from machine import Pin, SoftSPI

construct a SoftSPI bus on the given pins
polarity is the idle state of SCK
phase=0 means sample on the first edge of SCK, phase=1 means the second
spi = SoftSPI(baudrate=100_000, polarity=1, phase=0, sck=Pin(0), mosi=Pin(2),␣
↪→miso=Pin(4))

spi.init(baudrate=200000) # set the baudrate

spi.read(10) # read 10 bytes on MISO
spi.read(10, 0xff) # read 10 bytes while outputting 0xff on MOSI

buf = bytearray(50) # create a buffer
spi.readinto(buf) # read into the given buffer (reads 50 bytes in this case)
spi.readinto(buf, 0xff) # read into the given buffer and output 0xff on MOSI

spi.write(b'12345') # write 5 bytes on MOSI

buf = bytearray(4) # create a buffer
spi.write_readinto(b'1234', buf) # write to MOSI and read from MISO into the buffer
spi.write_readinto(buf, buf) # write buf to MOSI and read MISO back into buf

Warning: Currently all of sck, mosi and miso must be specified when initialising Software SPI.

9.13 Hardware SPI bus

The RP2040 has 2 hardware SPI buses which is accessed via themachine.SPI class and has the same methods as software
SPI above:

from machine import Pin, SPI

spi = SPI(1, 10_000_000) # Default assignment: sck=Pin(10), mosi=Pin(11), miso=Pin(8)
spi = SPI(1, 10_000_000, sck=Pin(14), mosi=Pin(15), miso=Pin(12))
spi = SPI(0, baudrate=80_000_000, polarity=0, phase=0, bits=8, sck=Pin(6),␣
↪→mosi=Pin(7), miso=Pin(4))

9.14 Software I2C bus

Software I2C (using bit-banging) works on all output-capable pins, and is accessed via the machine.SoftI2C class:

from machine import Pin, SoftI2C

i2c = SoftI2C(scl=Pin(5), sda=Pin(4), freq=100_000)

i2c.scan() # scan for devices

(continues on next page)

430 Chapter 9. Quick reference for the RP2

MicroPython Documentation, Release v1.20.0

(continued from previous page)

i2c.readfrom(0x3a, 4) # read 4 bytes from device with address 0x3a
i2c.writeto(0x3a, '12') # write '12' to device with address 0x3a

buf = bytearray(10) # create a buffer with 10 bytes
i2c.writeto(0x3a, buf) # write the given buffer to the peripheral

9.15 Hardware I2C bus

The driver is accessed via the machine.I2C class and has the same methods as software I2C above:

from machine import Pin, I2C

i2c = I2C(0) # default assignment: scl=Pin(9), sda=Pin(8)
i2c = I2C(1, scl=Pin(3), sda=Pin(2), freq=400_000)

9.16 I2S bus

See machine.I2S.

from machine import I2S, Pin

i2s = I2S(0, sck=Pin(16), ws=Pin(17), sd=Pin(18), mode=I2S.TX, bits=16, format=I2S.
↪→STEREO, rate=44100, ibuf=40000) # create I2S object
i2s.write(buf) # write buffer of audio samples to I2S device

i2s = I2S(1, sck=Pin(0), ws=Pin(1), sd=Pin(2), mode=I2S.RX, bits=16, format=I2S.MONO,␣
↪→rate=22050, ibuf=40000) # create I2S object
i2s.readinto(buf) # fill buffer with audio samples from I2S device

The ws pin number must be one greater than the sck pin number.
The I2S class is currently available as a Technical Preview. During the preview period, feedback from users is encouraged.
Based on this feedback, the I2S class API and implementation may be changed.
Two I2S buses are supported with id=0 and id=1.

9.17 Real time clock (RTC)

See machine.RTC

from machine import RTC

rtc = RTC()
rtc.datetime((2017, 8, 23, 2, 12, 48, 0, 0)) # set a specific date and

time, eg. 2017/8/23 1:12:48
rtc.datetime() # get date and time

9.15. Hardware I2C bus 431

MicroPython Documentation, Release v1.20.0

9.18 WDT (Watchdog timer)

The RP2040 has a watchdog which is a countdown timer that can restart parts of the chip if it reaches zero.
See machine.WDT .

from machine import WDT

enable the WDT with a timeout of 5s (1s is the minimum)
wdt = WDT(timeout=5000)
wdt.feed()

The maximum value for timeout is 8388 ms.

9.19 OneWire driver

The OneWire driver is implemented in software and works on all pins:

from machine import Pin
import onewire

ow = onewire.OneWire(Pin(12)) # create a OneWire bus on GPIO12
ow.scan() # return a list of devices on the bus
ow.reset() # reset the bus
ow.readbyte() # read a byte
ow.writebyte(0x12) # write a byte on the bus
ow.write('123') # write bytes on the bus
ow.select_rom(b'12345678') # select a specific device by its ROM code

There is a specific driver for DS18S20 and DS18B20 devices:

import time, ds18x20
ds = ds18x20.DS18X20(ow)
roms = ds.scan()
ds.convert_temp()
time.sleep_ms(750)
for rom in roms:

print(ds.read_temp(rom))

Be sure to put a 4.7k pull-up resistor on the data line. Note that the convert_temp() method must be called each
time you want to sample the temperature.

9.20 NeoPixel and APA106 driver

Use the neopixel and apa106 modules:

from machine import Pin
from neopixel import NeoPixel

pin = Pin(0, Pin.OUT) # set GPIO0 to output to drive NeoPixels
np = NeoPixel(pin, 8) # create NeoPixel driver on GPIO0 for 8 pixels
np[0] = (255, 255, 255) # set the first pixel to white

(continues on next page)

432 Chapter 9. Quick reference for the RP2

MicroPython Documentation, Release v1.20.0

(continued from previous page)
np.write() # write data to all pixels
r, g, b = np[0] # get first pixel colour

The APA106 driver extends NeoPixel, but internally uses a different colour order:

from apa106 import APA106
ap = APA106(pin, 8)
r, g, b = ap[0]

APA102 (DotStar) uses a different driver as it has an additional clock pin.

9.20. NeoPixel and APA106 driver 433

MicroPython Documentation, Release v1.20.0

434 Chapter 9. Quick reference for the RP2

CHAPTER

TEN

QUICK REFERENCE FOR THE I.MXRT FAMILY

The Teensy 4.1 board.
Below is a quick reference for i.MXRT-based boards. If it is your first time working with this board it may be useful to
get an overview of the microcontroller:

435

MicroPython Documentation, Release v1.20.0

10.1 General information about the MIMXRT port

The i.MXRTMCU family is a high performance family of devices made by NXP. Based on an ARM7 core, they provide
many on-chip I/O units for building small to medium sized devices.

10.1.1 Multitude of boards

There is a multitude of modules and boards from different sources which carry an i.MXRT chip. MicroPython aims
to provide a generic port which runs on as many boards/modules as possible, but there may be limitations. The NXP
IMXRT1020-EVK and the Teensy 4.0 and Teensy 4.1 development boards are taken as reference for the port (for example,
testing is performed on them). For any board you are using please make sure you have a data sheet, schematics and other
reference materials so you can look up any board-specific functions.
The following boards are supported by the port:

• MIMXRT1010-EVK
• MIMXRT1020-EVK
• MIMXRT1050-EVK
• MIMXRT1060-EVK
• MIMXRT1064-EVK
• Teensy 4.0
• Teensy 4.1

10.1.2 Supported MCUs

Product CPU Memory
i.MX RT1064 Cortex-M7 @600 MHz 1 MB SRAM, 4 MB Flash
i.MX RT1061 Cortex-M7 @600 MHz 1 MB SRAM
i.MX RT1062 Cortex-M7 @600 MHz 1 MB SRAM
i.MX RT1050 Cortex-M7 @600 MHz 512 kB SRAM
i.MX RT1020 Cortex-M7 @500 MHz 256 kB SRAM
i.MX RT1015 Cortex-M7 @500 MHz 128 kB SRAM
i.MX RT1010 Cortex-M7 @500 MHz 128 kB SRAM

Note: Most of the controllers do not have internal flash memory. Therefore their flash capacity is dependent on an external
flash chip.
To make a generic MIMXRT port and support as many boards as possible the following design and implementation
decision were made:

• GPIO pin numbering is based on the board numbering as well as on the MCU numbering. Please have the man-
ual/pin diagram of your board at hand to find correspondence between your board pins and actual i.MXRT pins.

• All MCU pins are supported by MicroPython but not all are usable on any given board.

436 Chapter 10. Quick reference for the i.MXRT family

MicroPython Documentation, Release v1.20.0

10.1.3 Technical specifications and SoC datasheets

The data sheets and other reference material for i.MXRT chip are available from the vendor site: https://www.nxp.com/
products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-mcus:IMX-RT-SERIES . They are
the primary reference for the chip technical specifications, capabilities, operating modes, internal functioning, etc.
For your convenience, a few technical specifications are provided below:

• Architecture: ARM Cortex M7
• CPU frequency: up to 600MHz
• Total RAM available: up to 1 MByte (see table)
• BootROM: 96KB
• External FlashROM: code and data, via SPI Flash; usual size 2 - 16 MB Some boards provide additional external
RAM and SPI flash.

• GPIO: up to 124 (GPIOs are multiplexed with other functions, including external FlashROM, UART, etc.)
• UART: 4 or 8 RX/TX UART. Hardware handshaking is supported by the MCU, but the boards used for testing do
not expose the signals.

• SPI: 2 or 4 low power SPI interfaces (software implementation available on every pin)
• I2C: 2 or 4 low power I2C interfaces (software implementation available on every pin)
• I2S: 1 to 3 I2S interfaces
• ADC: one or two 12-bit SAR ADC converters
• Ethernet controller (except i.MX RT1010/-1015)
• Programming: using BootROM bootloader fromUSB - due to external FlashROM and always-available BootROM
bootloader, the MIMXRT is not brickable

The lower numbers for UART, SPI and I2C apply to the i.MXRT 101x MCU.
For more information see the i.MXRT data sheets or reference manuals. NXP provides software support through it’s
SDK packages.

10.2 Getting started with MicroPython on the i.MXRT

Using MicroPython is a great way to get the most of your i.MXRT board. And vice versa, the i.MXRT chip is a great
platform for using MicroPython. This tutorial will guide you through setting up MicroPython, getting a prompt, using the
hardware peripherals, and controlling some external components.
Let’s get started!

10.2. Getting started with MicroPython on the i.MXRT 437

https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-mcus:IMX-RT-SERIES
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-mcus:IMX-RT-SERIES

MicroPython Documentation, Release v1.20.0

10.2.1 Requirements

The first thing you need is a board with an i.MXRT chip. The MicroPython software supports the i.MXRT chip itself
and any board should work. The main characteristic of a board is how the GPIO pins are connected to the outside world,
and whether it includes a built-in USB-serial converter to make the UART available to your PC.
Names of pins will be given in this tutorial using the chip names (eg GPIO2) and it should be straightforward to find
which pin this corresponds to on your particular board.

10.2.2 Powering the board

If your board has a USB connector on it then most likely it is powered through this when connected to your PC. Otherwise
you will need to power it directly. Please refer to the documentation for your board for further details.

10.2.3 Getting the firmware

Firmware versions are provided at the MicroPython download page. You can download the most recent MicroPython
firmware .hex or .bin file to load onto your i.MXRT device. From that download page you have two main choices:

• stable firmware builds
• daily firmware builds

If you are just starting with MicroPython, the best bet is to go for the stable firmware builds. If you are an advanced,
experienced MicroPython i.MXRT user who would like to follow development closely and help with testing new features,
there are daily builds.

10.2.4 Deploying the firmware

Once you have the MicroPython firmware you need to load it onto your i.MXRT device. The exact procedure for these
steps is highly dependent on the particular board and you will need to refer to its documentation for details.

Teensy 4.0 and 4.1

For Teensy 4.0 and 4.1 you have to use the built-in loader together with the PC loader provided by PJRC. The built-in
loader will be activated by pushing the button on the board. Then you can upload the firmware with the command:

teensy_loader_cli --mcu=imxrt1062 -v -w firmware.hex

IMXRT10xx-EVK boards

The IMXRT10xx-EVK boards have a second USB port connected to a support MCU. Connecting that USB port to your
PC will register a disk drive with the name of the board. Just copy the firmware.bin file to this drive, and that will start
the flashing procedure. You will know that the flash was complete, if that drive disappears and reappears. If you decided
to install the very useful Segger open-SDA firmware on that sidekick MCU, then you have to use the debugger software
to upload the i.MXRT firmware.

438 Chapter 10. Quick reference for the i.MXRT family

https://micropython.org/download/?port=mimxrt

MicroPython Documentation, Release v1.20.0

Seed ARCH MIX board

Firmware upload to the Seed ARCH MIX board is less convenient. The vendor suggests using J-Link as a method
and tool. For that, follow the instructions given by Seed in their Wiki at https://wiki.seeedstudio.com/Arch_Mix/
#flashing-arduino-bootloader-to-arch-mix. You will need a J-Link debug probe and software. You may find Segger
JLink edu or Segger JLink edu mini convenient. As a matching loader you can use JFlashLite. The target address for
loading is 0x60000000.
The MIMXRT family also support a serial upload method. The software for serial upload is provided by NXP. The steps
to use it are:

• Connect J3, Pin 19 to 3.3V (GPIO_AD_B0_05).
• Change the DIP-Switch settings from off-off-on-off to off-off-off-on
• Push Reset
• Run the upload with: ./FLASH.sh <firmware_image_file name>
• Once the upload has finished, set the DIP-switch back to off-off-on-off.
• Remove the Jumper to J3, Pin19 and push reset

To avoid running the Flash loader as superuser, you can copy the provided udev-rules script to /etc/udev/rules.d/.
FLASH.sh calls two binaries, blhost and sdphost, which are provided by NXP under the BSD-3-Clause License. A
version of these binaries and the script can be downloaded at https://github.com/robert-hh/Shared-Stuff/blob/master/
mimxrt_serial_downloader.zip.
Serial downloading can be used for the NXP MIMXRT boards as well. But the built-in loader is much more convenient
to use.

10.2.5 Serial prompt

Once you have the firmware on the device you can access the REPL (Python prompt) over USB.
From there you can follow the i.MXRT tutorial.

10.2.6 Troubleshooting installation problems

If you experience problems during flashing or with running firmware immediately after it, here are some troubleshooting
recommendations:

• Be aware of and try to exclude hardware problems. There are two common problems: bad power source quality,
and worn-out/defective Flash ROM. Speaking of power source, not just raw amperage is important, but also low
ripple and noise/EMI in general. The most reliable and convenient power source is a USB port.

10.3 Pinout for the i.MXRT machine modules

10.3. Pinout for the i.MXRT machine modules 439

https://wiki.seeedstudio.com/Arch_Mix/#flashing-arduino-bootloader-to-arch-mix
https://wiki.seeedstudio.com/Arch_Mix/#flashing-arduino-bootloader-to-arch-mix
https://github.com/robert-hh/Shared-Stuff/blob/master/mimxrt_serial_downloader.zip
https://github.com/robert-hh/Shared-Stuff/blob/master/mimxrt_serial_downloader.zip

MicroPython Documentation, Release v1.20.0

10.3.1 UART pin assignment

The pin assignment of UARTs to pins is fixed. The UARTs are numbered 0..8. The rx/tx pins are assigned according to
the tables below:

Board / Pin UART0 UART1 UART2 UART3
Teensy 4.0 • 0/1 7/8 14/15

Teensy 4.1 • 0/1 7/8 14/15

MIMXRT1010-
EVK

Debug USB D0/D1 D7/D6 •

MIMXRT1015-
EVK

Debug USB D0/D1 D7/A1 •

MIMXRT1020-
EVK

Debug USB D0/D1 D9/D6 D10/D13

MIMXRT1050-
EVK

Debug USB D0/D1 D7/D6 D8/D9

MIMXRT1050-
EVKB

Debug USB D0/D1 D7/D6 D8/D9

MIMXRT1060-
EVK

Debug USB D0/D1 D7/D6 D8/D9

MIMXRT1064-
EVK

Debug USB D0/D1 D7/D6 D8/D9

MIMXRT1170-
EVK

Debug USB D0/D1 D12/D11 D10/D13

Olimex RT1010Py • RxD/TxD D5/D6 •

Seeed ARCH MIX • J3_19/J3_20 J4_16/J4_17 J4_06/J4_07

440 Chapter 10. Quick reference for the i.MXRT family

MicroPython Documentation, Release v1.20.0

Board / Pin UART4 UART5 UART6 UART7 UART8
Teensy 4.0 16/17 21/20 25/24 28/29 •

Teensy 4.1 16/17 21/20 25/24 28/29 34/35
MIMXRT1010-
EVK • • • • •

MIMXRT1015-
EVK • • • • •

MIMXRT1020-
EVK

D15/D14 A1/A0 • • •

MIMXRT1050-
EVK

A1/A0 • • • •

MIMXRT1050-
EVKB

A1/A0 • • • •

MIMXRT1060-
EVK

A1/A0 • • • •

MIMXRT1064-
EVK

A1/A0 • • • •

MIMXRT1170-
EVK

D15/D14 D25/D26 D33/D34 D35/D36 •

Olimex
RT1010Py • • • • •

Seeed ARCH
MIX

J4_10/J4_11 J5_08/J5_12 • • •

10.3.2 PWM pin assignment

Pins are specified in the same way as for the Pin class. The following tables show the assignment of the board Pins to
PWM modules:

10.3. Pinout for the i.MXRT machine modules 441

MicroPython Documentation, Release v1.20.0

Pin/ MIMXRT 1010 1015 1020 1050/1060/1064 1170
D0 • Q1/1 F1/1/B • •

D1 • Q1/0 F1/1/A • •

D2 F1/3/B F1/3/A • F1/3/B •

D3 F1/3/A F1/0/A F2/3/B F4/0/A F1/2/A
D4 F1/3/A (*) Q1/2 Q2/1 F2/3/A Q4/2
D5 F1/0/B (*) F1/0/B F2/3/A F1/3/A F1/2/B
D6 • F1/2/B F2/0/A Q3/2 F1/0/A

D7 • • F1/0/A Q3/3 •

D8 F1/0/A F1/1/B F1/0/B F1/1/X Q4/3
D9 F1/1/B (*) F1/2/A F2/0/B F1/0/X F1/0/B
D10 F1/3/B • F2/2/B F1/0/B (*) F2/2/B

D11 F1/2/A • F2/1/A F1/1/A (*) •

D12 F1/2/B • F2/1/B F1/1/B (*) •

D13 F1/3/A • F2/2/A F1/0/A (*) F2/2/A

D14 F1/0/B • • F2/3/B •

D15 F1/0/A • • F2/3/A •

A0 • • F1/2/A • •

A1 F1/3/X F1/3/B F1/2/B • •

A2 F1/2/X F1/3/A F1/3/A • •

A3 • F1/2/A F1/3/B • •

A4 • • • Q3/1 •

A5 • • • Q3/0 •

D31 • • • • F1/2/B

D32 • • • • F1/2/A

D33 • • • • F1/1/B

D34 • • • • F1/1/A

D35 • • • • F1/0/B

D36 • • • • F1/0/A

442 Chapter 10. Quick reference for the i.MXRT family

MicroPython Documentation, Release v1.20.0

Pins denoted with (*) are by default not wired at the board.

Pin Teensy 4.0 Pin Teensy 4.1
0 F1/1/X 0 F1/1/X
1 F1/0/X 1 F1/0/X
2 F4/2/A 2 F4/2/A
3 F4/2/B 3 F4/2/B
4 F2/0/A 4 F2/0/A
5 F2/1/A 5 F2/1/A
6 F2/2/A 6 F2/2/A
7 F1/3/B 7 F1/3/B
8 F1/3/A 8 F1/3/A
9 F2/2/B 9 F2/2/B
10 Q1/0 10 Q1/0
11 Q1/2 11 Q1/2
12 Q1/1 12 Q1/1
13 Q2/0 13 Q2/0
14 Q3/2 14 Q3/2
15 Q3/3 15 Q3/3
18 Q3/1 18 Q3/1
19 Q3/0 19 Q3/0
22 F4/0/A 22 F4/0/A
23 F4/1/A 23 F4/1/A
24 F1/2/X 24 F1/2/X
25 F1/3/X 25 F1/3/X
28 F3/1/B 28 F3/1/B
29 F3/1/A 29 F3/1/A
33 F2/0/B 33 F2/0/B

• •
36 F2/3/A

• •
37 F2/3/B

DAT1 F1/1/B 42 F1/1/B
DAT0 F1/1/A 43 F1/1/A
CLK F1/0/B 44 F1/0/B
CMD F1/0/A 45 F1/0/A
DAT2 F1/2/A 46 F1/2/A
DAT3 F1/2/B 47 F1/2/B

• •
48 F1/0/B

• •
49 F1/2/A

• •
50 F1/2/B

continues on next page

10.3. Pinout for the i.MXRT machine modules 443

MicroPython Documentation, Release v1.20.0

Table 1 – continued from previous page
Pin Teensy 4.0 Pin Teensy 4.1

• •
51 F3/3/B

• •
52 F1/1/B

• •
53 F1/1/A

• •
54 F3/0/A

Pin Seeed ARCH MIX
J3_04 Q4/3
J3_10 Q1/3
J3_12 Q2/3
J3_13 Q3/3
J3_16 Q3/0
J3_17 Q3/1
J3_19 F1/3/X
J3_20 F1/2/X
J4_08 F4/0/A
J4_09 F4/1/A
J4_16 Q3/2
J4_17 Q3/3
J5_32 Q1/0
J5_28 Q1/1
J5_29 Q1/2
J5_30 Q2/0
J5_04 Q2/1
J5_05 Q2/3
J5_06 F2/0/A
J5_07 F2/0/B
J5_08 F2/1/A
J5_12 F2/1/B
J5_13 F2/2/A
J5_14 F2/2/B
J5_23 F1/3/A
J5_24 F1/3/B
J5_25 F2/3/A
J5_26 F2/3/B
J5_42 Q3/0
J5_43 Q3/1
J5_50 F1/0/X

continues on next page

444 Chapter 10. Quick reference for the i.MXRT family

MicroPython Documentation, Release v1.20.0

Table 2 – continued from previous page
Pin Seeed ARCH MIX
LED_RED F2/3/A
LED_GREEN F1/3/A
LED_BLUE F1/3/B

Pin Olimex RT1010PY
D0 •

D1 F1/0/B
D2 F1/0/A
D3 F1/1/B
D4 F1/1/A
D5 F1/2/B
D6 F1/2/A
D7 F1/3/B
D8 F1/3/A
D9 •

D10 F1/0/B
D11 F1/0/A
D12 F1/1/B
D13 F1/1/A
D14 •

A0 •

A1 F1/2/B
A2 F1/2/A
A3 F1/3/B
A4 F1/3/A
SDI F1/3/X
SDO F1/2/X
CS0 F1/1/X
SCK F1/0/X

Legend:
• Qm/n: QTMR module m, channel n
• Fm/n/l: FLEXPWM module m, submodule n, channel l. The pulse at a X channel is always aligned to the period
start.

Pins without a PWM signal are not listed. A signal may be available at more than one Pin. FlexPWM pins may also be
pure CPU pin, not assigned to a board signal. In that case the PWM output is disabled. The PWM channel of a submodule
0 may still be used as synchronization source for other channels of the same module, unless used by another peripheral.
Submodule 0 pins for i.MX RT1011:

10.3. Pinout for the i.MXRT machine modules 445

MicroPython Documentation, Release v1.20.0

Pin Channel
Pin.cpu.GPIO_01 B
Pin.cpu.GPIO_02 A
Pin.cpu.GPIO_AD_12 X
Pin.cpu.GPIO_SD_01 B
Pin.cpu.GPIO_SD_02 A

Submodule 0 pins for i.MX RT1021:

Pin Module & Channel
Pin.cpu.GPIO_AD_B1_06 FLEXPWM1 Channel A
Pin.cpu.GPIO_AD_B1_07 FLEXPWM1 Channel B
Pin.cpu.GPIO_EMC_26 FLEXPWM1 Channel A
Pin.cpu.GPIO_EMC_27 FLEXPWM1 Channel B
Pin.cpu.GPIO_AD_B0_14 FLEXPWM2 Channel A
Pin.cpu.GPIO_AD_B0_15 FLEXPWM2 Channel B
Pin.cpu.GPIO_EMC_10 FLEXPWM2 Channel X
Pin.cpu.GPIO_EMC_38 FLEXPWM2 Channel A
Pin.cpu.GPIO_EMC_39 FLEXPWM2 Channel B

Submodule 0 pins for i.MX RT1052, i.MX RT1062 and i.MX RT1064:

Pin Module & Channel
Pin.cpu.GPIO_AD_B0_02 FLEXPWM1 Channel X
Pin.cpu.GPIO_EMC_23 FLEXPWM1 Channel A
Pin.cpu.GPIO_EMC_24 FLEXPWM1 Channel B
Pin.cpu.GPIO_SD_B0_00 FLEXPWM1 Channel A
Pin.cpu.GPIO_SD_B0_01 FLEXPWM1 Channel B
Pin.cpu.GPIO_B0_06 FLEXPWM2 Channel A
Pin.cpu.GPIO_B0_07 FLEXPWM2 Channel B
Pin.cpu.GPIO_EMC_06 FLEXPWM2 Channel A
Pin.cpu.GPIO_EMC_07 FLEXPWM2 Channel B
Pin.cpu.GPIO_EMC_29 FLEXPWM3 Channel A
Pin.cpu.GPIO_EMC_30 FLEXPWM3 Channel B
Pin.cpu.GPIO_AD_B1_08 FLEXPWM4 Channel A
Pin.cpu.GPIO_EMC_00 FLEXPWM4 Channel A
Pin.cpu.GPIO_EMC_01 FLEXPWM4 Channel B

Submodule 0 pins for i.MX RT1176

446 Chapter 10. Quick reference for the i.MXRT family

MicroPython Documentation, Release v1.20.0

Pin Module & Channel
Pin.cpu.GPIO_EMC_B1_00 FLEXPWM4 Channel A (*)
Pin.cpu.GPIO_EMC_B1_01 FLEXPWM4 Channel B (*)
Pin.cpu.GPIO_EMC_B1_06 FLEXPWM2 Channel A (*)
Pin.cpu.GPIO_EMC_B1_07 FLEXPWM2 Channel B (*)
Pin.cpu.GPIO_EMC_B1_23 FLEXPWM1 Channel A (*)
Pin.cpu.GPIO_EMC_B1_24 FLEXPWM1 Channel B (*)
Pin.cpu.GPIO_EMC_B1_29 FLEXPWM3 Channel A (*)
Pin.cpu.GPIO_EMC_B1_30 FLEXPWM3 Channel B (*)
Pin.cpu.GPIO_AD_00 FLEXPWM1 Channel A
Pin.cpu.GPIO_AD_01 FLEXPWM1 Channel B
Pin.cpu.GPIO_AD_24 FLEXPWM2 Channel A
Pin.cpu.GPIO_AD_25 FLEXPWM2 Channel B

10.3.3 Hardware SPI pin assignment

The SPI signals have fixed assignments to GPIO pins. It depends on the board design, which SPI’s signals are exposed to
the user, as detailed in the table below. The signal order in the table is: CS0, CS1, MOSI, MISO, CLK.

Board / Pin SPI0 SPI1 SPI2
Teensy 4.0 10/-/11/12/13 0/-/26/1/27 •

Teensy 4.1 10/37/11/12/13 0/-/26/1/27 -/29/50/54/49
MIXMXRT1010-EVK D10/D7/D11/D12/D13 • •

MIXMXRT1015-EVK D10/-/D11/D12/D13 • •

MIXMXRT1020-EVK D10/-/D11/D12/D13 A3/D0/A5/A4/A0 •

MIXMXRT1050-EVK D10/-/D11/D12/D13 (*) • •

MIXMXRT1050-EVKB D10/-/D11/D12/D13 (*) • •

MIXMXRT1060-EVK D10/-/D11/D12/D13 (*) • •

MIXMXRT1064-EVK D10/-/D11/D12/D13 (*) • •

MIXMXRT1170-EVK D10/-/D11/D12/D13 D28/-/D25/D24/D26 -/-/D14/D15/D24
Olimex RT1010Py • CS0/-/SDO/SDI/SCK SDCARD with CS1

Seeed ARCH MIX J4_12/-
/J4_14/J4_13/J4_15

J3_09/J3_05/J3_08_J3_11

10.3. Pinout for the i.MXRT machine modules 447

MicroPython Documentation, Release v1.20.0

Pins denoted with (*) are by default not wired at the board. The CS0 and CS1 signals are enabled with the keyword option
cs=0 or cs=1 of the SPI object constructor.

10.3.4 Hardware I2C pin assignment

The I2C signals have fixed assignments to GPIO pins. It depends on the board design, which I2C’s signals are exposed to
the user, as detailed in the table below. The signal order in the table is: SDA, SCL.

Board / Pin I2C 0 I2C 1 I2C 2 I2C 3 I2C 4
Teensy 4.0 18/19 17/16 25/24 • •

Teensy 4.1 18/19 17/16 25/24 • •

MIXMXRT1010-
EVK

D14/D15 D0/D1 • • •

MIXMXRT1015-
EVK

D14/D15 • • • •

MIXMXRT1020-
EVK

D14/D15 A4/A5 D0/D1 • •

MIXMXRT1050-
EVK

A4/A5 D1/D0 • • •

MIXMXRT1050-
EVKB

A4/A5 D1/D0 • • •

MIXMXRT1060-
EVK

A4/A5 D1/D0 • • •

MIXMXRT1064-
EVK

A4/A5 D1/D0 • • •

MIXMXRT1170-
EVK

D14/D15 D1/D0 A4/A5 D26/D25 D19/D18

Olimex
RT1010Py • SDA1/SCL1 SDA2/SCL2 • •

Seeed ARCH
MIX

J3_17/J3_16 J4_06/J4_07 J5_05/J5_04 • •

448 Chapter 10. Quick reference for the i.MXRT family

MicroPython Documentation, Release v1.20.0

10.3.5 Hardware I2S pin assignment

Pin assignments for a few MIMXRT boards:

Board ID MCK SCK_TX WS_TX SD_TX SCK_RX WS_RX SD_RX
Teensy
4.0

1 23 26 27 7 21 20 8

Teensy
4.0

2 33 4 3 2 • • 5

Teensy
4.1

1 23 26 27 7 21 20 8

Teensy
4.1

2 33 4 3 2 • • 5

Seeed
Arch
MIX

1 J4_09 J4_14 J4_15 J14_13 J4_11 J4_10 J4_10

Olimex
RT1010Py

1 D8 D6 D7 D4 D1 D2 D3

Olimex
RT1010Py

3 • D10 D9 D11 • • •

MIMXRT_DEV1 “MCK” “SCK_TX” “WS_TX” “SD_TX” “SCK_RX” “WS_RX” “SD_RX”

Symbolic pin names are provided for the MIMXRT_10xx_DEV boards. These are provided for the other boards as well.

10.4 Installing MicroPython

See the corresponding section of tutorial: Getting started with MicroPython on the i.MXRT . It also includes a troubleshoot-
ing subsection.

10.5 General board control

The MicroPython REPL is on the USB port, configured in VCP mode. Tab-completion is useful to find out what methods
an object has. Paste mode (ctrl-E) is useful to paste a large slab of Python code into the REPL.
The machine module:

import machine

machine.freq() # get the current frequency of the CPU

10.4. Installing MicroPython 449

MicroPython Documentation, Release v1.20.0

10.6 Delay and timing

Use the time module:

import time

time.sleep(1) # sleep for 1 second
time.sleep_ms(500) # sleep for 500 milliseconds
time.sleep_us(10) # sleep for 10 microseconds
start = time.ticks_ms() # get millisecond counter
delta = time.ticks_diff(time.ticks_ms(), start) # compute time difference

10.7 Timers

The i.MXRT port supports virtual Timers. Example of usage:

from machine import Timer

tim0 = Timer(-1)
tim0.init(period=5000, mode=Timer.ONE_SHOT, callback=lambda t:print(0))

tim1 = Timer(-1)
tim1.init(period=2000, mode=Timer.PERIODIC, callback=lambda t:print(1))

The period is in milliseconds.

10.8 Pins and GPIO

Use the machine.Pin class:

from machine import Pin

p0 = Pin('D0', Pin.OUT) # create output pin on GPIO0
p0.on() # set pin to "on" (high) level
p0.off() # set pin to "off" (low) level
p0.value(1) # set pin to on/high

p2 = Pin('D2', Pin.IN) # create input pin on GPIO2
print(p2.value()) # get value, 0 or 1

p4 = Pin('D4', Pin.IN, Pin.PULL_UP) # enable internal pull-up resistor
p5 = Pin('D5', Pin.OUT, value=1) # set pin high on creation

p6 = Pin(pin.cpu.GPIO_B1_15, Pin.OUT) # Use the cpu pin name.

Available Pins follow the ranges and labelling of the respective board, like:
• 0-33 for Teensy 4.0,
• 0-21 for the MIMXRT10xx-EVK board, or ‘D0-Dxx’, or ‘A0-Ann’,
• 0-14 for the Olimex RT1010Py board, or ‘D0’-‘Dxx’ and ‘A0’-‘Ann’
• ‘J3_xx’, ‘J4_xx’, ‘J5_xx’ for the Seeed ARCH MIX board,

450 Chapter 10. Quick reference for the i.MXRT family

MicroPython Documentation, Release v1.20.0

or the pin names of the Pin.board or Pin.cpu classes.
Notes:

• The MIMXRT1xxx-EVK boards may have other on-board devices connected to these pins, limiting it’s use for
input or output.

• At the MIMXRT1010_EVK, pins D4, D5 and D9 of the Arduino connector are by default not connected to the
MCU. For details refer to the schematics.

• At the MIMXRT1170_EVK board, the inner rows of the Arduino connectors are assigned as follows:
– D16 - D23: J9, odd pin numbers; D17 is by default not connected.
– D24 - D27: J26, odd pin numbers; J63-J66 have to be closed to enable these pins.
– D29 - D36: J25, odd pin numbers; D29 and D30 are by default not connected.

There’s a higher-level abstraction machine.Signal which can be used to invert a pin. Useful for illuminating active-low
LEDs using on() or value(1).

10.9 UART (serial bus)

See machine.UART .

from machine import UART

uart1 = UART(1, baudrate=115200)
uart1.write('hello') # write 5 bytes
uart1.read(5) # read up to 5 bytes

The i.MXRT has up to eight hardware UARTs, but not every board exposes all TX and RX pins for users. For the
assignment of Pins to UART signals, refer to the UART pinout.

10.10 PWM (pulse width modulation)

The i.MXRT has up to four dedicated PWM modules with four FLEXPWM submodules each and up to four QTMR
modules with four channels, which can be used to generate a PWM signal or signal pair.
The PWM functions are provided by the machine.PWM class. It supports all basic methods listed for that class and a few
additional methods for handling signal groups.

Samples for Teensy
#

from machine import Pin, PWM

pwm2 = PWM(Pin(2)) # create PWM object from a pin
pwm2.freq() # get current frequency
pwm2.freq(1000) # set frequency
pwm2.duty_u16() # get current duty cycle, range 0-65535
pwm2.duty_u16(200) # set duty cycle, range 0-65535
pwm2.deinit() # turn off PWM on the pin
create a complementary signal pair on Pin 2 and 3
pwm2 = PWM((2, 3), freq=2000, duty_ns=20000)

(continues on next page)

10.9. UART (serial bus) 451

MicroPython Documentation, Release v1.20.0

(continued from previous page)
Create a group of four synchronized signals.
Start with Pin(4) at submodule 0, which creates the sync pulse.
pwm4 = PWM(Pin(4), freq=1000, align=PWM.HEAD)
Pins 5, 6, and 9 are pins at the same module
pwm5 = PWM(Pin(5), freq=1000, duty_u16=10000, align=PWM.HEAD, sync=True)
pwm6 = PWM(Pin(6), freq=1000, duty_u16=20000, align=PWM.HEAD, sync=True)
pwm9 = PWM(Pin(9), freq=1000, duty_u16=30000, align=PWM.HEAD, sync=True)

pwm3 # show the PWM objects properties

10.10.1 PWM Constructor

class PWM(dest, freq, duty_u16, duty_ns, *, center, align, invert, sync, xor, deadtime)

Construct and return a new PWM object using the following parameters:
• dest is the entity on which the PWM is output, which is usually amachine.Pin object, but a port may
allow other values, like integers or strings, which designate a Pin in the machine.PIN class. dest is
either a single object or a two element object tuple. If the object tuple is specified, the two pins act
in complementary mode. These two pins must be the A/B channels of the same submodule.

PWM objects are either provided by a FLEXPWM module or a QTMR module. The i.MXRT de-
vices have either two or four FLEXPWM and QTMR modules. Each FLEXPWM module has four
submodules with three channels, each, called A, B and X. Each QTMRmodule has four channels. Each
FLEXPWM submodule or QTMR channel may be set to different parameters. Not every channel is
routed to a board pin. Details are listed below.
Setting freq affects the three channels of the same FLEXPWM submodule. Only one of duty_u16 and
duty_ns should be specified at a time.
Keyword arguments:
• freq should be an integer which sets the frequency in Hz for the PWM cycle. The valid frequency
range is 15 Hz resp. 18Hz resp. 24Hz up to > 1 MHz.

• duty_u16 sets the duty cycle as a ratio duty_u16 / 65536. The duty cycle of a X channel can
only be changed, if the A and B channel of the respective submodule is not used. Otherwise the
duty_16 value of the X channel is 32768 (50%).

• duty_ns sets the pulse width in nanoseconds. The limitation for X channels apply as well.
• center=value. An integer sets the center of the pulse within the pulse period. The range is 0-65535.
The resulting pulse will last from center - duty_u16/2 to center + duty_u16/2.

• align=value. Shortcuts for the pulse center setting, causing the pulse either at the center of the
frame (value=0), the leading edge at the begin (value=1) or the trailing edge at the end of a pulse
period (value=2).

• invert=True|False channel_mask. Setting a bit in the mask inverts the respective channel. Bit 0
inverts the first specified channel, bit 2 the second. The default is 0.

• sync=True|False. If a channel of a module’s submodule 0 is already active, other submodules of
the same module can be forced to be synchronous to submodule 0. Their pulse period start then at
at same clock cycle. The default is False.

• xor=0|1|2. If set to 1 or 2, the channel will output the XOR’d signal from channels A or B. If set
to 1 on channel A or B, both A and B will show the same signal. If set to 2, A and B will show

452 Chapter 10. Quick reference for the i.MXRT family

MicroPython Documentation, Release v1.20.0

alternating signals. For details and an illustration, please refer to the MCU’s reference manual,
chapter “Double Switching PWMs”.

• deadtime=time_ns. This setting affects complementary channels and defines a deadtime between
an edge of a first channel and the edge of the next channel, in which both channels are set to low.
That allows connected H-bridges to switch off one side of a push-pull driver before switching on
the other side.

10.10.2 PWM Methods

The methods are identical to the generic machine.PWM class, with additional keyword arguments to the init() method,
matchings those of the constructor.
Each FLEX submodule or QTMR module may run at different frequencies. The PWM signal is created by dividing the
pwm_clk signal by an integral factor, according to the formula:

f = pwm_clk / (2**n * m)

with n being in the range of 0..7, and m in the range of 2..65536. pmw_clk is 125Mhz for MIMXRT1010/1015/1020,
150 MHz for MIMXRT1050/1060/1064 and 160MHz for MIMXRT1170. The lowest frequency is pwm_clk/2**23 (15,
18, 20Hz). The highest frequency with U16 resolution is pwm_clk/2**16 (1907, 2288, 2441 Hz), the highest frequency
with 1 percent resolution is pwm_clk/100 (1.25, 1.5, 1.6 MHz). The highest achievable frequency is pwm_clk/3 for the
A/B channels, and pwm_clk/2 for the X channels and QTMR signal.

10.10.3 PWM Pin Assignment

Pins are specified in the same way as for the Pin class. For the assignment of Pins to PWM signals, refer to the PWM
pinout.

10.11 ADC (analog to digital conversion)

On the i.MXRT ADC functionality is available on Pins labeled ‘Ann’.
Use the machine.ADC class:

from machine import ADC

adc = ADC(Pin(32)) # create ADC object on ADC pin
adc.read_u16() # read value, 0-65536 across voltage range 0.0v - 3.3v

The resolution of the ADC is 12 bit with 10 to 11 bit accuracy, irrespective of the value returned by read_u16(). If you
need a higher resolution or better accuracy, use an external ADC.

10.11. ADC (analog to digital conversion) 453

MicroPython Documentation, Release v1.20.0

10.12 Software SPI bus

Software SPI (using bit-banging) works on all pins, and is accessed via the machine.SoftSPI class.

from machine import Pin, SoftSPI

construct a SoftSPI bus on the given pins
polarity is the idle state of SCK
phase=0 means sample on the first edge of SCK, phase=1 means the second
spi = SoftSPI(baudrate=100000, polarity=1, phase=0, sck=Pin(0), mosi=Pin(2),␣
↪→miso=Pin(4))

spi.init(baudrate=200000) # set the baudrate

spi.read(10) # read 10 bytes on MISO
spi.read(10, 0xff) # read 10 bytes while outputting 0xff on MOSI

buf = bytearray(50) # create a buffer
spi.readinto(buf) # read into the given buffer (reads 50 bytes in this case)
spi.readinto(buf, 0xff) # read into the given buffer and output 0xff on MOSI

spi.write(b'12345') # write 5 bytes on MOSI

buf = bytearray(4) # create a buffer
spi.write_readinto(b'1234', buf) # write to MOSI and read from MISO into the buffer
spi.write_readinto(buf, buf) # write buf to MOSI and read MISO back into buf

The highest supported baud rate is 500000.

10.13 Hardware SPI bus

There are up to four hardware SPI channels that allow faster transmission rates (up to 30Mhz). Hardware SPI is accessed
via the machine.SPI class and has the same methods as software SPI above:

from machine import SPI, Pin

spi = SPI(0, 10000000)
cs_pin = Pin(6, Pin.OUT, value=1)
cs_pin(0)
spi.write('Hello World')
cs_pin(1)

For the assignment of Pins to SPI signals, refer to Hardware SPI pinout. The keyword option cs=n can be used to enable
the cs pin 0 or 1 for an automatic cs signal. The default is cs=-1. Using cs=-1 the automatic cs signal is not created. In
that case, cs has to be set by the script. Clearing that assignment requires a power cycle.
Notes:

1. Even if the highest reliable baud rate at the moment is about 30 Mhz, setting a baud rate will not always result in
exactly that frequency, especially at high baud rates.

2. Sending at higher baud rate is possible. In the tests receiving worked up to 60 MHz, sending up to 90 MHz.

454 Chapter 10. Quick reference for the i.MXRT family

MicroPython Documentation, Release v1.20.0

10.14 Software I2C bus

Software I2C (using bit-banging) works on all output-capable pins, and is accessed via the machine.SoftI2C class:

from machine import Pin, SoftI2C

i2c = SoftI2C(scl=Pin(5), sda=Pin(4), freq=100000)

i2c.scan() # scan for devices

i2c.readfrom(0x3a, 4) # read 4 bytes from device with address 0x3a
i2c.writeto(0x3a, '12') # write '12' to device with address 0x3a

buf = bytearray(10) # create a buffer with 10 bytes
i2c.writeto(0x3a, buf) # write the given buffer to the slave

The highest supported freq is 400000.

10.15 Hardware I2C bus

There are up to four hardware I2C channels that allow faster transmission rates and support the full I2C protocol. The I2C
signals have fixed assignments to GPIO pins. For the assignment of Pins to I2C signals, refer to Hardware I2C pinout.
Hardware I2C is accessed via the machine.I2C class and has the same methods as software SPI above:

from machine import I2C

i2c = I2C(0, 400_000)
i2c.writeto(0x76, b"Hello World")

10.16 I2S bus

See machine.I2S. Example using a Teensy 4.1 board with a simple external Codec like UDA1334.:

from machine import I2S, Pin
i2s = I2S(2, sck=Pin(26), ws=Pin(27), sd=Pin(7),

mode=I2S.TX, bts=16,format=I2S.STEREO,
rate=44100,ibuf=40000)

i2s.write(buf) # write buffer of audio samples to I2S device

Example for using I2S with a MIMXRT10xx_DEV board:

from machine import I2S, I2C, Pin
import wm8960

i2c=I2C(0)

wm=wm8960.WM8960(i2c, sample_rate=SAMPLE_RATE_IN_HZ,
adc_sync=wm8960.sync_dac,
swap=wm8960.swap_input)

i2s = I2S(1, sck=Pin("SCK_TX"), ws=Pin("WS_TX"), sd=Pin("SD_RX"),

(continues on next page)

10.14. Software I2C bus 455

MicroPython Documentation, Release v1.20.0

(continued from previous page)
mck=Pin("MCK),mode=I2S.RX, bts=16,format=I2S.MONO,
rate=32000,ibuf=10000)

i2s.readinto(buf) # fill buffer with audio samples from I2S device

In this example, the input channels are swapped in the WM8960 driver, since the on-board microphone is connected to
the right channel, but mono audio is taken from the left channel. Note, that the sck and ws pins are connected to the TX
signals of the I2S bus. That is intentional, since at the MW8960 codec these signals are shared for RX and TX.
Example using the Teensy audio shield:

from machine import I2C, I2S, Pin
from sgtl5000 import CODEC
i2s = I2S(1, sck=Pin(21), ws=Pin(20), sd=Pin(7), mck=Pin(23),

mode=I2S.TX, bits=16,rate=44100,format=I2S.STEREO,
ibuf=40000,

)

configure the SGTL5000 codec
i2c = I2C(0, freq=400000)
codec = CODEC(0x0A, i2c)
codec.mute_dac(False)
codec.dac_volume(0.9, 0.9)
codec.headphone_select(0)
codec.mute_headphone(False)
codec.volume(0.7, 0.7)

i2s.write(buf) # write buffer of audio samples to I2S device

The SGTL5000 codec used by the Teensy Audio shield uses the RX signals for both RX and TX. Note that the codec is
initialized after the I2S device. That is essential since MCK is needed for its I2C operation and is provided by the I2S
controller.
MIMXRT boards may have 1 or 2 I2S buses available at the board connectors. On MIMXRT1010 devices the bus
numbers are 1 and 3. The I2S signals have fixed assignments to GPIO pins. For the assignment of Pins to I2S signals,
refer to I2S pinout.

10.17 Real time clock (RTC)

See machine.RTC:

from machine import RTC

rtc = RTC()
rtc.datetime((2017, 8, 23, 1, 12, 48, 0, 0)) # set a specific date and time
rtc.datetime() # get date and time
rtc.now() # return date and time in CPython format.

The i.MXRT MCU supports battery backup of the RTC. By connecting a battery of 1.5-3.6V, time and date are main-
tained in the absence of the main power. The current drawn from the battery is ~20µA, which is rather high. A CR2032
coin cell will last for about one year.

456 Chapter 10. Quick reference for the i.MXRT family

MicroPython Documentation, Release v1.20.0

10.18 SD card

See machine.SDCard:

import machine, os

sd = machine.SDCard()
fs = os.VfsFat(sd)
os.mount(fs, "/sd") # mount
os.listdir('/sd') # list directory contents
os.umount('/sd') # eject

Note: The i.mx-rt 1011 and 1015 based boards do not support the machine.SDCard class. For these, the SPI based
driver sdcard.py from the MicroPython drivers can be used. When using it, you have to overdrive the CS pin of the
SPI hardware module. Example:

import os, sdcard, machine

cs_pin = "D10"
spi = machine.SPI(0) # SPI0 with cs at Pin "D10" used for SDCARD
cs = machine.Pin(cs_pin, machine.Pin.OUT, value=1)
sd = sdcard.SDCard(spi, cs)
vfs = os.VfsFat(sd)
os.mount(vfs, "/sdcard")

10.19 OneWire driver

The OneWire driver is implemented in software and works on all pins:

from machine import Pin
import onewire

ow = onewire.OneWire(Pin(12)) # create a OneWire bus on GPIO12
ow.scan() # return a list of devices on the bus
ow.reset() # reset the bus
ow.readbyte() # read a byte
ow.writebyte(0x12) # write a byte on the bus
ow.write('123') # write bytes on the bus
ow.select_rom(b'12345678') # select a specific device by its ROM code

There is a specific driver for DS18S20 and DS18B20 devices:

import time, ds18x20
ds = ds18x20.DS18X20(ow)
roms = ds.scan()
ds.convert_temp()
time.sleep_ms(750)
for rom in roms:

print(ds.read_temp(rom))

Be sure to put a 4.7k pull-up resistor on the data line. Note that the convert_temp() method must be called each
time you want to sample the temperature.

10.18. SD card 457

MicroPython Documentation, Release v1.20.0

10.20 DHT driver

The DHT driver is implemented in software and works on all pins:

import dht
import machine

d = dht.DHT11(machine.Pin(4))
d.measure()
d.temperature() # eg. 23 (°C)
d.humidity() # eg. 41 (% RH)

d = dht.DHT22(machine.Pin(4))
d.measure()
d.temperature() # eg. 23.6 (°C)
d.humidity() # eg. 41.3 (% RH)

Be sure to have a 4.7k pull-up resistor on the data line. Some DHT modules may already have one.

10.21 Ethernet driver

All MIMXRT boards except the MIMXRT1011 based boards and Teensy 4.0 support Ethernet. Example usage:

import network

lan = network.LAN(0)
lan.active(True)

If there is a DHCP server in the LAN, the IP address is supplied by that server. Otherwise, the IP address can be set with
lan.ifconfig(). The default address is 192.168.0.1.
Teensy 4.1 does not have an Ethernet jack on the board, but PJRC offers an adapter for self-assembly. The Seeed ARCH
MIX board has no PHY hardware on the board, however you can attach external PHY interfaces. By default, the firmware
for Seeed Arch Mix uses the driver for a LAN8720 PHY. The MIMXRT1170_EVK is equipped with two Ethernet ports,
which are addressed as LAN(0) for the 100M port and LAN(1) for the 1G port.
For details of the network interface refer to the class network.LAN.

10.22 Transferring files

Files can be transferred to the i.MXRT devices for instance with the mpremote tool or using an SD card. If Ethernet is
available, you can also use ftp. See the MicroPython forum for the FTP server or other community-supported alternatives
to transfer files to an i.MXRT board, like rshell or Thonny.

458 Chapter 10. Quick reference for the i.MXRT family

CHAPTER

ELEVEN

QUICK REFERENCE FOR THE WIPY

Below is a quick reference for CC3200/WiPy. If it is your first time working with this board please consider reading the
following sections first:

11.1 General information about the WiPy

11.1.1 No floating point support

Due to space reasons, there’s no floating point support, and no math module. This means that floating point numbers
cannot be used anywhere in the code, and that all divisions must be performed using ‘//’ instead of ‘/’. Example:

>>> r = 4 // 2 # this will work
>>> r = 4 / 2 # this WON'T

459

MicroPython Documentation, Release v1.20.0

11.1.2 Before applying power

Warning: The GPIO pins of the WiPy are NOT 5V tolerant, connecting them to voltages higher than 3.6V will
cause irreparable damage to the board. ADC pins, when configured in analog mode cannot withstand voltages above
1.8V. Keep these considerations in mind when wiring your electronics.

11.1.3 WLAN default behaviour

When the WiPy boots with the default factory configuration starts in Access Point mode with ssid that starts with:
wipy-wlan and key: www.wipy.io. Connect to this network and the WiPy will be reachable at 192.168.1.
1. In order to gain access to the interactive prompt, open a telnet session to that IP address on the default port (23). You
will be asked for credentials: login: micro and password: python

11.1.4 Telnet REPL

Linux stock telnet works like a charm (also on OSX), but other tools like putty work quite well too. The default credentials
are: user: micro, password: python. See network.Server for info on how to change the defaults. For instance,
on a linux shell (when connected to the WiPy in AP mode):

$ telnet 192.168.1.1

11.1.5 Local file system and FTP access

There is a small internal file system (a drive) on the WiPy, called /flash, which is stored within the external serial flash
memory. If a micro SD card is hooked-up and mounted, it will be available as well.
When the WiPy starts up, it always boots from the boot.py located in the /flash file system. On boot up, the current
directory is /flash.
The file system is accessible via the native FTP server running in the WiPy. Open your FTP client of choice and connect
to:
url: ftp://192.168.1.1, user: micro, password: python
See network.Server for info on how to change the defaults. The recommended clients are: Linux stock FTP (also
in OSX), Filezilla and FireFTP. For example, on a linux shell:

$ ftp 192.168.1.1

The FTP server on the WiPy doesn’t support active mode, only passive, therefore, if using the native unix ftp client, just
after logging in do:

ftp> passive

Besides that, the FTP server only supports one data connection at a time. Check out the Filezilla settings section below
for more info.

460 Chapter 11. Quick reference for the WiPy

MicroPython Documentation, Release v1.20.0

11.1.6 FileZilla settings

Do not use the quick connect button, instead, open the site manager and create a new configuration. In the General tab
make sure that encryption is set to: Only use plain FTP (insecure). In the Transfer Settings tab limit the
max number of connections to one, otherwise FileZilla will try to open a second command connection when retrieving
and saving files, and for simplicity and to reduce code size, only one command and one data connections are possible.
Other FTP clients might behave in a similar way.

11.1.7 Upgrading the firmware Over The Air

OTA software updates can be performed through the FTP server. Upload the mcuimg.bin file to: /flash/sys/
mcuimg.bin it will take around 6s. You won’t see the file being stored inside /flash/sys/ because it’s actually
saved bypassing the user file system, so it ends up inside the internal hidden file system, but rest assured that it was
successfully transferred, and it has been signed with a MD5 checksum to verify its integrity. Now, reset the WiPy by
pressing the switch on the board, or by typing:

>>> import machine
>>> machine.reset()

Software updates can be found in: https://github.com/wipy/wipy/releases (Binaries.zip). It’s always recommended to
update to the latest software, but make sure to read the release notes before.

Note: The bootloader.bin found inside Binaries.zip is there only for reference, it’s not needed for the Over
The Air update.

In order to check your software version, do:

>>> import os
>>> os.uname().release

If the version number is lower than the latest release found in the releases, go ahead and update your WiPy!

11.1.8 Boot modes and safe boot

If you power up normally, or press the reset button, the WiPy will boot into standard mode; the boot.py file will be
executed first, then main.py will run.
You can override this boot sequence by pulling GP28 up (connect it to the 3v3 output pin) during reset. This procedure
also allows going back in time to old firmware versions. The WiPy can hold up to 3 different firmware versions, which
are: the factory firmware plus 2 user updates.
After reset, if GP28 is held high, the heartbeat LED will start flashing slowly, if after 3 seconds the pin is still being held
high, the LED will start blinking a bit faster and theWiPy will select the previous user update to boot. If the previous user
update is the desired firmware image, GP28 must be released before 3 more seconds elapse. If 3 seconds later the pin is
still high, the factory firmware will be selected, the LED will flash quickly for 1.5 seconds and the WiPy will proceed to
boot. The firmware selection mechanism is as follows:
Safe Boot Pin GP28 released during:

11.1. General information about the WiPy 461

https://github.com/wipy/wipy/releases
https://github.com/wipy/wipy/releases

MicroPython Documentation, Release v1.20.0

1st 3 secs window 2nd 3 secs window Final 1.5 secs window

Safe boot, latest
firmware is selected

Safe boot, previous
user update selected

Safe boot, the factory
firmware is selected

On all of the above 3 scenarios, safe boot mode is entered, meaning that the execution of both boot.py and main.py
is skipped. This is useful to recover from crash situations caused by the user scripts. The selection made during safe boot
is not persistent, therefore after the next normal reset the latest firmware will run again.

11.1.9 The heartbeat LED

By default the heartbeat LED flashes once every 4s to signal that the system is alive. This can be overridden through the
wipy module:

>>> import wipy
>>> wipy.heartbeat(False)

There are currently 2 kinds of errors that you might see:
1. If the heartbeat LED flashes quickly, then a Python script (eg main.py) has an error. Use the REPL to debug it.
2. If the heartbeat LED stays on, then there was a hard fault, you cannot recover from this, the only way out is to press

the reset switch.

11.1.10 Details on sleep modes

• machine.idle(): Power consumption: ~12mA (inWLANSTAmode). Wake sources: any hardware interrupt
(including systick with period of 1ms), no special configuration required.

• machine.lightsleep(): 950uA (in WLAN STA mode). Wake sources are Pin, RTC and WLAN
• machine.deepsleep(): ~350uA. Wake sources are Pin and RTC.

11.1.11 Additional details for machine.Pin

On the WiPy board the pins are identified by their string id:

from machine import Pin
g = machine.Pin('GP9', mode=Pin.OUT, pull=None, drive=Pin.MED_POWER, alt=-1)

You can also configure the Pin to generate interrupts. For instance:

from machine import Pin

def pincb(pin):
print(pin.id())

pin_int = Pin('GP10', mode=Pin.IN, pull=Pin.PULL_DOWN)
pin_int.irq(trigger=Pin.IRQ_RISING, handler=pincb)
the callback can be triggered manually
pin_int.irq()()

(continues on next page)

462 Chapter 11. Quick reference for the WiPy

MicroPython Documentation, Release v1.20.0

(continued from previous page)
to disable the callback
pin_int.irq().disable()

Now every time a falling edge is seen on the gpio pin, the callbackwill be executed. Caution: mechanical push buttons have
“bounce” and pushing or releasing a switch will often generate multiple edges. See: http://www.eng.utah.edu/~cs5780/
debouncing.pdf for a detailed explanation, along with various techniques for debouncing.
All pin objects go through the pin mapper to come up with one of the gpio pins.
For the drive parameter the strengths are:

• Pin.LOW_POWER - 2mA drive capability.
• Pin.MED_POWER - 4mA drive capability.
• Pin.HIGH_POWER - 6mA drive capability.

For the alt parameter please refer to the pinout and alternate functions table at <https://raw.githubusercontent.com/
wipy/wipy/master/docs/PinOUT.png>`_ for the specific alternate functions that each pin supports.
For interrupts, the priority can take values in the range 1-7. And the wake parameter has the following properties:

• If wake_from=machine.Sleep.ACTIVE any pin can wake the board.
• If wake_from=machine.Sleep.SUSPENDED pins GP2, GP4, GP10, GP11, GP17`` or GP24 can wake
the board. Note that only 1 of this pins can be enabled as a wake source at the same time, so, only the last enabled
pin as a machine.Sleep.SUSPENDED wake source will have effect.

• If wake_from=machine.Sleep.SUSPENDED pins GP2, GP4, GP10, GP11, GP17 and GP24 can wake
the board. In this case all of the 6 pins can be enabled as a machine.Sleep.HIBERNATE wake source at the
same time.

Additional Pin methods:
machine.Pin.alt_list()

Returns a list of the alternate functions supported by the pin. List items are a tuple of the form:
('ALT_FUN_NAME', ALT_FUN_INDEX)

11.1.12 Additional details for machine.I2C

On the WiPy there is a single hardware I2C peripheral, identified by “0”. By default this is the peripheral that is used
when constructing an I2C instance. The default pins are GP23 for SCL and GP13 for SDA, and one can create the default
I2C peripheral simply by doing:

i2c = machine.I2C()

The pins and frequency can be specified as:

i2c = machine.I2C(freq=400000, scl='GP23', sda='GP13')

Only certain pins can be used as SCL/SDA. Please refer to the pinout for further information.

11.1. General information about the WiPy 463

http://www.eng.utah.edu/~cs5780/debouncing.pdf
http://www.eng.utah.edu/~cs5780/debouncing.pdf
https://raw.githubusercontent.com/wipy/wipy/master/docs/PinOUT.png
https://raw.githubusercontent.com/wipy/wipy/master/docs/PinOUT.png

MicroPython Documentation, Release v1.20.0

11.1.13 Known issues

Incompatible way to create SSL sockets

SSL sockets need to be created the following way before wrapping them with. ssl.wrap_socket:

import socket
import ssl
s = socket(socket.AF_INET, socket.SOCK_STREAM, socket.IPPROTO_SEC)
ss = ssl.wrap_socket(s)

Certificates must be used in order to validate the other side of the connection, and also to authenticate ourselves with the
other end. Such certificates must be stored as files using the FTP server, and they must be placed in specific paths with
specific names.

• The certificate to validate the other side goes in: ‘/flash/cert/ca.pem’
• The certificate to authenticate ourselves goes in: ‘/flash/cert/cert.pem’
• The key for our own certificate goes in: ‘/flash/cert/private.key’

Note: When these files are stored, they are placed inside the internal hidden file system (just like firmware updates),
and therefore they are never visible.

For instance to connect to the Blynk servers using certificates, take the file ca.pem located in the blynk examples folder.
and put it in ‘/flash/cert/’. Then do:

import socket
import ssl
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM, socket.IPPROTO_SEC)
ss = ssl.wrap_socket(s, cert_reqs=ssl.CERT_REQUIRED, ca_certs='/flash/cert/ca.pem')
ss.connect(socket.getaddrinfo('cloud.blynk.cc', 8441)[0][-1])

Incompatibilities in hashlib module

Due to hardware implementation details of the WiPy, data must be buffered before being digested, which would make
it impossible to calculate the hash of big blocks of data that do not fit in RAM. In this case, since most likely the total
size of the data is known in advance, the size can be passed to the constructor and hence the HASH hardware engine
of the WiPy can be properly initialized without needing buffering. If block_size is to be given, an initial chunk of
data must be passed as well. When using this extension, care must be taken to make sure that the length of all
intermediate chunks (including the initial one) is a multiple of 4 bytes. The last chunk may be of any length.
Example:

hash = hashlib.sha1('abcd1234', 1001) # length of the initial piece is multiple of␣
↪→4 bytes
hash.update('1234') # also multiple of 4 bytes
...
hash.update('12345') # last chunk may be of any length
hash.digest()

464 Chapter 11. Quick reference for the WiPy

https://github.com/wipy/wipy/tree/master/examples/blynk

MicroPython Documentation, Release v1.20.0

Unrelated function in machine module

main(filename)
Set the filename of the main script to run after boot.py is finished. If this function is not called then the default file
main.py will be executed.
It only makes sense to call this function from within boot.py.

Adhoc way to control telnet/FTP server via network module

The Server class controls the behaviour and the configuration of the FTP and telnet services running on the WiPy. Any
changes performed using this class’ methods will affect both.
Example:

import network
server = network.Server()
server.deinit() # disable the server
enable the server again with new settings
server.init(login=('user', 'password'), timeout=600)

class network.Server(id, ...)
Create a server instance, see init for parameters of initialization.

server.init(*, login=('micro', 'python'), timeout=300)
Init (and effectively start the server). Optionally a new user, password and timeout (in seconds) can be
passed.

server.deinit()
Stop the server

server.timeout([timeout_in_seconds])
Get or set the server timeout.

server.isrunning()
Returns True if the server is running, False otherwise.

Adhoc VFS-like support

WiPy doesn’t implement full MicroPython VFS support, instead following functions are defined in os module:
mount(block_device, mount_point, *, readonly=False)

Mounts a block device (like an SD object) in the specified mount point. Example:

os.mount(sd, '/sd')

unmount(path)
Unmounts a previously mounted block device from the given path.

mkfs(block_device or path)
Formats the specified path, must be either /flash or /sd. A block device can also be passed like an SD object
before being mounted.

11.1. General information about the WiPy 465

MicroPython Documentation, Release v1.20.0

11.2 WiPy tutorials and examples

Before starting, make sure that you are running the latest firmware, for instructions see OTA How-To.

11.2.1 Introduction to the WiPy

To get the most out of your WiPy, there are a few basic things to understand about how it works.

Caring for your WiPy and expansion board

Because the WiPy/expansion board does not have a housing it needs a bit of care:
• Be gentle when plugging/unplugging the USB cable. Whilst the USB connector is well soldered and is relatively
strong, if it breaks off it can be very difficult to fix.

• Static electricity can shock the components on theWiPy and destroy them. If you experience a lot of static electricity
in your area (eg dry and cold climates), take extra care not to shock the WiPy. If your WiPy came in a ESD bag,
then this bag is the best way to store and carry the WiPy as it will protect it against static discharges.

As long as you take care of the hardware, you should be okay. It’s almost impossible to break the software on the WiPy,
so feel free to play around with writing code as much as you like. If the filesystem gets corrupt, see below on how to reset
it. In the worst case you might need to do a safe boot, which is explained in detail in Boot modes and safe boot.

Plugging into the expansion board and powering on

The expansion board can power the WiPy via USB. The WiPy comes with a sticker on top of the RF shield that labels all
pins, and this should match the label numbers on the expansion board headers. When plugging it in, the WiPy antenna
will end up on top of the SD card connector of the expansion board. A video showing how to do this can be found here
on YouTube.

Expansion board hardware guide

The document explaining the hardware details of the expansion board can be found in this PDF.

Powering by an external power source

The WiPy can be powered by a battery or other external power source.
Be sure to connect the positive lead of the power supply to VIN, and ground to GND. There is no polarity pro-
tection on the WiPy so you must be careful when connecting anything to VIN.

• When powering via VIN:
The input voltage must be between 3.6V and 5.5V.

• When powering via 3V3:
The input voltage must be exactly 3V3, ripple free and from a supply capable of sourcing at least
300mA of current

466 Chapter 11. Quick reference for the WiPy

https://www.youtube.com/watch?v=47D9MZ9zFQw
https://www.youtube.com/watch?v=47D9MZ9zFQw
https://github.com/wipy/wipy/blob/master/docs/User_manual_exp_board.pdf

MicroPython Documentation, Release v1.20.0

Performing firmware upgrades

For detailed instructions see OTA How-To.

11.2.2 Getting a MicroPython REPL prompt

REPL stands for Read Evaluate Print Loop, and is the name given to the interactive MicroPython prompt that you can
access on the WiPy. Using the REPL is by far the easiest way to test out your code and run commands. You can use the
REPL in addition to writing scripts in main.py.
To use the REPL, you must connect to the WiPy either via telnet, or with a USB to serial converter wired to one of the
two UARTs on the WiPy. To enable REPL duplication on UART0 (the one accessible via the expansion board) do:

>>> from machine import UART
>>> import os
>>> uart = UART(0, 115200)
>>> os.dupterm(uart)

Place this piece of code inside your boot.py so that it’s done automatically after reset.

Windows

First you need to install the FTDI drivers for the expansion board’s USB to serial converter. Then you need a terminal
software. The best option is to download the free program PuTTY: putty.exe.
In order to get to the telnet REPL:
Using putty, select Telnet as connection type, leave the default port (23) and enter the IP address of your WiPy
(192.168.1.1 when in WLAN.AP mode), then click open.
In order to get to the REPL UART:
Using your serial program you must connect to the COM port that you found in the previous step. With PuTTY, click on
“Session” in the left-hand panel, then click the “Serial” radio button on the right, then enter you COM port (eg COM4)
in the “Serial Line” box. Finally, click the “Open” button.

Mac OS X

Open a terminal and run:

$ telnet 192.168.1.1

or:

$ screen /dev/tty.usbmodem* 115200

When you are finished and want to exit screen, type CTRL-A CTRL-\. If your keyboard does not have a \-key (i.e.
you need an obscure combination for \ like ALT-SHIFT-7) you can remap the quit command:

• create ~/.screenrc
• add bind q quit

This will allow you to quit screen by hitting CTRL-A Q.

11.2. WiPy tutorials and examples 467

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

MicroPython Documentation, Release v1.20.0

Linux

Open a terminal and run:

$ telnet 192.168.1.1

or:

$ screen /dev/ttyUSB0 115200

You can also try picocom or minicom instead of screen. You may have to use /dev/ttyUSB01 or a higher number
for ttyUSB. And, you may need to give yourself the correct permissions to access this devices (eg group uucp or
dialout, or use sudo).

Using the REPL prompt

Now let’s try running some MicroPython code directly on the WiPy.
With your serial program open (PuTTY, screen, picocom, etc) you may see a blank screen with a flashing cursor. Press
Enter and you should be presented with aMicroPython prompt, i.e. >>>. Let’s make sure it is working with the obligatory
test:

>>> print("hello WiPy!")
hello WiPy!

In the above, you should not type in the >>> characters. They are there to indicate that you should type the text after it
at the prompt. In the end, once you have entered the text print("hello WiPy!") and pressed Enter, the output on
your screen should look like it does above.
If you already know some Python you can now try some basic commands here.
If any of this is not working you can try either a hard reset or a soft reset; see below.
Go ahead and try typing in some other commands. For example:

>>> from machine import Pin
>>> import wipy
>>> wipy.heartbeat(False) # disable the heartbeat
>>> led = Pin('GP25', mode=Pin.OUT)
>>> led(1)
>>> led(0)
>>> led.toggle()
>>> 1 + 2
3
>>> 4 // 2
2
>>> 20 * 'py'
'py'

468 Chapter 11. Quick reference for the WiPy

MicroPython Documentation, Release v1.20.0

Resetting the board

If something goes wrong, you can reset the board in two ways. The first is to press CTRL-D at the MicroPython prompt,
which performs a soft reset. You will see a message something like:

>>>
MPY: soft reboot
MicroPython v1.4.6-146-g1d8b5e5 on 2015-10-21; WiPy with CC3200
Type "help()" for more information.
>>>

If that isn’t working you can perform a hard reset (turn-it-off-and-on-again) by pressing the RST switch (the small black
button next to the heartbeat LED). During telnet, this will end your session, disconnecting whatever program that you
used to connect to the WiPy.

11.2.3 Getting started with Blynk and the WiPy

Blynk provides iOS and Android apps to control any hardware over the Internet or directly using Bluetooth. You can
easily build graphic interfaces for all your projects by simply dragging and dropping widgets, right on your smartphone.
Before anything else, make sure that your WiPy is running the latest software, check OTA How-To for instructions.

1. Get the Blynk library and put it in /flash/lib/ via FTP.
2. Get the Blynk example for WiPy, edit the network settings, and afterwards upload it to /flash/ via FTP as well.
3. Follow the instructions on each example to setup the Blynk dashboard on your smartphone or tablet.
4. Give it a try, for instance:

>>> execfile('sync_virtual.py')

11.2.4 WLAN step by step

The WLAN is a system feature of the WiPy, therefore it is always enabled (even while in machine.SLEEP), except
when deepsleep mode is entered.
In order to retrieve the current WLAN instance, do:

>>> from network import WLAN
>>> wlan = WLAN() # we call the constructor without params

You can check the current mode (which is always WLAN.AP after power up):

>>> wlan.mode()

Warning: When you change the WLAN mode following the instructions below, your WLAN connection to the
WiPy will be broken. This means you will not be able to run these commands interactively over the WLAN.
There are two ways around this::

1. put this setup code into your boot.py file so that it gets executed automatically after reset.
2. duplicate the REPL on UART , so that you can run commands via USB.

11.2. WiPy tutorials and examples 469

https://github.com/vshymanskyy/blynk-library-python/blob/master/BlynkLib.py
https://github.com/vshymanskyy/blynk-library-python/blob/master/examples/hardware/PyCom_WiPy.py

MicroPython Documentation, Release v1.20.0

Connecting to your home router

The WLAN network card always boots in WLAN.AP mode, so we must first configure it as a station:

from network import WLAN
wlan = WLAN(mode=WLAN.STA)

Now you can proceed to scan for networks:

nets = wlan.scan()
for net in nets:

if net.ssid == 'mywifi':
print('Network found!')
wlan.connect(net.ssid, auth=(net.sec, 'mywifikey'), timeout=5000)
while not wlan.isconnected():

machine.idle() # save power while waiting
print('WLAN connection succeeded!')
break

Assigning a static IP address when booting

If you want your WiPy to connect to your home router after boot-up, and with a fixed IP address so that you can access
it via telnet or FTP, use the following script as /flash/boot.py:

import machine
from network import WLAN
wlan = WLAN() # get current object, without changing the mode

if machine.reset_cause() != machine.SOFT_RESET:
wlan.init(WLAN.STA)
configuration below MUST match your home router settings!!
wlan.ifconfig(config=('192.168.178.107', '255.255.255.0', '192.168.178.1', '8.8.8.

↪→8'))

if not wlan.isconnected():
change the line below to match your network ssid, security and password
wlan.connect('mywifi', auth=(WLAN.WPA2, 'mywifikey'), timeout=5000)
while not wlan.isconnected():

machine.idle() # save power while waiting

Note: Notice how we check for the reset cause and the connection status, this is crucial in order to be able to soft reset
the WiPy during a telnet session without breaking the connection.

11.2.5 Hardware timers

Timers can be used for a great variety of tasks, calling a function periodically, counting events, and generating a PWM
signal are among the most common use cases. Each timer consists of two 16-bit channels and this channels can be tied
together to form one 32-bit timer. The operating mode needs to be configured per timer, but then the period (or the
frequency) can be independently configured on each channel. By using the callback method, the timer event can call a
Python function.
Example usage to toggle an LED at a fixed frequency:

470 Chapter 11. Quick reference for the WiPy

MicroPython Documentation, Release v1.20.0

from machine import Timer
from machine import Pin
led = Pin('GP16', mode=Pin.OUT) # enable GP16 as output to drive the␣
↪→LED
tim = Timer(3) # create a timer object using timer 3
tim.init(mode=Timer.PERIODIC) # initialize it in periodic mode
tim_ch = tim.channel(Timer.A, freq=5) # configure channel A at a frequency␣
↪→of 5Hz
tim_ch.irq(handler=lambda t:led.toggle(), trigger=Timer.TIMEOUT) # toggle a␣
↪→LED on every cycle of the timer

Example using named function for the callback:

from machine import Timer
from machine import Pin
tim = Timer(1, mode=Timer.PERIODIC, width=32)
tim_a = tim.channel(Timer.A | Timer.B, freq=1) # 1 Hz frequency requires a 32 bit␣
↪→timer

led = Pin('GP16', mode=Pin.OUT) # enable GP16 as output to drive the LED

def tick(timer): # we will receive the timer object when being called
global led
led.toggle() # toggle the LED

tim_a.irq(handler=tick, trigger=Timer.TIMEOUT) # create the interrupt

Further examples:

from machine import Timer
tim1 = Timer(1, mode=Timer.ONE_SHOT) # initialize it in␣
↪→one shot mode
tim2 = Timer(2, mode=Timer.PWM) # initialize it in␣
↪→PWM mode
tim1_ch = tim1.channel(Timer.A, freq=10, polarity=Timer.POSITIVE) # start the event␣
↪→counter with a frequency of 10Hz and triggered by positive edges
tim2_ch = tim2.channel(Timer.B, freq=10000, duty_cycle=5000) # start the PWM on␣
↪→channel B with a 50% duty cycle
tim2_ch.freq(20) # set the␣
↪→frequency (can also get)
tim2_ch.duty_cycle(3010) # set the duty␣
↪→cycle to 30.1% (can also get)
tim2_ch.duty_cycle(3020, Timer.NEGATIVE) # set the duty␣
↪→cycle to 30.2% and change the polarity to negative
tim2_ch.period(2000000) # change the␣
↪→period to 2 seconds

11.2. WiPy tutorials and examples 471

MicroPython Documentation, Release v1.20.0

Additional constants for Timer class

Timer.PWM
PWM timer operating mode.

Timer.A

Timer.B
Selects the timer channel. Must be ORed (Timer.A | Timer.B) when using a 32-bit timer.

Timer.POSITIVE

Timer.NEGATIVE
Timer channel polarity selection (only relevant in PWM mode).

Timer.TIMEOUT

Timer.MATCH
Timer channel IRQ triggers.

11.2.6 Reset and boot modes

There are soft resets and hard resets.
• A soft reset simply clears the state of the MicroPython virtual machine, but leaves hardware peripherals unaffected.
To do a soft reset, simply press Ctrl+D on the REPL, or within a script do:

import sys
sys.exit()

• A hard reset is the same as performing a power cycle to the board. In order to hard reset the WiPy, press the switch
on the board or:

import machine
machine.reset()

Safe boot

If something goes wrong with your WiPy, don’t panic! It is almost impossible for you to break theWiPy by programming
the wrong thing.
The first thing to try is to boot in safe mode: this temporarily skips execution of boot.py and main.py and gives
default WLAN settings.
If you have problems with the filesystem you can format the internal flash drive.
To boot in safe mode, follow the detailed instructions described here.
In safe mode, the boot.py and main.py files are not executed, and so the WiPy boots up with default settings. This
means you now have access to the filesystem, and you can edit boot.py and main.py to fix any problems.
Entering safe mode is temporary, and does not make any changes to the files on the WiPy.

472 Chapter 11. Quick reference for the WiPy

MicroPython Documentation, Release v1.20.0

Factory reset the filesystem

If you WiPy’s filesystem gets corrupted (very unlikely, but possible), you can format it very easily by doing:

>>> import os
>>> os.mkfs('/flash')

Resetting the filesystem deletes all files on the internal WiPy storage (not the SD card), and restores the files boot.py
and main.py back to their original state after the next reset.

11.3 General board control (including sleep modes)

See the machine module:

import machine

help(machine) # display all members from the machine module
machine.freq() # get the CPU frequency
machine.unique_id() # return the 6-byte unique id of the board (the WiPy's MAC␣
↪→address)

machine.idle() # average current decreases to (~12mA), any interrupts wake it␣
↪→up
machine.lightsleep() # everything except for WLAN is powered down (~950uA avg.␣
↪→current)

wakes from Pin, RTC or WLAN
machine.deepsleep() # deepest sleep mode, MCU starts from reset. Wakes from Pin and␣
↪→RTC.

11.4 Pins and GPIO

See machine.Pin.

from machine import Pin

initialize GP2 in gpio mode (alt=0) and make it an output
p_out = Pin('GP2', mode=Pin.OUT)
p_out.value(1)
p_out.value(0)
p_out.toggle()
p_out(True)

make GP1 an input with the pull-up enabled
p_in = Pin('GP1', mode=Pin.IN, pull=Pin.PULL_UP)
p_in() # get value, 0 or 1

11.3. General board control (including sleep modes) 473

MicroPython Documentation, Release v1.20.0

11.5 Timers

See machine.TimerWiPy and machine.Pin. Timer id’s take values from 0 to 3.:

from machine import Timer
from machine import Pin

tim = Timer(0, mode=Timer.PERIODIC)
tim_a = tim.channel(Timer.A, freq=1000)
tim_a.freq(5) # 5 Hz

p_out = Pin('GP2', mode=Pin.OUT)
tim_a.irq(trigger=Timer.TIMEOUT, handler=lambda t: p_out.toggle())

11.6 PWM (pulse width modulation)

See machine.Pin and machine.Timer.

from machine import Timer

timer 1 in PWM mode and width must be 16 buts
tim = Timer(1, mode=Timer.PWM, width=16)

enable channel A @1KHz with a 50.55% duty cycle
tim_a = tim.channel(Timer.A, freq=1000, duty_cycle=5055)

11.7 ADC (analog to digital conversion)

See machine.ADCWiPy.

from machine import ADC

adc = ADC()
apin = adc.channel(pin='GP3')
apin() # read value, 0-4095

11.8 UART (serial bus)

See machine.UART .

from machine import UART
uart = UART(0, baudrate=9600)
uart.write('hello')
uart.read(5) # read up to 5 bytes

474 Chapter 11. Quick reference for the WiPy

MicroPython Documentation, Release v1.20.0

11.9 SPI bus

See machine.SPI.

from machine import SPI

configure the SPI controller @ 2MHz
spi = SPI(0, SPI.CONTROLLER, baudrate=2_000_000, polarity=0, phase=0)
spi.write('hello')
spi.read(5) # receive 5 bytes on the bus
rbuf = bytearray(5)
spi.write_readinto('hello', rbuf) # send and receive 5 bytes

11.10 I2C bus

See machine.I2C.

from machine import I2C
configure the I2C bus
i2c = I2C(baudrate=100000)
i2c.scan() # returns list of peripheral addresses
i2c.writeto(0x42, 'hello') # send 5 bytes to peripheral with address 0x42
i2c.readfrom(0x42, 5) # receive 5 bytes from peripheral
i2c.readfrom_mem(0x42, 0x10, 2) # read 2 bytes from peripheral 0x42, peripheral␣
↪→memory 0x10
i2c.writeto_mem(0x42, 0x10, 'xy') # write 2 bytes to peripheral 0x42, peripheral␣
↪→memory 0x10

11.11 Watchdog timer (WDT)

See machine.WDT .

from machine import WDT

enable the WDT with a timeout of 5s (1s is the minimum)
wdt = WDT(timeout=5000)
wdt.feed()

11.12 Real time clock (RTC)

See machine.RTC

from machine import RTC

rtc = RTC() # init with default time and date
rtc = RTC(datetime=(2015, 8, 29, 9, 0, 0, 0, None)) # init with a specific time and␣
↪→date
print(rtc.now())

(continues on next page)

11.9. SPI bus 475

MicroPython Documentation, Release v1.20.0

(continued from previous page)
def alarm_handler (rtc_o):

pass
do some non blocking operations
warning printing on an irq via telnet is not
possible, only via UART

create a RTC alarm that expires after 5 seconds
rtc.alarm(time=5000, repeat=False)

enable RTC interrupts
rtc_i = rtc.irq(trigger=RTC.ALARM0, handler=alarm_handler, wake=machine.SLEEP)

go into suspended mode waiting for the RTC alarm to expire and wake us up
machine.lightsleep()

11.13 SD card

See machine.SD.

from machine import SD
import os

clock pin, cmd pin, data0 pin
sd = SD(pins=('GP10', 'GP11', 'GP15'))
or use default ones for the expansion board
sd = SD()
os.mount(sd, '/sd')

11.14 WLAN (WiFi)

See network.WLAN and machine.

import machine
from network import WLAN

configure the WLAN subsystem in station mode (the default is AP)
wlan = WLAN(mode=WLAN.STA)
go for fixed IP settings
wlan.ifconfig(config=('192.168.0.107', '255.255.255.0', '192.168.0.1', '8.8.8.8'))
wlan.scan() # scan for available networks
wlan.connect(ssid='mynetwork', auth=(WLAN.WPA2, 'mynetworkkey'))
while not wlan.isconnected():

pass
print(wlan.ifconfig())
enable wake on WLAN
wlan.irq(trigger=WLAN.ANY_EVENT, wake=machine.SLEEP)
go to sleep
machine.lightsleep()
now, connect to the FTP or the Telnet server and the WiPy will wake-up

476 Chapter 11. Quick reference for the WiPy

MicroPython Documentation, Release v1.20.0

11.15 Telnet and FTP server

See network.Server

from network import Server

init with new user, password and seconds timeout
server = Server(login=('user', 'password'), timeout=60)
server.timeout(300) # change the timeout
server.timeout() # get the timeout
server.isrunning() # check whether the server is running or not

11.16 Heart beat LED

See wipy.

import wipy

wipy.heartbeat(False) # disable the heartbeat LED
wipy.heartbeat(True) # enable the heartbeat LED
wipy.heartbeat() # get the heartbeat state

11.15. Telnet and FTP server 477

MicroPython Documentation, Release v1.20.0

478 Chapter 11. Quick reference for the WiPy

CHAPTER

TWELVE

QUICK REFERENCE FOR THE UNIX AND WINDOWS PORTS

12.1 Command line options

Usage:

micropython [-h] [-i] [-O<level>] [-v] [-X <option>] [-c <command> | -m
↪→<module> | <script>] [<args>]

Invocation options:
-c <command>

Runs the code in <command>. The code can be one or more Python statements.
-m <module>

Runs the module <module>. The module must be in sys.path.
<script>

Runs the file <script>. The script must be a valid MicroPython source code file.
If none of the 3 options above are given, then MicroPython is run in an interactive REPL mode.
<args>

Any additional arguments after the module or script will be passed to sys.argv (not supported with the -c
option).

General options:
-h

Prints a help message containing the command line usage and exits.
-i

Enables inspection. When this flag is set, MicroPython will enter the interactive REPL mode after the command,
module or script has finished. This can be useful for debugging the state after an unhandled exception. Also see
the MICROPYINSPECT environment variable.

-O | -O<level> | -OO...
Sets the optimization level. The O can be followed by a number or can be repeated multiple times to indicate the
level. E.g. -O3 is the same as -OOO.

-v
Increases the verbosity level. This option can be given multiple times. This option only has an effect if MI-
CROPY_DEBUG_PRINTERS was enabled when MicroPython itself was compiled.

-X <option>
Specifies additional implementation-specific options. Possible options are:

• -X compile-only compiles the command, module or script but does not run it.

479

MicroPython Documentation, Release v1.20.0

• -X emit={bytecode,native,viper} sets the default code emitter. Native emitters may not be
available depending on the settings when MicroPython itself was compiled.

• -X heapsize=<n>[w][K|M] sets the heap size for the garbage collector. The suffix w means words
instead of bytes. K means x1024 and M means x1024x1024.

• -X realtime sets thread priority to realtime. This can be used to improve timer precision. Only available
on macOS.

12.2 Environment variables

MICROPYPATH
Overrides the default search path for MicroPython libraries. MICROPYPATH should be set to a colon (semi-
colon for Windows port) separated list of directories. If MICROPYPATH is not defined, the search path will be
~/.micropython/lib:/usr/lib/micropython (~/.micropython/lib forWindows port) or the
value of the MICROPY_PY_SYS_PATH_DEFAULT option if it was set when MicroPython itself was compiled.

MICROPYINSPECT
Enables inspection. If MICROPYINSPECT is set to a non-empty string, it has the same effect as setting the -i
command line option.

480 Chapter 12. Quick reference for the UNIX and Windows ports

CHAPTER

THIRTEEN

QUICK REFERENCE FOR THE ZEPHYR PORT

Below is a quick reference for the Zephyr port. If it is your first time working with this port please consider reading the
following sections first:

13.1 General information about the Zephyr port

The Zephyr Project is a Linux Foundation hosted Collaboration Project. It’s an open source collaborative effort uniting
developers and users in building a small, scalable, real-time operating system (RTOS) optimized for resource-constrained
devices, across multiple architectures.

13.1.1 Multitude of boards

There is a multitude of modules and boards from different sources that are supported by the Zephyr OS. All boards
supported by Zephyr (with standard level of features support, like UART console) should work with MicroPython (but
not all were tested). The FRDM-K64f board is taken as a reference board for the port for this documentation. If you have
another board, please make sure you have a datasheet, schematics and other reference materials for your board handy to
look up various aspects of your board functioning.
For a full list of Zephyr supported boards click here (external link)

13.2 MicroPython tutorial for the Zephyr port

This tutorial is intended to get you started with the Zephyr port.

13.2.1 Getting started with MicroPython on the Zephyr port

Let’s get started!

481

https://docs.zephyrproject.org/latest/boards/index.html#boards

MicroPython Documentation, Release v1.20.0

Requirements

To use the MicroPython Zephyr port, you will need a Zephyr supported board (for a list of acceptable boards see General
information about the Zephyr port).

Powering up

If your board has a USB connector on it then most likely it is powered through this when connected to your PC. Otherwise
you will need to power it directly. Please refer to the documentation for your board for further details.

Getting and deploying the firmware

The first step you will need to do is either clone the MicroPython repository or download it from the MicroPython
downloads page. If you are an end user of MicroPython, it is recommended to start with the stable firmware builds. If
you would like to work on development, you may follow the daily builds on git.
Next, follow the Zephyr port readme document (ports/zephyr/README.md) to build and run the application on
your board.

13.2.2 Getting a MicroPython REPL prompt

REPL stands for Read Evaluate Print Loop, and is the name given to the interactive MicroPython prompt that you can
access on your board through Zephyr. It is recommended to use REPL to test out your code and run commands.

REPL over the serial port

The REPL is available on a UART serial peripheral specified for the board by the zephyr,console devicetree node.
The baudrate of the REPL is 115200. If your board has a USB-serial convertor on it then you should be able to access
the REPL directly from your PC.
To access the prompt over USB-serial you will need to use a terminal emulator program. For a Linux or Mac machine,
open a terminal and run:

screen /dev/ttyACM0 115200

You can also try picocom or minicom instead of screen. You may have to use /dev/ttyACM1 or a higher number
for ttyACM. Additional permissions may be necessary to access this device (eg group uucp or dialout, or use sudo).
For Windows, get a terminal software, such as puTTY and connect via a serial session using the proper COM port.

Using the REPL

With your serial program open (PuTTY, screen, picocom, etc) you may see a blank screen with a flashing cursor. Press
Enter (or reset the board) and you should be presented with the following text:

*** Booting Zephyr OS build zephyr-v3.1.0 ***
MicroPython v1.19.1-9-g4fd54a475 on 2022-06-17; zephyr-frdm_k64f with mk64f12
Type "help()" for more information.
>>>

482 Chapter 13. Quick reference for the Zephyr port

https://github.com/micropython/micropython.git
http://micropython.org/download
http://micropython.org/download

MicroPython Documentation, Release v1.20.0

Now you can try running MicroPython code directly on your board.
Anything you type at the prompt, indicated by >>>, will be executed after you press the Enter key. If there is an error
with the text that you enter then an error message is printed.
Start by typing the following at the prompt to make sure it is working:

>>> print("hello world!")
hello world!

If you already know some python you can now try some basic commands here. For example:

>>> 1 + 2
3
>>> 1 / 2
0.5
>>> 3 * 'Zephyr'
ZephyrZephyrZephyr

If your board has an LED, you can blink it using the following code:

>>>import time
>>>from machine import Pin

>>>LED = Pin(("GPIO_1", 21), Pin.OUT)
>>>while True:
... LED.value(1)
... time.sleep(0.5)
... LED.value(0)
... time.sleep(0.5)

The above code uses an LED location for a FRDM-K64F board (port B, pin 21; following Zephyr conventions ports are
identified by “GPIO_x”, where x starts from 0). You will need to adjust it for another board using the board’s reference
materials.

13.2.3 Filesystems and Storage

Storage modules support virtual filesystem with FAT and littlefs formats, backed by either Zephyr DiskAccess or
FlashArea (flash map) APIs depending on which the board supports.
See os Filesystem Mounting.

Disk Access

The zephyr.DiskAccess class can be used to access storage devices, such as SD cards. This class uses Zephyr Disk Access
API and implements the os.AbstractBlockDev protocol.
For use with SD card controllers, SD cards must be present at boot & not removed; they will be auto detected and
initialized by filesystem at boot. Use the disk driver interface and a file system to access SD cards via disk access (see
below).
Example usage of FatFS with an SD card on the mimxrt1050_evk board:

import os
from zephyr import DiskAccess
bdev = zephyr.DiskAccess('SDHC') # create block device object using DiskAccess

(continues on next page)

13.2. MicroPython tutorial for the Zephyr port 483

https://docs.micropython.org/en/latest/library/os.html?highlight=os#filesystem-mounting
https://docs.zephyrproject.org/latest/reference/storage/disk/access.html
https://docs.zephyrproject.org/latest/reference/storage/disk/access.html

MicroPython Documentation, Release v1.20.0

(continued from previous page)
os.VfsFat.mkfs(bdev) # create FAT filesystem object using the disk␣
↪→storage block
os.mount(bdev, '/sd') # mount the filesystem at the SD card␣
↪→subdirectory
with open('/sd/hello.txt','w') as f: # open a new file in the directory

f.write('Hello world') # write to the file
print(open('/sd/hello.txt').read()) # print contents of the file

Flash Area

The zephyr.FlashArea class can be used to implement a low-level storage system or customize filesystem configurations.
To store persistent data on the device, using a higher-level filesystem API is recommended (see below).
This class uses Zephyr Flash map API and implements the os.AbstractBlockDev protocol.
Example usage with the internal flash on the reel_board or the rv32m1_vega_ri5cy board:

import os
from zephyr import FlashArea
bdev = FlashArea(FlashArea.STORAGE, 4096) # create block device object using␣
↪→FlashArea
os.VfsLfs2.mkfs(bdev) # create Little filesystem object using␣
↪→the flash area block
os.mount(bdev, '/flash') # mount the filesystem at the flash␣
↪→storage subdirectory
with open('/flash/hello.txt','w') as f: # open a new file in the directory

f.write('Hello world') # write to the file
print(open('/flash/hello.txt').read()) # print contents of the file

For boards such as the frdm_k64f in which the MicroPython application spills into the default flash storage partition, use
the scratch partition by replacing FlashArea.STORAGE with the integer value 4.

13.2.4 GPIO Pins

Use machine.Pin to control I/O pins.
For Zephyr, pins are initialized using a tuple of port and pin number (\"GPIO_x\", pin#) for the id value. For
example to initialize a pin for the red LED on a FRDM-k64 board:

LED = Pin(("GPIO_1", 22), Pin.OUT)

Reference your board’s datasheet or Zephyr documentation for pin numbers, see below for more examples.

Table 1: Pin Formatting
Board Pin Format
frdm_k64f Red LED = PTB22 (“GPIO_1”, 22)
96b_carbon LED1 = PD2 (“GPIOD”, 2)
mimxrt685_evk_cm33 Green LED = PIO0_14 (“GPIO0”, 14)

484 Chapter 13. Quick reference for the Zephyr port

https://docs.zephyrproject.org/latest/reference/storage/flash_map/flash_map.html

MicroPython Documentation, Release v1.20.0

Interrupts

The Zephyr port also supports interrupt handling for Pins using machine.Pin.irq(). To respond to Pin change
IRQs run:

from machine import Pin

SW2 = Pin(("GPIO_2", 6), Pin.IN) # create Pin object for switch 2
SW3 = Pin(("GPIO_0", 4), Pin.IN) # create Pin object for switch 3

SW2.irq(lambda t: print("SW2 changed")) # print message when SW2 state is changed␣
↪→(triggers change IRQ)
SW3.irq(lambda t: print("SW3 changed")) # print message when SW3 state is changed␣
↪→(triggers change IRQ)

while True: # wait
pass

13.3 Running MicroPython

See the corresponding section of the tutorial: Getting started with MicroPython on the ESP8266.

13.4 Delay and timing

Use the time module:

import time

time.sleep(1) # sleep for 1 second
time.sleep_ms(500) # sleep for 500 milliseconds
time.sleep_us(10) # sleep for 10 microseconds
start = time.ticks_ms() # get millisecond counter
delta = time.ticks_diff(time.ticks_ms(), start) # compute time difference

13.5 Pins and GPIO

Use the machine.Pin class:

from machine import Pin

pin = Pin(("GPIO_1", 21), Pin.IN) # create input pin on GPIO1
print(pin) # print pin port and number

pin.init(Pin.OUT, Pin.PULL_UP, value=1) # reinitialize pin

pin.value(1) # set pin to high
pin.value(0) # set pin to low

pin.on() # set pin to high
pin.off() # set pin to low

(continues on next page)

13.3. Running MicroPython 485

MicroPython Documentation, Release v1.20.0

(continued from previous page)

pin = Pin(("GPIO_1", 21), Pin.IN) # create input pin on GPIO1

pin = Pin(("GPIO_1", 21), Pin.OUT, value=1) # set pin high on creation

pin = Pin(("GPIO_1", 21), Pin.IN, Pin.PULL_UP) # enable internal pull-up resistor

switch = Pin(("GPIO_2", 6), Pin.IN) # create input pin for a switch
switch.irq(lambda t: print("SW2 changed")) # enable an interrupt when switch␣
↪→state is changed

13.6 Hardware I2C bus

Hardware I2C is accessed via the machine.I2C class:

from machine import I2C

i2c = I2C("I2C_0") # construct an i2c bus
print(i2c) # print device name

i2c.scan() # scan the device for available I2C slaves

i2c.readfrom(0x1D, 4) # read 4 bytes from slave 0x1D
i2c.readfrom_mem(0x1D, 0x0D, 1) # read 1 byte from slave 0x1D at slave memory␣
↪→0x0D

i2c.writeto(0x1D, b'abcd') # write to slave with address 0x1D
i2c.writeto_mem(0x1D, 0x0D, b'ab') # write to slave 0x1D at slave memory 0x0D

buf = bytearray(8) # create buffer of size 8
i2c.writeto(0x1D, b'abcd') # write buf to slave 0x1D

13.7 Hardware SPI bus

Hardware SPI is accessed via the machine.SPI class:

from machine import SPI

spi = SPI("SPI_0") # construct a spi bus with default configuration
spi.init(baudrate=100000, polarity=0, phase=0, bits=8, firstbit=SPI.MSB) # set␣
↪→configuration

equivalently, construct spi bus and set configuration at the same time
spi = SPI("SPI_0", baudrate=100000, polarity=0, phase=0, bits=8, firstbit=SPI.MSB)
print(spi) # print device name and bus configuration

spi.read(4) # read 4 bytes on MISO
spi.read(4, write=0xF) # read 4 bytes while writing 0xF on MOSI

buf = bytearray(8) # create a buffer of size 8
spi.readinto(buf) # read into the buffer (reads number of bytes equal to␣
↪→the buffer size)

(continues on next page)

486 Chapter 13. Quick reference for the Zephyr port

MicroPython Documentation, Release v1.20.0

(continued from previous page)
spi.readinto(buf, 0xF) # read into the buffer while writing 0xF on MOSI

spi.write(b'abcd') # write 4 bytes on MOSI

buf = bytearray(4) # create buffer of size 8
spi.write_readinto(b'abcd', buf) # write to MOSI and read from MISO into the buffer
spi.write_readinto(buf, buf) # write buf to MOSI and read back into the buf

13.8 Disk Access

Use the zephyr.DiskAccess class to support filesystem:

import os
from zephyr import DiskAccess

block_dev = DiskAccess('SDHC') # create a block device object for an SD card
os.VfsFat.mkfs(block_dev) # create FAT filesystem object using the disk␣
↪→storage block
os.mount(block_dev, '/sd') # mount the filesystem at the SD card subdirectory

with the filesystem mounted, files can be manipulated as normal
with open('/sd/hello.txt','w') as f: # open a new file in the directory

f.write('Hello world') # write to the file
print(open('/sd/hello.txt').read()) # print contents of the file

13.9 Flash Area

Use the zephyr.FlashArea class to support filesystem:

import os
from zephyr import FlashArea

block_dev = FlashArea(4, 4096) # creates a block device object in the frdm-k64f␣
↪→flash scratch partition
os.VfsLfs2.mkfs(block_dev) # create filesystem in lfs2 format using the␣
↪→flash block device
os.mount(block_dev, '/flash') # mount the filesystem at the flash subdirectory

with the filesystem mounted, files can be manipulated as normal
with open('/flash/hello.txt','w') as f: # open a new file in the directory

f.write('Hello world') # write to the file
print(open('/flash/hello.txt').read()) # print contents of the file

13.8. Disk Access 487

MicroPython Documentation, Release v1.20.0

13.10 Sensor

Use the zsensor.Sensor class to access sensor data:

import zsensor
from zsensor import Sensor

accel = Sensor("FXOX8700") # create sensor object for the accelerometer

accel.measure() # obtain a measurement reading from the accelerometer

each of these prints the value taken by measure()
accel.get_float(zsensor.ACCEL_X) # print measurement value for accelerometer X-axis␣
↪→sensor channel as float
accel.get_millis(zsensor.ACCEL_Y) # print measurement value for accelerometer Y-axis␣
↪→sensor channel in millionths
accel.get_micro(zsensor.ACCEL_Z) # print measurement value for accelerometer Z-axis␣
↪→sensor channel in thousandths
accel.get_int(zsensor.ACCEL_X) # print measurement integer value only for␣
↪→accelerometer X-axis sensor channel

488 Chapter 13. Quick reference for the Zephyr port

CHAPTER

FOURTEEN

QUICK REFERENCE FOR THE RENESAS RA

The Renesas EK-RA6M2 board.
Below is a quick reference for the Renesas RA boards. If it is your first time working with this board, it may be useful to
get an overview of the microcontroller and the board:

14.1 General information about Renesas RA port

14.1.1 Overview

The renesas-ra port supports boards powered by Renesas Electronics’s the flexible Renesas Advanced (RA) 32-bit mi-
crocontrollers (MCUs) family, industry-leading 32-bit MCUs with the Arm® Cortex®-M33, -M23 and -M4 processor
cores and PSA certification.
The ported hardware functionalities are Pin, SPI, I2C, UART and RTC at this present. Other hardware functionalities
such as Timer, PWM, USB, CAN and WDT are not implemented yet.

489

MicroPython Documentation, Release v1.20.0

The following boards are officially supported.
• RA4M1-CLICKER

For the manual and other references for the board and RA Family MCU, please refer to the web page: EK-RA4M1
CLICKER

• EK-RA6M2
For the manual and other references for the board and RA Family MCU, please refer to the web page: EK-RA6M2
The following boards are unofficially supported.

• EK-RA4M1
For the manual and other references for the board and RA Family MCU, please refer to the web page: EK-RA4M1

• EK-RA4W1
For the manual and other references for the board and RA Family MCU, please refer to the web page: EK-RA4W1

• EK-RA6M1
For the manual and other references for the board and RA Family MCU, please refer to the web page: EK-RA6M1
For more information, please visit the web page: https://github.com/renesas/micropython/wiki

14.2 MicroPython tutorial for Renesas RA port

This tutorial is intended to get you started using MicroPython on the Renesas RA port.

14.2.1 Getting started with MicroPython on the Renesas RA

This tutorial will guide you through setting up MicroPython, getting a prompt, using the hardware peripherals, using
internal flash file system, reset and boot modes, and Factory reset the internal file system.

Requirements

You need a board. For the information of available boards, please refer to the general information about Renesas RA
port: General information about Renesas RA port.
You need a USB-Serial conversion cable to connect the board and your PC. Please get a type with separate signal pins so
that you can connect to the UART TX and RX pins on the board.

Flashing the MicroPython image with J-Link OB

The board has a builtin programmer interface called J-Link OB. Using the J-Link Software, you can flash the binary
image “firmware.hex” of MicroPython on the board via J-Link OB.
You can download the J-Link Software and Documentation pack from https://www.segger.com/downloads/jlink/.
After installing J-Link Software, start J-Flash-Lite program. Then specify following device in Device select menu in
J-Flash-Lite.

490 Chapter 14. Quick reference for the Renesas RA

https://www.mikroe.com/ra4m1-clicker
https://www.mikroe.com/ra4m1-clicker
https://www.renesas.com/products/microcontrollers-microprocessors/ra-cortex-m-mcus/ek-ra6m2-ra6m2-mcu-group-evaluation-board
https://www.renesas.com/products/microcontrollers-microprocessors/ra-cortex-m-mcus/ek-ra4m1-ra4m1-mcu-group-evaluation-board
https://www.renesas.com/products/microcontrollers-microprocessors/ra-cortex-m-mcus/ek-ra4w1-ra4w1-mcu-group-evaluation-board
https://www.renesas.com/products/microcontrollers-microprocessors/ra-cortex-m-mcus/ek-ra6m1-ra6m1-mcu-group-evaluation-board
https://github.com/renesas/micropython/wiki
https://www.segger.com/downloads/jlink/

MicroPython Documentation, Release v1.20.0

Board Device
EK-RA4M1 R7FA4M1AB
EK-RA4W1 R7FA4W1AD2CNG
EK-RA6M1 R7FA6M1AD
EK-RA6M2 R7FA6M2AF
RA4M1 CLICKER R7FA4M1AB

Select a firmware hex file in Data File of J-Link-Lite, and push Program Device button to flash the firmware.

Getting a prompt of MicroPython

Cross connect USB-Serial conversion cable RX/TX/GND pins to TX/RX/GND pins on the board.

Board USB Serial RX USB Serial TX
EK-RA4M1 P411 P410
EK-RA4W1 P205 P206
EK-RA6M1 P411 P410
EK-RA6M2 P411 P410
RA4M1 CLICKER P401 P402

Access the MicroPython REPL (the Python prompt) via USB serial or UART with 115200 baud rate, 1 stop bit and no
parity bit using your favorite terminal software, picocom on Linux or Tera Term on Windows. You can try on Linux:

$ picocom /dev/ttyACM0

You can see the MicroPython REPL prompt like below:

MicroPython v1.18-293-g339aa09b8-dirty on 2022-03-26; RA6M2_EK with RA6M2
Type "help()" for more information.
>>>

14.2.2 Using peripherals

For quick help information, please enter:

help()

You can access RA MCU’s peripherals using MicroPython modules. To list supported modules, please enter:

help('modules')

Especially machinemodule and classmachine.Pin are very important for using peripherals. Note that prefix ‘u’ is added
to the module for MicroPython, so you can see “umachine” in the list but you can use it like “import machine”.
Using “from machine import Pin”, Pin name is available corresponding to the RA MCU’s pin name which are
Pin.cpu.P000 and ‘P000’. In addition, you can use ‘LED1’, ‘LED2’, ‘SW1’, and ‘SW2’ name if the board has these
LEDs and switches.

14.2. MicroPython tutorial for Renesas RA port 491

MicroPython Documentation, Release v1.20.0

LED blinking

As simple example, you can enter following program to blink LED1. Please enter key 4 times after the input of last
time.sleep(1).

import time
from machine import Pin
led1 = Pin('LED1')
print(led1)
while True:

led1.on()
time.sleep(1)
led1.off()
time.sleep(1)

You can see the LED1 blinking per 1 second.
If you want to stop the program, please enter CTRL-C.

Traceback (most recent call last):
File "<stdin>", line 5, in <module>

KeyboardInterrupt:

This message is displayed, and the program stops. The message means the program was interrupted at line 5 “while”
statement.
Using print(led1), you can confirm that LED1 is assigned to Pin.cpu.P106 on the board.:

Pin(Pin.cpu.P106, mode=Pin.OUT, pull=Pin.PULL_NONE, drive=Pin.LOW_POWER)

So you can get the same result if Pin(Pin.cpu.P106) is specified instead of Pin(‘LED1’).

import time
from machine import Pin
led1 = Pin(Pin.cpu.P106)
print(led1)
while True:

led1.on()
time.sleep(1)
led1.off()
time.sleep(1)

14.2.3 Write a program in internal file system

Internal file system

The FAT file system is created and initialized in the RA MCU’s internal flash when the MicroPython starts at the first
time on the board. The file system is mounted as “/flash”, so you can access this flash system and create a program file
into the /flash directory.
As the factory setting, following size is allocated for the file system:

492 Chapter 14. Quick reference for the Renesas RA

MicroPython Documentation, Release v1.20.0

Board File System Size
EK-RA4M1 36KB (36864B)
EK-RA4W1 64KB (65536B)
EK-RA6M1 64KB (65536B)
EK-RA6M2 128KB (131072B)
RA4M1 CLICKER 36KB (36864B)

As the factory setting, following 2 files are created in the file system:
• boot.py : executed first when the system starts
• main.py : executed after boot.py completes

Write a program in the internal file system

You can write a program in main.py which is executed automatically when the MicroPython starts. For example, you can
write LED blinking program like below:

import os
os.getcwd()
f = open('main.py', 'rw+')
print(f.read())
f.write('import time\n')
f.write('from machine import Pin\n')
f.write('led1 = Pin(Pin.cpu.P106)\n')
f.write('while True:\n')
f.write(' led1.on()\n')
f.write(' time.sleep(1)\n')
f.write(' led1.off()\n')
f.write(' time.sleep(1)\n')
f.close()
f = open('main.py', 'r')
print(f.read())
f.close()

Entering CTRL-D for software reset, the MicroPython reboots, displays following messages:

MPY: sync filesystems
MPY: soft reboot

and main.py is executed and LED1 blinks per 1 second. If you want to stop the program, please enter CTRL-C.

14.2.4 Reset and boot mode

Resetting the board

If something goes wrong, you can reset the board in two ways. The first is to press CTRL-D at the MicroPython prompt,
which performs a soft reset. You will see a message something like

MPY: sync filesystems
MPY: soft reboot
MicroPython v1.18-293-g339aa09b8-dirty on 2022-03-26; RA6M2_EK with RA6M2
Type "help()" for more information.
>>>

14.2. MicroPython tutorial for Renesas RA port 493

MicroPython Documentation, Release v1.20.0

If that isn’t working you can perform a hard reset (turn-it-off-and-on-again) by pressing the RESET button. This will end
your session, disconnecting whatever program (PuTTY, screen, etc) that you used to connect to the board.

boot mode

There are 3 boot modes:
• normal boot mode
• safe boot mode
• factory filesystem boot mode

boot.py and main.py are executed on “normal boot mode”.
boot.py and main.py are NOT executed on “safe boot mode”.
The file system of internal flash is initialized and all files are erased on “factory filesystem boot mode”.
For changing boot mode, please push the RESET button with pressing USER SW1 on the board:

• For normal boot mode, release the USER SW1 after LED1 flashes 4 times or more
• For safe boot mode, release the USER SW1 after LED1 flashes 2 times
• For factory file system boot mode, release the USER SW1 after LED1 flashes 3 times.

You have created the main.py which executes LED1 blinking in the previous part. If you change the boot mode to safe
boot mode, the MicroPython starts without the execution of main.py. Then you can remove the main.py by following
command or change the boot mode to factory file system boot mode.:

import os
os.remove('main.py')

or change the boot mode to factory file system boot mode.
You can confirm that the initialized file system that there are only boot.py and main.py files.:

import os
os.listdir()

14.2.5 Trouble Shooting

Flash file system

• MicroPython REPL prompt is not displayed.
– Re-program the MicroPython image file.
– Confirm serial port connection. The connection must be crossed that the board TXD pin is connected with
USB-serial conversion’s RXD signal pin.

– If the prompt is not displayed suddenly, try to do factory file system boot mode as the final method. Please
note that all files are removed forever.

494 Chapter 14. Quick reference for the Renesas RA

MicroPython Documentation, Release v1.20.0

14.3 Installing MicroPython

See the corresponding section of tutorial: Getting started with MicroPython on the Renesas RA. It also includes a trou-
bleshooting subsection.

14.4 General board control

The MicroPython REPL is accessed via the USB serial port. Tab-completion is useful to find out what methods an
object has. Paste mode (ctrl-E) is useful to paste a large slab of Python code into the REPL. Some of features are not
implemented for Renesas RA boards yet, please refer to the tutorial for more details.
The machine module:

import machine

machine.freq() # get the current frequency of the CPU

Following functions are supported:

machine.freq()
machine.reset()
machine.soft_reset()
machine.unique_id()

Following functions are not supported at the present:

machine.reset_cause()
machine.bootloader([value])
machine.disable_irq()
machine.enable_irq(state)
machine.freq([hz])
machine.idle()
machine.sleep()
machine.lightsleep()
machine.lightsleep([time_ms])
machine.deepsleep()
machine.deepsleep([time_ms])
machine.wake_reason()
machine.time_pulse_us(pin, pulse_level, timeout_us=1000000,/)
machine.bitstream(pin, encoding, timing, data, /)
machine.rng()

14.5 Delay and timing

Use the time module:

import time

time.sleep(1) # sleep for 1 second
time.sleep_ms(500) # sleep for 500 milliseconds
time.sleep_us(10) # sleep for 10 microseconds
start = time.ticks_ms() # get value of millisecond counter
delta = time.ticks_diff(time.ticks_ms(), start) # compute time difference

14.3. Installing MicroPython 495

MicroPython Documentation, Release v1.20.0

14.6 Timers

The RA MCU’s system timer peripheral provides a global microsecond timebase and generates interrupts for it. The
software timer is available currently and there are unlimited number of them (memory permitting). There is no need to
specify the timer id (id=-1 is supported at the moment) as it will default to this.
Use the machine.Timer class:

from machine import Timer

tim = Timer(-1)
tim.init(period=5000, mode=Timer.ONE_SHOT, callback=lambda t:print(1))
tim.init(period=2000, mode=Timer.PERIODIC, callback=lambda t: print(2))

Following functions are not supported at the present:: Timer(id) # hardware timer is not supported.

14.7 Pins and GPIO

Use the machine.Pin class:

from machine import Pin

p0 = Pin('P000', Pin.OUT) # create output pin on P000
p0.on() # set pin to "on" (high) level
p0.off() # set pin to "off" (low) level
p0.value(1) # set pin to on/high

p2 = Pin(Pin.cpu.P002, Pin.IN) # create input pin on P002
print(p2.value()) # get value, 0 or 1

p4 = Pin('P004', Pin.PULL_UP) # enable internal pull-up register
p5 = Pin('P005', Pin.OUT, value=1) # set pin high on creation

Pin id is available corresponding to the RAMCU’s pin name which are Pin.cpu.P106 and ‘P106’. The RAMCU has many
feature’s pins. However, there are some cases that pin feature is fixed or not connected by the board. Please confirm the
board manual for the pin mapping.
The following drive keyword argument are available if the port drive capability of the Pin is supported by the MCU:

Pin.DRIVE_0: Low drive
Pin.DRIVE_1: Middle drive
Pin.DRIVE_2: Middle drive for I2C Fast-mode
Pin.DRIVE_3: High drive

The alt keyword argument is not supported.
The following functions are not supported:

Pin.irq(priority=) # priority keyword argument is not supported
Pin.irq(wake=) # wake keyword argument is not supported
Pin.irq(hard=) # hard keyword argument is ignored because hardware interrupt is␣
↪→used
Pin.mode()
Pin.pull()
Pin.drive()

496 Chapter 14. Quick reference for the Renesas RA

MicroPython Documentation, Release v1.20.0

14.8 UART (serial bus)

The RA MCU has some hardware UARTs called SCI (Serial Communication Interface). UART id is available corre-
sponding to the RA MCU’s SCI number which are UART(0) as SCI0 and UART(1) as SCI1.
See machine.UART .

from machine import UART

uart1 = UART(1, 115200)
uart1.write('hello') # write 5 bytes
uart1.read(5) # read up to 5 bytes

Available UARTs and pins on the board are fixed and follows. One of these UARTs is used for REPL.

EK-RA4M1 UART0(REPL) UART1 UART2
tx P411 P401 P302
rx P410 P402 P301

EK-RA4W1 UART1 UART4(REPL) UART9
tx P213 P204 P109
rx P212 P206 P110

EK-RA6M1 UART0(REPL) UART2 UART8
tx P411 P302 P105
rx P410 P301 P104

EK-RA6M2 UART0(REPL) UART7 UART9
tx P411 P401 P602
rx P410 P402 P601

RA4M1-CLICKER UART0 UART1(REPL)
tx P411 P401
rx P410 P402

Following functions are not supported at the present:

UART.init(baudrate) # now only 115200 is confirmed
UART.init(cts, rts) # Pins are fixed.
UART.init(invert)
UART.init(tx,rx) # Pins are fixed.
UART.init(txbuf)
UART.init(flow)
UART.irq(handler)
UART.irq(trigger=RX_ANY)
UART.irq(priority)
UART.irq(wake=machine.IDLE)

14.8. UART (serial bus) 497

MicroPython Documentation, Release v1.20.0

14.9 Real time clock (RTC)

See machine.RTC

from machine import RTC

rtc = RTC()
rtc.datetime((2017, 8, 23, 1, 12, 48, 0, 0)) # set a specific date and time

time, eg 2017/8/23 1:12:48
rtc.datetime() # get date and time

Following functions are not supported at the present:

RTC.init(datetime)
RTC.now()
RTC.deinit()
RTC.alarm()
RTC.alarm_left()
RTC.cancel()
RTC.irq()

14.10 ADC (analog to digital conversion)

See machine.ADC

from machine import ADC

adc = ADC('P000') # create an ADC object acting on a pin
adc.read_u16() # read a raw analog value in the range 0-65535

Pin id is available corresponding to the RA MCU’s pin name which are ‘P000’ as AN000 (analog channel 000). The RA
MCU has many analog channels. However, there are some cases that pin feature is fixed or not available by the board.
Please confirm the MCU and board manual for the pin mapping.
Following functions are not supported at the present:

ADC.init()
ADC(sample_ns)
ADC(atten)
ADC.read_uv()
ADC.block()

14.11 SPI bus

The RA MCU has some hardware SPIs (Serial Peripheral Interface). SPI id is available corresponding to the RA MCU’s
SPI number which are SPI(0) as SPI0 and SPI(1) as SPI1. If with no additional parameters, machine.SoftSPI() is called.
See machine.SPI.

from machine import SPI, Pin

spi = SPI(0, baudrate=500000)

(continues on next page)

498 Chapter 14. Quick reference for the Renesas RA

MicroPython Documentation, Release v1.20.0

(continued from previous page)
cs = Pin.cpu.P103
cs(0)
spi.write(b"12345678")
cs(1)

Available SPIs and pins on the board are fixed and follows.

EK-RA4M1 SPI0
sck P102
mosi P101
miso P100
cs P206

EK-RA4W1 SPI0
sck P102
mosi P101
miso P100
cs P103

EK-RA6M1 SPI0
sck P102
mosi P101
miso P100
cs P103

EK-RA6M2 SPI0 SPI1
sck P102 P702
mosi P101 P701
miso P100 P700
cs P103 P703

RA4M1-CLICKER SPI0
sck P102
mosi P101
miso P100
cs P103

Following functions are not supported at the present:

SPI.init(firstbit) # now fixed with SPI.LSB
SPI.init(baudrate) # now confirmed only 500000

14.11. SPI bus 499

MicroPython Documentation, Release v1.20.0

14.12 I2C bus

The RAMCU has some hardware IIC (Inter-Integrated Circuit Bus). I2C id is available corresponding to the RAMCU’s
I2C number which are I2C(0) as IIC0 and I2C(1) as IIC1. If with no additional parameters, machine.SoftI2C() is called.
See machine.I2C

from machine import I2C

i2c = I2C(0)

i2c.scan() # returns list of slave addresses
i2c.readfrom_mem(0x50, 0x10, 2, addrsize=16) # read 2 bytes from slave 0x50, slave␣
↪→memory 0x10

Available I2Cs and pins on the board are fixed and follows.

EK-RA4M1 •

scl not supported
sda not supported

EK-RA4W1 I2C0
scl P204
sda P407

EK-RA6M1 I2C0
scl P400
sda P401

EK-RA6M2 I2C2
scl P512
sda P511

RA4M1-CLICKER I2C1
scl P205
sda P206

Following functions are not supported at the present:

I2C.init(freq) # now confirmed only 400000
I2C.deinit()
I2C.start()
I2C.stop()

500 Chapter 14. Quick reference for the Renesas RA

MicroPython Documentation, Release v1.20.0

14.13 PWM (pulse width modulation)

PWM is not supported.

14.14 WDT (Watchdog timer)

WDT is not supported.

14.15 SDCard

The frozen sdcard driver (drivers/sdcard/sdcard.py) is available by connecting microSD card device to hardware SPI0
pins.:

from machine import Pin, SPI
import os, sdcard

spi = SPI(0, baudrate=500000)
cs = Pin.cpu.P103
sd = sdcard.SDCard(spi, cs)
os.mount(sd, '/sd')
os.listdir('/')
os.chdir('/sd')
os.umount('/sd')

14.16 OneWire driver

The OneWire driver is implemented in software and works on all pins:

from machine import Pin
import onewire

ow = onewire.OneWire(Pin(P012)) # create a OneWire bus on P012
ow.scan() # return a list of devices on the bus
ow.reset() # reset the bus
ow.readbyte() # read a byte
ow.writebyte(0x12) # write a byte on the bus
ow.write('123') # write bytes on the bus
ow.select_rom(b'12345678') # select a specific device by its ROM code

There is a specific driver for DS18S20 and DS18B20 devices:

import time, ds18x20
ds = ds18x20.DS18X20(ow)
roms = ds.scan()
ds.convert_temp()
time.sleep_ms(750)
for rom in roms:

print(ds.read_temp(rom))

Be sure to put a 4.7k pull-up resistor on the data line. Note that the convert_temp() method must be called each
time you want to sample the temperature.

14.13. PWM (pulse width modulation) 501

MicroPython Documentation, Release v1.20.0

14.17 NeoPixel and APA106 driver

NeoPixel is not supported currently.

502 Chapter 14. Quick reference for the Renesas RA

CHAPTER

FIFTEEN

QUICK REFERENCE FOR THE SAMD21/SAMD51 FAMILY

The Adafruit ItsyBitsy M4 Express board.
Below is a quick reference for SAMD21/SAMD51-based boards. If it is your first time working with this board it may
be useful to get an overview of the microcontroller:

503

MicroPython Documentation, Release v1.20.0

15.1 General information about the SAMD port

The SAMD21/SAMD51 MCU family is a high performance family of devices made by MicroChip. The SAMD21
devices are based on an ARM M0+ core, the SAMD51 device on ARM Cortex M4 core. They provide many on-chip
I/O units for building small to medium sized devices.

15.1.1 Multitude of boards

There is a multitude of modules and boards from different sources which carry an SAMD21/SAMD51 chip. MicroPython
aims to provide a generic port which runs on as many boards/modules as possible, but there may be limitations. The
Adafruit ItsyBitsy M0 Express, Adafruit Feather M4 Express and the Adafruit ItsyBitsy M4 Express development boards
are taken as reference for the port (for example, testing is performed on them). For any board you are using please make
sure you have a data sheet, schematics and other reference materials so you can look up any board-specific functions.
The following boards are at the moment supported by the port:

• ADAFRUIT FEATHER M0 EXPRESS
• ADAFRUIT FEATHER M4 EXPRESS
• ADAFRUIT ITSYBITSY M0 EXPRESS
• ADAFRUIT ITSYBITSY M4 EXPRESS
• ADAFRUIT TRINKET M0
• MINISAM M4
• SAMD21 XPLAINED PRO
• SEEED WIO TERMINAL
• SEEED XIAO

To make a generic SAMD port and support as many boards as possible the following design and implementation decision
were made:

• GPIO pin numbering is based on the board numbering. Please have the manual/pin diagram of your board at hand
to find correspondence between your board pins and actual SAMD21/SAMD51 pins. For the boards listed above,
the relation between the board pin number and the GPIO number can be found at Pinout for the SAMD machine
modules.

• The pins that can be used by MicroPython are limited to those listed in the board definition files.

15.1.2 Technical specifications and SoC data sheets

The data sheets and other reference material for SAMD21/SAMD51 chip are available from the vendor site: https:
//www.microchip.com/en-us/products/microcontrollers-and-microprocessors/32-bit-mcus/sam-32-bit-mcus They are
the primary reference for the chip technical specifications, capabilities, operating modes, internal functioning, etc.
For your convenience, a few technical specifications are provided below:
SAMD21:

• Architecture: ARM Cortex M0+
• CPU frequency: up to 48MHz
• Total RAM available: up to 32 kB (see table)
• Internal FlashROM: up to 256 kB Some boards provide additional external SPI flash.

504 Chapter 15. Quick reference for the SAMD21/SAMD51 family

https://www.microchip.com/en-us/products/microcontrollers-and-microprocessors/32-bit-mcus/sam-32-bit-mcus
https://www.microchip.com/en-us/products/microcontrollers-and-microprocessors/32-bit-mcus/sam-32-bit-mcus

MicroPython Documentation, Release v1.20.0

• GPIO: up to 52 (GPIOs are multiplexed with other functions, including external FlashROM, UART, etc.)
• UART: up to 6 serial devices, which can used for UART, SPI or I2C.
• I2S: 1 I2S interfaces
• ADC: One 12-bit SAR ADC converter with 16 channels.
• Programming: using BootROM bootloader from USB.

SAMD51:
• Architecture: ARM Cortex M4
• CPU frequency: up to 120MHz
• Total RAM available: up to 256 kB
• Internal FlashROM: up to 1 MB Some boards provide additional external SPI flash.
• GPIO: up to 99 (GPIOs are multiplexed with other functions, including external FlashROM, UART, etc.)
• UART: up to 8 serial devices, which can used for UART, SPI or I2C.
• I2S: 1 I2S interfaces
• ADC: Dual 12-bit SAR ADC converter with 16 channels.
• Programming: using BootROM bootloader from USB.

For more information see the excellent SAMD21/SAMD51 data sheets or reference manuals.
At the moment, the SAM21 port of MicroPython requires 256kB flash, of which 64kB is used for a small file system.
The SAM51 port requires 512 kB of flash, of which all flash beyond 384kB is used for a file system. Some boards have
additional flash memory, which can be used as additional file space.

15.2 Getting started with MicroPython on the SAMD

Using MicroPython is a great way to get the most of your SAMD board. And vice versa, the SAMD chip is a great
platform for using MicroPython. This tutorial will guide you through setting up MicroPython, getting a prompt, using the
hardware peripherals, and controlling some external components.
Let’s get started!

15.2.1 Requirements

The first thing you need is a board with an SAMD chip. The MicroPython software supports the SAMD chip itself and
any board should work. The main characteristic of a board is how the GPIO pins are connected to the outside world, and
whether it includes a built-in USB-serial converter to make the UART available to your PC.
Names of pins will be given in this tutorial using the board names (“D0”) and it should be straightforward to find which
pin this corresponds to on your particular board.

15.2. Getting started with MicroPython on the SAMD 505

MicroPython Documentation, Release v1.20.0

15.2.2 Powering the board

If your board has a USB connector on it then most likely it is powered through this when connected to your PC. Otherwise
you will need to power it directly. Please refer to the documentation for your board for further details.

15.2.3 Getting the firmware

Firmware versions are provided at the MicroPython download page. You can download the most recent MicroPython
firmware .uf2 file to load onto your SAMD device. From that download page you have two main choices:

• stable firmware builds
• daily firmware builds

If you are just starting with MicroPython, the best bet is to go for the stable firmware builds. If you are an advanced,
experienced MicroPython SAMD user who would like to follow development closely and help with testing new features,
there are daily builds. They run through the same rigid internal test sequence as the stable builds, but the firmware features
may change.

15.2.4 Deploying the firmware

Once you have the MicroPython firmware you need to load it onto your SAMD device. Most of the boards support the
following easy procedure for firmware upload.

• Connect the board by an USB-A/USB-Micro cable to your PC.
• Push the reset button twice. Then, a drive should pop up at the PC’s file manager. Many boards have a on-board
RGB LED, which first lights up red, and then changes it’s colour to green. The timing of the double push is
sometimes tricky. So you may have to try to get the proper rhythm.

• Copy the .uf2 file to that newly opened drive. A LED on the board may flash a while. When the copy is finished,
the board drive will disappear and the RGB led will turn from green to the initial state.

15.2.5 Serial prompt

Once you have the firmware on the device you can access the REPL (Python prompt) over USB.
From there you can follow the SAMD tutorial.

15.2.6 Troubleshooting installation problems

If you experience problems during flashing or with running firmware immediately after it, here are some troubleshooting
recommendations:

• Be aware of and try to exclude hardware problems. There are two common problems: bad power source quality,
and worn-out/defective Flash ROM. Speaking of power source, not just raw amperage is important, but also low
ripple and noise/EMI in general. The most reliable and convenient power source is a USB port.

506 Chapter 15. Quick reference for the SAMD21/SAMD51 family

https://micropython.org/download/?port=samd

MicroPython Documentation, Release v1.20.0

15.3 Pinout for the SAMD machine modules

The assignment of device functions to pins is very flexible. The same function may be used at different pins. The
representation of the assignment choices are given by a table, which is a subset of the MCU’s Pin MUX table and is
specific to each board, as the available pin set varies. The structure of the table is the same for each board, but the set of
rows is different.

15.3. Pinout for the SAMD machine modules 507

MicroPython Documentation, Release v1.20.0

508 Chapter 15. Quick reference for the SAMD21/SAMD51 family

MicroPython Documentation, Release v1.20.0

15.3.1 Adafruit ItsyBitsy M0 Express pin assignment table

Pin GPIO Pin
name

IRQ ADC Serial Serial TCC/TC TCC/TC

0 PA11 D0 11 19 0/3 2/3 1/1 0/3
1 PA10 D1 10 18 0/2 2/2 1/0 0/2
2 PA14 D2 14 • 2/2 4/2 3/0 0/4

3 PA09 D3 9 17 0/1 2/1 0/1 1/3
4 PA08 D4 • 16 0/0 2/0 0/0 1/2

5 PA15 D5 15 • 2/3 4/3 3/1 0/5

7 PA21 D7 5 • 5/3 3/3 7/1 0/7

9 PA07 D9 7 7 • 0/3 1/1 •

10 PA18 D10 2 • 1/2 3/2 3/0 0/2

11 PA16 D11 0 • 1/0 3/0 2/0 0/6

12 PA19 D12 3 • 1/3 3/3 3/1 0/3

13 PA17 D13 1 • 1/1 3/1 2/1 0/7

14 PA02 A0 2 0 • • • •

15 PB08 A1 8 2 • 4/0 4/0 •

16 PB09 A2 9 3 • 4/1 4/1 •

17 PA04 A3 4 4 • 0/0 0/0 •

18 PA05 A4 5 5 • 0/1 0/1 •

19 PB02 A5 2 • • 5/0 6/0 •

20 PA22 SDA 6 • 3/0 5/0 4/0 0/4

21 PA23 SCL 7 • 3/1 5/1 4/1 0/5

22 PB10 MOSI 10 • • 4/2 5/0 0/4

23 PA12 MISO 12 • 2/0 4/0 2/0 0/6

24 PB11 SCK 11 • • 4/3 5/1 0/5

25 PA00 DOT-
STAR_CLK

0 • • 1/0 2/0 •

26 PA01 DOT-
STAR_DATA

1 • • 1/1 2/1 •

27 PB22 FLASH_MOSI6 • • 5/2 7/0 •

28 PB03 FLASH_MISO3 • • 5/1 6/1 •

29 PB23 FLASH_SCK7 • • 5/3 7/1 •

15.3. Pinout for the SAMD machine modules 509

MicroPython Documentation, Release v1.20.0

Description of the columns:
• Pin - The number that is expected at machine.Pin(n), if the pin is given as a number. This is NOT the GPIO
number, but the board pin number, as given in the board specific definition file.

• GPIO - The GPIO number.
• Pin Name - The name of a Pin which is expected argument to machine.Pin("name").
• IRQ - The IRQ number assigned to that GPIO, used internally by Pin.irq(). When using Pin.irq(), dif-
ferent pins must use different IRQs

• ADC - The ADC channel assigned to the pin. When using ADC, different pins must not use the same ADC channel.
• Serial - Two columns with optional Serial signal assignments. Both may be used. The cell content is device #/pad
#. The pad # is the respective internal signal of that serial device. Details below.

• TCC/TC - Two columns with assignments of the TCC modules for PWM. The cell content is device #/output #.
For PWM, devices 0, 1, and 2 are used. The TC device pair 3/4 is used for ticks_us().

SAMD21 UART assignments

The UART devices and signals must be chosen according to the following rules:
• The TX signal must be at a Pin with pad numbers 2 or 0, like Pin D1 with serial device 0 or 2.
• The RX pin may be assigned to one of the other pads.

Examples for Adafruit ItsyBitsy M0 Express:
• uart 0 at pins D0/D1 This is the default UART at the RX/TX labelled pins
• uart 1 at pins D12/D10
• uart 2 at pins D0/D1
• uart 3 at pins D11/D13
• uart 4 at pins D2/D5
• uart 5 at pins SCL/SDA

or other combinations.

SAMD21 I2C assignments

The I2C devices and signals must be chosen according to the following rules:
• The SDA signal must be at a Pin with pad numbers 0.
• The SCL signal must be at a Pin with pad numbers 1.

Examples for Adafruit ItsyBitsy M0 Express:
• I2C 0 at Pin A3/A4
• I2C 1 at pins D11/D13
• I2C 2 at the pins D4/D3
• I2C 3 at the pins SDA/SCL This is the default I2C device at the SDA/SCl labelled pin
• I2C 4 at the pins A1/A2
• I2C 5 at the pins SDA/SCL,

510 Chapter 15. Quick reference for the SAMD21/SAMD51 family

MicroPython Documentation, Release v1.20.0

or other combinations.

SAMD21 SPI assignments

The I2C devices and signals must be chosen according to the following rules:
• The following pad number pairs are suitable for MOSI/SCK: 0/1, 2/3, 3/1, and 0/3.
• The MISO signal must be at a Pin with a different pad number than MOSI or SCK.

Examples for Adafruit ItsyBitsy M0 Express:
• SPI 0 at pins D0/D4/D1
• SPI 1 at pins D11/D12/D13
• SPI 2 at pins D0/D4/D1
• SPI 3 at pins D11/D12/D13
• SPI 4 at Pin MOSI/MISO/SCK This is the default SPI device at the MOSI/MISO/SCK labelled pins.

or other combinations.

SAMD21 PWM assignments

The TCC/TC device numbers 0, 1 and 2 can be used for PWM. Device 0 has four channels, device 1 and 2 have two
channels. So in total 3 different PWM frequencies can be used, and 8 different duty cycle values.
The DAC output for the Adafruit ItsyBitsy M0 Express board is available at the pin A0.

15.3.2 Adafruit ItsyBitsy M4 Express pin assignment table

Pin GPIO Pin
name

IRQ ADC ADC Serial Serial TC PWM PWM

2 PA02 A0 2 0
• • • • • •

5 PA05 A1 5 5
• •

0/1 0/1
• •

40 PB08 A2 8 2 0
•

4/0 4/0
• •

41 PB09 A3 9 3 1
•

4/1 4/1
• •

4 PA04 A4 4 4
• •

0/0 0/0
• •

6 PA06 A5 6 6
• •

0/2 1/0
• •

continues on next page

15.3. Pinout for the SAMD machine modules 511

MicroPython Documentation, Release v1.20.0

Table 1 – continued from previous page
Pin GPIO Pin

name
IRQ ADC ADC Serial Serial TC PWM PWM

16 PA16 D0 0
• •

1/0 3/1 2/0 1/0 0/4

17 PA17 D1 1
• •

1/1 3/0 2/1 1/1 0/5

7 PA07 D2 7 7
• •

0/3 1/1
• •

54 PB22 D3 22
• •

1/2 5/2 7/0
• •

14 PA14 D4 14
• •

2/2 4/2 3/0 2/0 1/2

15 PA15 D5 15
• •

2/3 4/3 3/1 2/1 1/3

18 PA18 D7 2
• •

1/2 3/2 3/0 1/2 0/6

19 PA19 D9 3
• •

1/3 3/3 3/1 1/3 0/7

20 PA20 D10 4
• •

5/2 3/2 7/0 1/4 0/0

21 PA21 D11 5
• •

5/3 3/3 7/1 1/5 0/1

23 PA23 D12 7
• •

3/1 5/0 4/1 1/7 0/3

22 PA22 D13 6
• •

3/0 5/1 4/0 1/6 0/2

34 PB02 DOT-
STAR_CLK

2 14
• •

5/0 6/0 2/2
•

35 PB03 DOT-
STAR_DATA

9 15
• •

5/1 6/1
• •

43 PB11 FLASH_CS12
• • •

4/3 5/1 0/5 1/1

11 PA11 FLASH_HOLD11 11
•

0/3 2/3 1/1 0/3 1/7

9 PA09 FLASH_MISO9 9 3 0/1 2/0 0/1 0/1 1/5
continues on next page

512 Chapter 15. Quick reference for the SAMD21/SAMD51 family

MicroPython Documentation, Release v1.20.0

Table 1 – continued from previous page
Pin GPIO Pin

name
IRQ ADC ADC Serial Serial TC PWM PWM

8 PA08 FLASH_MOSI
•

8 2 0/0 2/1 0/0 0/0 1/4

42 PB10 FLASH_SCK10
• • •

4/2 5/0 0/4 1/0

10 PA10 FLASH_WP10 10
•

0/2 2/2 1/0 0/2 1/6

55 PB23 MISO 7
• •

1/3 5/3 7/1
• •

0 PA00 MOSI 0
• • •

1/0 2/0
• •

1 PA01 SCK 1
• • •

1/1 2/1
• •

13 PA13 SCL 13
• •

2/1 4/0 2/1 0/7 1/3

12 PA12 SDA 12
• •

2/0 4/1 2/0 0/6 1/2

30 PA30 SWCLK 14
• •

7/2 1/2 6/0 2/0
•

31 PA31 SWDIO 15
• •

7/3 1/3 6/1 2/1
•

24 PA24 USB_DM 8
• •

3/2 5/2 5/0 2/2
•

25 PA25 USB_DP 9
• •

3/3 5/3 5/1
• •

3 PA03
•

3 10
• • • • • •

27 PA27
•

11
• • • • • • •

Description of the columns:
• Pin - The number that is expected at machine.Pin(n), if the pin is given as a number. This is NOT the GPIO
number, but the board pin number, as given in the board specific definition file.

• GPIO - The GPIO number.
• Pin Name The name of a Pin which is expected argument to machine.Pin("name").

15.3. Pinout for the SAMD machine modules 513

MicroPython Documentation, Release v1.20.0

• IRQ - The IRQ number assigned to that GPIO, used internally by Pin.irq(). When using Pin.irq(), dif-
ferent pins must use different IRQs

• ADC - The ADC0/1 channel assigned to the pin. When using ADC, different pins must not use the same ADC
device and channel.

• Serial - Two columns with optional Serial signal assignments. Both may be used. The cell content is device #/pad
#. The pad # is the respective internal signal of that serial device. Details below.

• TC - These device are currently not assigned to Pin. the TC device pair 0/1 is used for ticks_us().
• PWM - Two columns with assignments of the TCCmodules for PWMThe cell content is device #/output #. Details
below.

SAMD51 UART assignments

The UART devices and signals must be chosen according to the following rules:
• The TX signal must be at a Pin with pad numbers 0, like Pin D1 with serial device 3.
• The RX pin may be assigned to one of the other pads.

Examples for Adafruit ItsyBitsy 4 Express:
• uart 0 at pins A4/A1
• uart 1 at pins D1/D0 This is the default UART at the RX/TX labelled pins
• uart 2 at pins SCL/SDA This is the default I2C device at the SDA/SCl labelled pin
• uart 3 at pins D0/D1
• uart 4 at pins SDA/SCL
• uart 5 at pins D12/D13

or other combinations.

SAMD51 I2C assignments

The I2C devices and signals must be chosen according to the following rules:
• The SDA signal must be at a Pin with pad numbers 0.
• The SCL signal must be at a Pin with pad numbers 1.

Examples for Adafruit ItsyBitsy M0 Express:
• I2C 0 at pins A3/A4
• I2C 1 at pins D0/D1
• I2C 2 at the pins SDA/SCL
• I2C 3 at the pins D1/D0
• I2C 4 at the pins A2/A3
• I2C 5 at the pins D12/D13

or other combinations.

514 Chapter 15. Quick reference for the SAMD21/SAMD51 family

MicroPython Documentation, Release v1.20.0

SAMD51 SPI assignments

The SPI devices and signals must be chosen according to the following rules:
• The following pad number pairs are suitable for MOSI/SCK: 0/1 and 3/1.
• The MISO signal must be at a Pin with a different pad number than MOSI or SCK.

Examples for Adafruit ItsyBitsy M0 Express:
• SPI 1 at Pin MOSI/MISO/SCK This is the default SPI device at the MOSI/MISO/SCK labelled pins.
• SPI 3 at pins D13/D11/D12
• SPI 5 at pins D12/D3/D13

or other combinations.

SAMD51 PWM assignments

The TCC/PWM device numbers 0 through 4 can be used for PWM. Device 0 has six channels, device 1 has four channels,
device 2 has three channels and devices 3 and 4 have two channels. So in total up to 5 different PWM frequencies can be
used, and up to 17 different duty cycle values. Note that these numbers do not apply to every board.
The DAC outputs for the Adafruit ItsyBitsy M4 Express board are available at the pins A0 and A1.

15.3.3 Adafruit Feather M4 Express pin assignment table

Pin GPIO Pin
name

IRQ ADC ADC Serial Serial TC PWM PWM

2 PA02 A0 2 0
• • • • • •

5 PA05 A1 5 5
• •

0/1 0/1
• •

40 PB08 A2 8 2 0
•

4/0 4/0
• •

41 PB09 A3 9 3 1
•

4/1 4/1
• •

4 PA04 A4 4 4
• •

0/0 0/0
• •

38 PB06 A5 6
•

8
• • • • •

49 PB17 D0 1
• •

5/1
•

6/1 3/1 0/5

48 PB16 D1 0
• •

5/0
•

6/0 3/0 0/4

continues on next page

15.3. Pinout for the SAMD machine modules 515

MicroPython Documentation, Release v1.20.0

Table 2 – continued from previous page
Pin GPIO Pin

name
IRQ ADC ADC Serial Serial TC PWM PWM

14 PA14 D4 14
• •

2/2 4/2 3/0 2/0 1/2

16 PA16 D5 0
• •

1/0 3/1 2/0 1/0 0/4

18 PA18 D6 2
• •

1/2 3/2 3/0 1/2 0/6

19 PA19 D9 3
• •

1/3 3/3 3/1 1/3 0/7

3 PA03 AREF 3 10
• • • • • •

20 PA20 D10 4
• •

5/2 3/2 7/0 1/4 0/0

21 PA21 D11 5
• •

5/3 3/3 7/1 1/5 0/1

22 PA22 D12 6
• •

3/0 5/1 4/0 1/6 0/2

23 PA23 D13 7
• •

3/1 5/0 4/1 1/7 0/3

43 PB11 FLASH_CS12
• • •

4/3 5/1 0/5 1/1

11 PA11 FLASH_HOLD11 11
•

0/3 2/3 1/1 0/3 1/7

9 PA09 FLASH_MISO9 9 3 0/1 2/0 0/1 0/1 1/5
8 PA08 FLASH_MOSI

•
8 2 0/0 2/1 0/0 0/0 1/4

42 PB10 FLASH_SCK10
• • •

4/2 5/0 0/4 1/0

10 PA10 FLASH_WP10 10
•

0/2 2/2 1/0 0/2 1/6

54 PB22 MISO 22
• •

1/2 5/2 7/0
• •

55 PB23 MOSI 7
• •

1/3 5/3 7/1
• •

continues on next page

516 Chapter 15. Quick reference for the SAMD21/SAMD51 family

MicroPython Documentation, Release v1.20.0

Table 2 – continued from previous page
Pin GPIO Pin

name
IRQ ADC ADC Serial Serial TC PWM PWM

35 PB03 NEOPIXEL9 15
• •

5/1 6/1
• •

17 PA17 SCK 1
• •

1/1 3/0 2/1 1/1 0/5

13 PA13 SCL 13
• •

2/1 4/0 2/1 0/7 1/3

12 PA12 SDA 12
• •

2/0 4/1 2/0 0/6 1/2

30 PA30 SWCLK 14
• •

7/2 1/2 6/0 2/0
•

31 PA31 SWDIO 15
• •

7/3 1/3 6/1 2/1
•

24 PA24 USB_DM 8
• •

3/2 5/2 5/0 2/2
•

25 PA25 USB_DP 9
• •

3/3 5/3 5/1
• •

33 PB01 VDIV 1 13
• •

5/3 7/1
• •

0 PA00
•

0
• • •

1/0 2/0
• •

1 PA01
•

1
• • •

1/1 2/1
• •

6 PA06
•

6 6
• •

0/2 1/0
• •

7 PA07
•

7 7
• •

0/3 1/1
• •

15 PA15
•

15
• •

2/3 4/3 3/1 2/1 1/3

27 PA27
•

11
• • • • • • •

32 PB00
•

9 12
• •

5/2 7/0
• •

continues on next page

15.3. Pinout for the SAMD machine modules 517

MicroPython Documentation, Release v1.20.0

Table 2 – continued from previous page
Pin GPIO Pin

name
IRQ ADC ADC Serial Serial TC PWM PWM

34 PB02
•

2 14
• •

5/0 6/0 2/2
•

36 PB04
•

4
•

6
• • • • •

37 PB05
•

5
•

7
• • • • •

39 PB07
•

7
•

9
• • • • •

44 PB12
•

12
• •

4/0
•

4/0 3/0 0/0

45 PB13
•

13
• •

4/1
•

4/1 3/1 0/1

46 PB14
•

14
• •

4/2
•

5/0 4/0 0/2

47 PB15
•

15
• •

4/3
•

5/1 4/1 0/3

62 PB30
•

14
• •

7/0 5/1 0/0 4/0 0/6

63 PB31
•

15
• •

7/1 5/0 0/1 4/1 0/7

For the definition of the table columns see the explanation at the table for Adafruit ItsyBitsy M4 Express Adafruit ItsyBitsy
M4 Express pin assignment table.
The default devices at the board are:

• UART 5 at pins D0/D1, labelled RX/TX
• I2C 2 at pins PA12/PA13, labelled SDA/SCL
• SPI 1 at pins PA23/PA22/PA17, labelled MOSI, MISO and SCK
• DAC output on pins PA02 and PA05, labelled A0 and A1

518 Chapter 15. Quick reference for the SAMD21/SAMD51 family

MicroPython Documentation, Release v1.20.0

15.3.4 SEEED XIAO pin assignment table

Pin GPIO Pin
name

IRQ ADC Serial Serial TCC/TC TCC/TC

2 PA02 A0_D0 2 0
• • • •

4 PA04 A1_D1 4 4
•

0/0 0/0
•

10 PA10 A2_D2 10 18 0/2 2/2 1/0 0/2
11 PA11 A3_D3 11 19 0/3 2/3 1/1 0/3
8 PA08 A4_D4

•
16 0/0 2/0 0/0 1/2

9 PA09 A5_D5 9 17 0/1 2/1 0/1 1/3
40 PB08 A6_D6 8 2

•
4/0 4/0

•

41 PB09 A7_D7 9 3
•

4/1 4/1
•

7 PA07 A8_D8 7 7
•

0/3 1/1
•

5 PA05 A9_D9 5 5
•

0/1 0/1
•

6 PA06 A10_D10 6 6
•

0/2 1/0
•

18 PA18 RX_LED 2
•

1/2 3/2 3/0 0/2

30 PA30 SWCLK 10
• •

1/2 1/0
•

31 PA31 SWDIO 11
• •

1/3 1/1
•

19 PA19 TX_LED 3
•

1/3 3/3 3/1 0/3

24 PA24 USB_DM 12
•

3/2 5/2 5/0 1/2

25 PA25 USB_DP 13
•

3/3 5/3 5/1 1/3

continues on next page

15.3. Pinout for the SAMD machine modules 519

MicroPython Documentation, Release v1.20.0

Table 3 – continued from previous page
Pin GPIO Pin

name
IRQ ADC Serial Serial TCC/TC TCC/TC

17 PA17 USER_LED 1
•

1/1 3/1 2/1 0/7

0 PA00
•

0
• •

1/0 2/0
•

1 PA01
•

1
• •

1/1 2/1
•

3 PA03
•

3 1
• • • •

12 PA12
•

12
•

2/0 4/0 2/0 0/6

13 PA13
•

13
•

2/1 4/1 2/0 0/7

14 PA14
•

14
•

2/2 4/2 3/0 0/4

15 PA15
•

15
•

2/3 4/3 3/1 0/5

16 PA16
•

0
•

1/0 3/0 2/0 0/6

20 PA20
•

4
•

5/2 3/2 7/0 0/4

21 PA21
•

5
•

5/3 3/3 7/1 0/7

22 PA22
•

6
•

3/0 5/0 4/0 0/4

23 PA23
•

7
•

3/1 5/1 4/1 0/5

27 PA27
•

15
• • • • •

28 PA28
•

8
• • • • •

34 PB02
•

2 10
•

5/0 6/0
•

continues on next page

520 Chapter 15. Quick reference for the SAMD21/SAMD51 family

MicroPython Documentation, Release v1.20.0

Table 3 – continued from previous page
Pin GPIO Pin

name
IRQ ADC Serial Serial TCC/TC TCC/TC

35 PB03
•

3 11
•

5/1 6/1
•

42 PB10
•

10
• •

4/2 5/0 0/4

43 PB11
•

11
• •

4/3 5/1 0/5

54 PB22
•

6
• •

5/2 7/0
•

55 PB23
•

7
• •

5/3 7/1
•

For the definition of the table columns see the explanation at the table for Adafruit ItsyBitsy M0 Express Adafruit ItsyBitsy
M0 Express pin assignment table.
The default devices at the board are:

• UART 4 at pins PB08/PB09, labelled A6_D6/A7_D7
• I2C 2 at pins PA08/PA09, labelled A4_D4/A5_D5
• SPI 0 at pins PA06/PA05/PA07, labelled A10_D10, A9_D9 and A8_D8
• DAC output on pin PA02, labelled A0_D0

15.3.5 Adafruit Feather M0 Express pin assignment table

Pin GPIO Pin
name

IRQ ADC Serial Serial TCC/TC TCC/TC

2 PA02 A0 2 0
• • • •

40 PB08 A1 8 2
•

4/0 4/0
•

41 PB09 A2 9 3
•

4/1 4/1
•

4 PA04 A3 4 4
•

0/0 0/0
•

5 PA05 A4 5 5
•

0/1 0/1
•

continues on next page

15.3. Pinout for the SAMD machine modules 521

MicroPython Documentation, Release v1.20.0

Table 4 – continued from previous page
Pin GPIO Pin

name
IRQ ADC Serial Serial TCC/TC TCC/TC

34 PB02 A5 2 10
•

5/0 6/0
•

11 PA11 D0 11 19 0/3 2/3 1/1 0/3
10 PA10 D1 10 18 0/2 2/2 1/0 0/2
14 PA14 D2 14

•
2/2 4/2 3/0 0/4

9 PA09 D3 9 17 0/1 2/1 0/1 1/3
8 PA08 D4

•
16 0/0 2/0 0/0 1/2

15 PA15 D5 15
•

2/3 4/3 3/1 0/5

20 PA20 D6 4
•

5/2 3/2 7/0 0/4

21 PA21 D7 5
•

5/3 3/3 7/1 0/7

7 PA07 D9 7 7
•

0/3 1/1
•

55 PB23 RX 7
• •

5/3 7/1
•

54 PB22 TX 6
• •

5/2 7/0
•

18 PA18 D10 2
•

1/2 3/2 3/0 0/2

16 PA16 D11 0
•

1/0 3/0 2/0 0/6

19 PA19 D12 3
•

1/3 3/3 3/1 0/3

17 PA17 D13 1
•

1/1 3/1 2/1 0/7

13 PA13 FLASH_CS 13
•

2/1 4/1 2/0 0/7

35 PB03 LED_RX 3 11
•

5/1 6/1
•

continues on next page

522 Chapter 15. Quick reference for the SAMD21/SAMD51 family

MicroPython Documentation, Release v1.20.0

Table 4 – continued from previous page
Pin GPIO Pin

name
IRQ ADC Serial Serial TCC/TC TCC/TC

27 PA27 LED_TX 15
• • • • •

12 PA12 MISO 12
•

2/0 4/0 2/0 0/6

42 PB10 MOSI 10
• •

4/2 5/0 0/4

6 PA06 NEOPIXEL 6 6
•

0/2 1/0
•

43 PB11 SCK 11
• •

4/3 5/1 0/5

23 PA23 SCL 7
•

3/1 5/1 4/1 0/5

22 PA22 SDA 6
•

3/0 5/0 4/0 0/4

30 PA30 SWCLK 10
• •

1/2 1/0
•

31 PA31 SWDIO 11
• •

1/3 1/1
•

24 PA24 USB_DM 12
•

3/2 5/2 5/0 1/2

25 PA25 USB_DP 13
•

3/3 5/3 5/1 1/3

0 PA00
•

0
• •

1/0 2/0
•

1 PA01
•

1
• •

1/1 2/1
•

3 PA03
•

3 1
• • • •

28 PA28
•

8
• • • • •

For the definition of the table columns see the explanation at the table for Adafruit ItsyBitsy M0 Express Adafruit ItsyBitsy
M0 Express pin assignment table.
The default devices at the board are:

15.3. Pinout for the SAMD machine modules 523

MicroPython Documentation, Release v1.20.0

• UART 5 at pins PB23/PB22, labelled RX/TX
• I2C 3 at pins PA22/PA23, labelled SDA/SCL
• SPI 4 at pins PA10/PA12/PA11, labelled MOSI, MISO and SCK
• DAC output on pin PA02, labelled A0

524 Chapter 15. Quick reference for the SAMD21/SAMD51 family

MicroPython Documentation, Release v1.20.0

15.3. Pinout for the SAMD machine modules 525

MicroPython Documentation, Release v1.20.0

15.3.6 Adafruit Trinket M0 pin assignment table

Pin GPIO Pin
name

IRQ ADC Serial Serial TCC/TC TCC/TC

8 PA08 D0 • 16 0/0 2/0 0/0 1/2

2 PA02 D1 2 0 • • • •

9 PA09 D2 9 17 0/1 2/1 0/1 1/3
7 PA07 D3 7 7 • 0/3 1/1 •

6 PA06 D4 6 6 • 0/2 1/0 •

1 PA01 DOT-
STAR_CLK

1 • • 1/1 2/1 •

0 PA00 DOT-
STAR_DATA

0 • • 1/0 2/0 •

10 PA10 LED 10 18 0/2 2/2 1/0 0/2
30 PA30 SWCLK 10 • • 1/2 1/0 •

31 PA31 SWDIO 11 • • 1/3 1/1 •

24 PA24 USB_DM 12 • 3/2 5/2 5/0 1/2

25 PA25 USB_DP 13 • 3/3 5/3 5/1 1/3

3 PA03 • 3 1 • • • •

4 PA04 • 4 4 • 0/0 0/0 •

5 PA05 • 5 5 • 0/1 0/1 •

11 PA11 • 11 19 0/3 2/3 1/1 0/3

14 PA14 • 14 • 2/2 4/2 3/0 0/4

15 PA15 • 15 • 2/3 4/3 3/1 0/5

16 PA16 • 0 • 1/0 3/0 2/0 0/6

17 PA17 • 1 • 1/1 3/1 2/1 0/7

18 PA18 • 2 • 1/2 3/2 3/0 0/2

19 PA19 • 3 • 1/3 3/3 3/1 0/3

22 PA22 • 6 • 3/0 5/0 4/0 0/4

23 PA23 • 7 • 3/1 5/1 4/1 0/5

27 PA27 • 15 • • • • •

28 PA28 • 8 • • • • •

526 Chapter 15. Quick reference for the SAMD21/SAMD51 family

MicroPython Documentation, Release v1.20.0

For the definition of the table columns see the explanation at the table for Adafruit ItsyBitsy M0 Express Adafruit ItsyBitsy
M0 Express pin assignment table.
The default devices at the board are:

• UART 0 at pins PA07/PA06, labelled D3/D4
• I2C 2 at pins PA08/PA09, labelled D0/D2
• SPI 0 at pins PA06/PA09/PA08, labelled D4, D2 and D0
• DAC output on pin PA02, labelled D1

15.3.7 SAMD21 Xplained PRO pin assignment table

Pin GPIO Pin
name

IRQ ADC Serial Serial TCC/TC TCC/TC

32 PB00 EXT1_PIN3 0 8
•

5/2 7/0
•

33 PB01 EXT1_PIN4 1 9
•

5/3 7/1
•

38 PB06 EXT1_PIN5 6 14
• • • •

39 PB07 EXT1_PIN6 7 15
• • • •

34 PB02 EXT1_PIN7 2 10
•

5/0 6/0
•

35 PB03 EXT1_PIN8 3 11
•

5/1 6/1
•

36 PB04 EXT1_PIN9 4 12
• • • •

37 PB05 EXT1_PIN105 13
• • • •

8 PA08 EXT1_PIN11
•

16 0/0 2/0 0/0 1/2

9 PA09 EXT1_PIN129 17 0/1 2/1 0/1 1/3
41 PB09 EXT1_PIN139 3

•
4/1 4/1

•

40 PB08 EXT1_PIN148 2
•

4/0 4/0
•

continues on next page

15.3. Pinout for the SAMD machine modules 527

MicroPython Documentation, Release v1.20.0

Table 5 – continued from previous page
Pin GPIO Pin

name
IRQ ADC Serial Serial TCC/TC TCC/TC

5 PA05 EXT1_PIN155 5
•

0/1 0/1
•

6 PA06 EXT1_PIN166 6
•

0/2 1/0
•

4 PA04 EXT1_PIN174 4
•

0/0 0/0
•

7 PA07 EXT1_PIN187 7
•

0/3 1/1
•

10 PA10 EXT2_PIN3 10 18 0/2 2/2 1/0 0/2
11 PA11 EXT2_PIN4 11 19 0/3 2/3 1/1 0/3
20 PA20 EXT2_PIN5 4

•
5/2 3/2 7/0 0/4

21 PA21 EXT2_PIN6 5
•

5/3 3/3 7/1 0/7

44 PB12 EXT2_PIN7 12
•

4/0
•

4/0 0/6

45 PB13 EXT2_PIN8 13
•

4/1
•

4/1 0/7

46 PB14 EXT2_PIN9 14
•

4/2
•

5/0
•

47 PB15 EXT2_PIN1015
•

4/3
•

5/1
•

43 PB11 EXT2_PIN1311
• •

4/3 5/1 0/5

42 PB10 EXT2_PIN1410
• •

4/2 5/0 0/4

17 PA17 EXT2_PIN151
•

1/1 3/1 2/1 0/7

18 PA18 EXT2_PIN162
•

1/2 3/2 3/0 0/2

16 PA16 EXT2_PIN170
•

1/0 3/0 2/0 0/6

continues on next page

528 Chapter 15. Quick reference for the SAMD21/SAMD51 family

MicroPython Documentation, Release v1.20.0

Table 5 – continued from previous page
Pin GPIO Pin

name
IRQ ADC Serial Serial TCC/TC TCC/TC

19 PA19 EXT2_PIN183
•

1/3 3/3 3/1 0/3

2 PA02 EXT3_PIN3 2 0
• • • •

3 PA03 EXT3_PIN4 3 1
• • • •

15 PA15 EXT3_PIN6 15
•

2/3 4/3 3/1 0/5

12 PA12 EXT3_PIN7 12
•

2/0 4/0 2/0 0/6

13 PA13 EXT3_PIN8 13
•

2/1 4/1 2/0 0/7

28 PA28 EXT3_PIN9 8
• • • • •

27 PA27 EXT3_PIN1015
• • • • •

49 PB17 EXT3_PIN151
•

5/1
•

6/1 0/5

54 PB22 EXT3_PIN166
• •

5/2 7/0
•

48 PB16 EXT3_PIN179
•

5/0
•

6/0 0/4

55 PB23 EXT3_PIN187
• •

5/3 7/1
•

62 PB30 LED 14
• •

5/0 0/0 1/2

30 PA30 SWCLK 10
• •

1/2 1/0
•

31 PA31 SWDIO 11
• •

1/3 1/1
•

24 PA24 USB_DM 12
•

3/2 5/2 5/0 1/2

continues on next page

15.3. Pinout for the SAMD machine modules 529

MicroPython Documentation, Release v1.20.0

Table 5 – continued from previous page
Pin GPIO Pin

name
IRQ ADC Serial Serial TCC/TC TCC/TC

25 PA25 USB_DP 13
•

3/3 5/3 5/1 1/3

0 PA00
•

0
• •

1/0 2/0
•

1 PA01
•

1
• •

1/1 2/1
•

14 PA14
•

14
•

2/2 4/2 3/0 0/4

22 PA22
•

6
•

3/0 5/0 4/0 0/4

23 PA23
•

7
•

3/1 5/1 4/1 0/5

63 PB31
•

15
• •

5/1 0/1 1/3

For the definition of the table columns see the explanation at the table for Adafruit ItsyBitsy M0 Express Adafruit ItsyBitsy
M0 Express pin assignment table.
There are no pins labelled for default devices on this board. DAC output is on pin PA02, labelled EXT3_PIN3

15.3.8 Minisam M4 pin assignment table

Pin GPIO Pin
name

IRQ ADC ADC Serial Serial TC PWM PWM

16 PA16 D0 0
• •

1/0 3/1 2/0 1/0 0/4

17 PA17 D1 1
• •

1/1 3/0 2/1 1/1 0/5

19 PA19 D3 3
• •

1/3 3/3 3/1 1/3 0/7

20 PA20 D4 4
• •

5/2 3/2 7/0 1/4 0/0

21 PA21 D5 5
• •

5/3 3/3 7/1 1/5 0/1

continues on next page

530 Chapter 15. Quick reference for the SAMD21/SAMD51 family

MicroPython Documentation, Release v1.20.0

Table 6 – continued from previous page
Pin GPIO Pin

name
IRQ ADC ADC Serial Serial TC PWM PWM

2 PA02 A0_D9 2 0
• • • • • •

40 PB08 A1_D10 8 2 0
•

4/0 4/0
• •

41 PB09 A2_D11 9 3 1
•

4/1 4/1
• •

4 PA04 A3_D12 4 4
• •

0/0 0/0
• •

5 PA05 A4_D13 5 5
• •

0/1 0/1
• •

6 PA06 A5 6 6
• •

0/2 1/0
• •

7 PA07 A6_D2 7 7
• •

0/3 1/1
• •

3 PA03 AREF 3 10
• • • • • •

0 PA00 BUT-
TON

0
• • •

1/0 2/0
• •

34 PB02 DOT-
STAR_CLK

2 14
• •

5/0 6/0 2/2
•

35 PB03 DOT-
STAR_DATA

9 15
• •

5/1 6/1
• •

15 PA15 LED 15
• •

2/3 4/3 3/1 2/1 1/3

55 PB23 MISO 7
• •

1/3 5/3 7/1
• •

54 PB22 MOSI 22
• •

1/2 5/2 7/0
• •

1 PA01 SCK 1
• • •

1/1 2/1
• •

13 PA13 SCL 13
• •

2/1 4/0 2/1 0/7 1/3

continues on next page

15.3. Pinout for the SAMD machine modules 531

MicroPython Documentation, Release v1.20.0

Table 6 – continued from previous page
Pin GPIO Pin

name
IRQ ADC ADC Serial Serial TC PWM PWM

12 PA12 SDA 12
• •

2/0 4/1 2/0 0/6 1/2

30 PA30 SWCLK 14
• •

7/2 1/2 6/0 2/0
•

31 PA31 SWDIO 15
• •

7/3 1/3 6/1 2/1
•

24 PA24 USB_DM 8
• •

3/2 5/2 5/0 2/2
•

25 PA25 USB_DP 9
• •

3/3 5/3 5/1
• •

8 PA08
• •

8 2 0/0 2/1 0/0 0/0 1/4

9 PA09
•

9 9 3 0/1 2/0 0/1 0/1 1/5

10 PA10
•

10 10
•

0/2 2/2 1/0 0/2 1/6

11 PA11
•

11 11
•

0/3 2/3 1/1 0/3 1/7

14 PA14
•

14
• •

2/2 4/2 3/0 2/0 1/2

18 PA18
•

2
• •

1/2 3/2 3/0 1/2 0/6

22 PA22
•

6
• •

3/0 5/1 4/0 1/6 0/2

23 PA23
•

7
• •

3/1 5/0 4/1 1/7 0/3

27 PA27
•

11
• • • • • • •

42 PB10
•

10
• • •

4/2 5/0 0/4 1/0

43 PB11
•

12
• • •

4/3 5/1 0/5 1/1

For the definition of the table columns see the explanation at the table for Adafruit ItsyBitsy M4 Express Adafruit ItsyBitsy

532 Chapter 15. Quick reference for the SAMD21/SAMD51 family

MicroPython Documentation, Release v1.20.0

M4 Express pin assignment table.
The default devices at the board are:

• UART 1 at pins PA16/PA17, labelled D0/D1
• I2C 2 at pins PA12/PA13, labelled SDA/SCL
• SPI 1 at pins PB22/PB23/PA01, labelled MOSI, MISO and SCK
• DAC output on pins PA02 and PA05, labelled A0_D9 and A4_D13

15.3.9 Seeed WIO Terminal pin assignment table

Pin GPIO Pin
name

IRQ ADC ADC Serial Serial TC PWM PWM

33 PB01 CS 1 13
• •

5/3 7/1
• •

59 PB27 RX 13
• •

2/1 4/0
•

1/3
•

58 PB26 TX 12
• •

2/0 4/1
•

1/2
•

79 PC15 3V3_ENABLE15
• •

7/3 6/3
•

0/5 1/1

78 PC14 5V_ENABLE14
• •

7/2 6/2
•

0/4 1/0

40 PB08 A0_D0 8 2 0
•

4/0 4/0
• •

41 PB09 A1_D1 9 3 1
•

4/1 4/1
• •

7 PA07 A2_D2 7 7
• •

0/3 1/1
• •

36 PB04 A3_D3 4
•

6
• • • • •

37 PB05 A4_D4 5
•

7
• • • • •

38 PB06 A5_D5 6
•

8
• • • • •

4 PA04 A6_D6 4 4
• •

0/0 0/0
• •

continues on next page

15.3. Pinout for the SAMD machine modules 533

MicroPython Documentation, Release v1.20.0

Table 7 – continued from previous page
Pin GPIO Pin

name
IRQ ADC ADC Serial Serial TC PWM PWM

39 PB07 A7_D7 7
•

9
• • • • •

6 PA06 A8_D8 6 6
• •

0/2 1/0
• •

90 PC26 BUT-
TON_1

10
• • • • • • •

91 PC27 BUT-
TON_2

11
• •

1/0
• • • •

92 PC28 BUT-
TON_3

12
• •

1/1
• • • •

107 PD11 BUZZER 6
• •

7/3 6/3
•

0/4
•

47 PB15 GP-
CLK0

15
• •

4/3
•

5/1 4/1 0/3

44 PB12 GP-
CLK1

12
• •

4/0
•

4/0 3/0 0/0

45 PB13 GP-
CLK2

13
• •

4/1
•

4/1 3/1 0/1

48 PB16 I2C_BCLK0
• •

5/0
•

6/0 3/0 0/4

20 PA20 I2S_LRCLK4
• •

5/2 3/2 7/0 1/4 0/0

21 PA21 I2S_SDIN5
• •

5/3 3/3 7/1 1/5 0/1

22 PA22 I2S_SDOUT6
• •

3/0 5/1 4/0 1/6 0/2

50 PB18 LCD_MISO2
• •

5/2 7/2
•

1/0
•

51 PB19 LCD_MOSI3
• •

5/3 7/3
•

1/1
•

52 PB20 LCD_SCK4
• •

3/0 7/1
•

1/2
•

continues on next page

534 Chapter 15. Quick reference for the SAMD21/SAMD51 family

MicroPython Documentation, Release v1.20.0

Table 7 – continued from previous page
Pin GPIO Pin

name
IRQ ADC ADC Serial Serial TC PWM PWM

53 PB21 LCD_CS 5
• •

3/1 7/0
•

1/3
•

70 PC06 LCD_D/C6
• •

6/2
• • • •

71 PC07 LCD_RESET9
• •

6/3
• • • •

74 PC10 LCD_XL 10
• •

6/2 7/2
•

0/0 1/4

76 PC12 LCD_XR 12
• •

7/0 6/1
•

0/2 1/6

77 PC13 LCD_YD 13
• •

7/1 6/0
•

0/3 1/7

75 PC11 LCD_YU 11
• •

6/3 7/3
•

0/1 1/5

15 PA15 LED_BLUE15
• •

2/3 4/3 3/1 2/1 1/3

69 PC05 LED_LCD5
• •

6/1
• • • •

94 PC30 MIC 14
•

12
• • • • •

32 PB00 MISO 9 12
• •

5/2 7/0
• •

34 PB02 MOSI 2 14
• •

5/0 6/0 2/2
•

35 PB03 SCK 9 15
• •

5/1 6/1
• •

12 PA12 SCL0 12
• •

2/0 4/1 2/0 0/6 1/2

13 PA13 SDA0 13
• •

2/1 4/0 2/1 0/7 1/3

16 PA16 SCL1 0
• •

1/0 3/1 2/0 1/0 0/4

continues on next page

15.3. Pinout for the SAMD machine modules 535

MicroPython Documentation, Release v1.20.0

Table 7 – continued from previous page
Pin GPIO Pin

name
IRQ ADC ADC Serial Serial TC PWM PWM

17 PA17 SDA1 1
• •

1/1 3/0 2/1 1/1 0/5

117 PD21 SD_DET 11
• •

1/3 3/3
•

1/1
•

83 PC19 SD_CS 3
• •

6/3 0/3
•

0/3
•

82 PC18 SD_MISO2
• •

6/2 0/2
•

0/2
•

80 PC16 SD_MOSI0
• •

6/0 0/1
•

0/0
•

81 PC17 SD_SCK 1
• •

6/1 0/0
•

0/1
•

30 PA30 SWCLK 14
• •

7/2 1/2 6/0 2/0
•

31 PA31 SWDIO 15
• •

7/3 1/3 6/1 2/1
•

108 PD12 SWITCH_B7
• • • • •

0/5
•

116 PD20 SWITCH_U10
• •

1/2 3/2
•

1/0
•

104 PD08 SWITCH_X3
• •

7/0 6/1
•

0/1
•

105 PD09 SWITCH_Y4
• •

7/1 6/0
•

0/2
•

106 PD10 SWITCH_Z5
• •

7/2 6/2
•

0/3
•

24 PA24 USB_DM 8
• •

3/2 5/2 5/0 2/2
•

25 PA25 USB_DP 9
• •

3/3 5/3 5/1
• •

0 PA00
•

0
• • •

1/0 2/0
• •

continues on next page

536 Chapter 15. Quick reference for the SAMD21/SAMD51 family

MicroPython Documentation, Release v1.20.0

Table 7 – continued from previous page
Pin GPIO Pin

name
IRQ ADC ADC Serial Serial TC PWM PWM

1 PA01
•

1
• • •

1/1 2/1
• •

2 PA02
•

2 0
• • • • • •

3 PA03
•

3 10
• • • • • •

5 PA05
•

5 5
• •

0/1 0/1
• •

8 PA08
• •

8 2 0/0 2/1 0/0 0/0 1/4

9 PA09
•

9 9 3 0/1 2/0 0/1 0/1 1/5

10 PA10
•

10 10
•

0/2 2/2 1/0 0/2 1/6

11 PA11
•

11 11
•

0/3 2/3 1/1 0/3 1/7

14 PA14
•

14
• •

2/2 4/2 3/0 2/0 1/2

18 PA18
•

2
• •

1/2 3/2 3/0 1/2 0/6

19 PA19
•

3
• •

1/3 3/3 3/1 1/3 0/7

23 PA23
•

7
• •

3/1 5/0 4/1 1/7 0/3

27 PA27
•

11
• • • • • • •

42 PB10
•

10
• • •

4/2 5/0 0/4 1/0

43 PB11
•

12
• • •

4/3 5/1 0/5 1/1

46 PB14
•

14
• •

4/2
•

5/0 4/0 0/2

continues on next page

15.3. Pinout for the SAMD machine modules 537

MicroPython Documentation, Release v1.20.0

Table 7 – continued from previous page
Pin GPIO Pin

name
IRQ ADC ADC Serial Serial TC PWM PWM

49 PB17
•

1
• •

5/1
•

6/1 3/1 0/5

54 PB22
•

22
• •

1/2 5/2 7/0
• •

55 PB23
•

7
• •

1/3 5/3 7/1
• •

56 PB24
•

8
• •

0/0 2/1
• • •

57 PB25
•

9
• •

0/1 2/0
• • •

60 PB28
•

14
• •

2/2 4/2
•

1/4
•

61 PB29
•

15
• •

2/3 4/3
•

1/5
•

62 PB30
•

14
• •

7/0 5/1 0/0 4/0 0/6

63 PB31
•

15
• •

7/1 5/0 0/1 4/1 0/7

64 PC00
•

0
•

10
• • • • •

65 PC01
•

1
•

11
• • • • •

66 PC02
•

2
•

4
• • • • •

67 PC03
•

3
•

5
• • • • •

68 PC04
•

4
• •

6/0
• •

0/0
•

84 PC20
•

4
• • • • •

0/4
•

85 PC21
•

5
• • • • •

0/5
•

continues on next page

538 Chapter 15. Quick reference for the SAMD21/SAMD51 family

MicroPython Documentation, Release v1.20.0

Table 7 – continued from previous page
Pin GPIO Pin

name
IRQ ADC ADC Serial Serial TC PWM PWM

86 PC22
•

6
• •

1/0 3/1
•

0/5
•

87 PC23
•

7
• •

1/1 3/0
•

0/7
•

88 PC24
•

8
• •

0/2 2/2
• • •

89 PC25
•

9
• •

0/3 2/3
• • •

95 PC31
•

15
•

13
• • • • •

96 PD00
•

0
•

14
• • • • •

97 PD01
•

1
•

15
• • • • •

For the definition of the table columns see the explanation at the table for Adafruit ItsyBitsy M4 Express Adafruit ItsyBitsy
M4 Express pin assignment table.
Default pin assignments: - UART 2 at pins PB27 and PB26, labelled RX and TX - I2C 4 at pins PA12 and PA13, labelled
SCL0 and SDA0 - I2C 3 at pins PA16 and PA17, labelled SCL1 and SDA1 - SPI 5 at pins PB00, PB02 and PB03, labelle
MISO, MOSI and SCK
There seems to be no default pin assignment for this board.

15.3.10 Sparkfun SAMD51 Thing Plus pin assignment table

Pin GPIO Pin
name

IRQ ADC ADC Serial Serial TC PWM PWM

2 PA02 A0 2 0
• • • • • •

40 PB08 A1 8 2 0
•

4/0 4/0
• •

41 PB09 A2 9 3 1
•

4/1 4/1
• •

4 PA04 A3 4 4
• •

0/0 0/0
• •

continues on next page

15.3. Pinout for the SAMD machine modules 539

MicroPython Documentation, Release v1.20.0

Table 8 – continued from previous page
Pin GPIO Pin

name
IRQ ADC ADC Serial Serial TC PWM PWM

5 PA05 A4 5 5
• •

0/1 0/1
• •

34 PB02 A5 2 14
• •

5/0 6/0 2/2
•

13 PA13 D0 13
• •

2/1 4/0 2/1 0/7 1/3

12 PA12 D1 12
• •

2/0 4/1 2/0 0/6 1/2

6 PA06 D4 6 6
• •

0/2 1/0
• •

15 PA15 D5 15
• •

2/3 4/3 3/1 2/1 1/3

20 PA20 D6 4
• •

5/2 3/2 7/0 1/4 0/0

21 PA21 D7 5
• •

5/3 3/3 7/1 1/5 0/1

7 PA07 D9 7 7
• •

0/3 1/1
• •

18 PA18 D10 2
• •

1/2 3/2 3/0 1/2 0/6

16 PA16 D11 0
• •

1/0 3/1 2/0 1/0 0/4

19 PA19 D12 3
• •

1/3 3/3 3/1 1/3 0/7

17 PA17 D13 1
• •

1/1 3/0 2/1 1/1 0/5

10 PA10 FLASH_CS10 10
•

0/2 2/2 1/0 0/2 1/6

11 PA11 FLASH_MISO11 11
•

0/3 2/3 1/1 0/3 1/7

8 PA08 FLASH_MOSI
•

8 2 0/0 2/1 0/0 0/0 1/4

9 PA09 FLASH_SCK9 9 3 0/1 2/0 0/1 0/1 1/5
continues on next page

540 Chapter 15. Quick reference for the SAMD21/SAMD51 family

MicroPython Documentation, Release v1.20.0

Table 8 – continued from previous page
Pin GPIO Pin

name
IRQ ADC ADC Serial Serial TC PWM PWM

43 PB11 MISO 12
• • •

4/3 5/1 0/5 1/1

44 PB12 MOSI 12
• •

4/0
•

4/0 3/0 0/0

55 PB23 RXD 7
• •

1/3 5/3 7/1
• •

35 PB03 RXLED 9 15
• •

5/1 6/1
• •

45 PB13 SCK 13
• •

4/1
•

4/1 3/1 0/1

23 PA23 SCL 7
• •

3/1 5/0 4/1 1/7 0/3

22 PA22 SDA 6
• •

3/0 5/1 4/0 1/6 0/2

30 PA30 SWCLK 14
• •

7/2 1/2 6/0 2/0
•

31 PA31 SWDIO 15
• •

7/3 1/3 6/1 2/1
•

54 PB22 TXD 22
• •

1/2 5/2 7/0
• •

27 PA27 TXLED 11
• • • • • • •

24 PA24 USB_DM 8
• •

3/2 5/2 5/0 2/2
•

25 PA25 USB_DP 9
• •

3/3 5/3 5/1
• •

0 PA00
•

0
• • •

1/0 2/0
• •

1 PA01
•

1
• • •

1/1 2/1
• •

3 PA03
•

3 10
• • • • • •

continues on next page

15.3. Pinout for the SAMD machine modules 541

MicroPython Documentation, Release v1.20.0

Table 8 – continued from previous page
Pin GPIO Pin

name
IRQ ADC ADC Serial Serial TC PWM PWM

14 PA14
•

14
• •

2/2 4/2 3/0 2/0 1/2

32 PB00
•

9 12
• •

5/2 7/0
• •

33 PB01
•

1 13
• •

5/3 7/1
• •

36 PB04
•

4
•

6
• • • • •

37 PB05
•

5
•

7
• • • • •

38 PB06
•

6
•

8
• • • • •

39 PB07
•

7
•

9
• • • • •

42 PB10
•

10
• • •

4/2 5/0 0/4 1/0

46 PB14
•

14
• •

4/2
•

5/0 4/0 0/2

47 PB15
•

15
• •

4/3
•

5/1 4/1 0/3

48 PB16
•

0
• •

5/0
•

6/0 3/0 0/4

49 PB17
•

1
• •

5/1
•

6/1 3/1 0/5

62 PB30
•

14
• •

7/0 5/1 0/0 4/0 0/6

63 PB31
•

15
• •

7/1 5/0 0/1 4/1 0/7

For the definition of the table columns see the explanation at the table for Adafruit ItsyBitsy M4 Express Adafruit ItsyBitsy
M4 Express pin assignment table.
The default devices at the board are:

• UART 1 at pins PB23/PB22, labelled RXD/TXD
• I2C 5 at pins PA22/PA23, labelled SDA/SCL

542 Chapter 15. Quick reference for the SAMD21/SAMD51 family

MicroPython Documentation, Release v1.20.0

• SPI 4 at pins PB12/PB11/PB13, labelled MOSI, MISO and SCK
• DAC output on pins PA02 and PA05, labelled A0 and A4

15.3.11 Scripts for creating the pin assignment tables

The tables shown above were created with small a Python script running on the target board:

from samd import pininfo
from machine import Pin
import os

def print_entry(e, txt):
print(txt, end=": ")
if e == 255:

print(" - ", end="")
else:

print("%d/%d" % (e >> 4, e & 0x0f), end="")

def print_pininfo(pin, info):
print("%3d" % pin, end=" ")
print("P%c%02d" % ("ABCD"[pin // 32], pin % 32), end="")
print(" %12s" % info[0], end="")
print(" IRQ:%2s" % (info[1] if info[1] != 255 else "-"), end="")
print(" ADC0:%2s" % (info[2] if info[2] != 255 else "-"), end="")
if len(info) == 7:

print_entry(info[3], " Serial1")
print_entry(info[4], " Serial2")
print_entry(info[5], " PWM1" if (info[5] >> 4) < 3 else " TC")
print_entry(info[6], " PWM2")

else:
print(" ADC1:%2s" % (info[3] if info[3] != 255 else "-"), end="")
print_entry(info[4], " Serial1")
print_entry(info[5], " Serial2")
print_entry(info[6], " TC")
print_entry(info[7], " PWM1")
print_entry(info[8], " PWM2")

print()

def tblkey(i):
name = i[1][0]
if name != "-":

if len(name) < 3:
return " " + name

else:
return name

else:
return "zzzzzzz%03d" % i[0]

def table(num = 127):
pintbl = []
for i in range(num):

try:
pintbl.append((i, pininfo(i)))

except:
pass
print("not defined")

(continues on next page)

15.3. Pinout for the SAMD machine modules 543

MicroPython Documentation, Release v1.20.0

(continued from previous page)

pintbl.sort(key=tblkey)
for item in pintbl:

print_pininfo(item[0], item[1])

table()

15.4 Installing MicroPython

See the corresponding section of tutorial: Getting started with MicroPython on the SAMD. It also includes a troubleshooting
subsection.

15.5 General board control

The MicroPython REPL is on the USB port, configured in VCP mode. Tab-completion is useful to find out what methods
an object has. Paste mode (Ctrl-E) is useful to paste a large slab of Python code into the REPL.
The machine module:

import machine

machine.freq() # get the current frequency of the CPU
machine.freq(96_000_000) # set the CPU frequency to 96 MHz

The range accepted by the function call is 1_000_000 to 200_000_000 (1MHz to 200MHz) for SAMD51 and 1_000_000
to 54_000_000 (1 MHz to 54 MHz) for SAMD21. The safe range for SAMD51 according to the data sheet is up to 120
MHz, for the SAMD21 up to 48Mhz. Frequencies below 48Mhz are set by dividing 48Mhz by an integer, limiting the
number of discrete frequencies to 24Mhz, 16Mhz, 12MHz, and so on. At frequencies below 8MHz USB will be disabled.
Changing the frequency below 48 MHz impacts the baud rates of UART, I2C and SPI. These have to be set again after
changing the CPU frequency. The ms and µs timers are not affected by the frequency change.

15.6 Delay and timing

Use the time module:

import time

time.sleep(1) # sleep for 1 second
time.sleep_ms(500) # sleep for 500 milliseconds
time.sleep_us(10) # sleep for 10 microseconds
start = time.ticks_ms() # get millisecond counter
delta = time.ticks_diff(time.ticks_ms(), start) # compute time difference

544 Chapter 15. Quick reference for the SAMD21/SAMD51 family

MicroPython Documentation, Release v1.20.0

15.7 Clock and time

Two groups of functions are provided for time information. All boards have the datetime(), mktime() and time() functions.
Boards with a 32kHz crystal also provide an RTC() module. The epoch start date is 1.1.2000.
Use the time module:

import time

date_time = time.localtime() # Show the actual date/time information
date_time = time.localtime(seconds) # decode the date/time form the seconds value
seconds = time.mktime(date_time_tuple) # Convert seconds to a datetime tuple
second = time.time() # Return the actual system time.

The format of the date_time tuple follows the standard. The µs value of the date_time tuple is ignored. On boards without
the RTC module, time.localtime(seconds) sets the system time. Use of the Use the RTC module:

from machine import RTC
rtc = RTC()
date_time = rtc.datetime() # return the actual date & time.
rtc.datetime(date_time_tuple) # Set date & time, ignoring weekday
date_time = rtc.now() # Return date & time in Unix order.
rtc.calibration(value) # Set a calibration factor

The weekday value set will be ignored and calculated in the returned tuple from the actual date. rtc.now() is only provided
at SAMD51 boards. The value used in the rtc.calibration() call has a range from -127 - 127. It defines roughly a ppm
quantity, by which the clock can run faster or slower.

15.8 Timers

The SAMD21/SAMD51 uses software timers. Use the machine.Timer class:

from machine import Timer

tim0 = Timer()
tim0.init(period=5000, mode=Timer.ONE_SHOT, callback=lambda t:print(0))

tim1 = Timer()
tim1.init(period=2000, mode=Timer.PERIODIC, callback=lambda t:print(1))

The period is in milliseconds.

15.9 Pins and GPIO

Use the machine.Pin class:

from machine import Pin

p0 = Pin('D0', Pin.OUT) # create output pin on GPIO0
p0.on() # set pin to "on" (high) level
p0.off() # set pin to "off" (low) level
p0.value(1) # set pin to on/high

(continues on next page)

15.7. Clock and time 545

MicroPython Documentation, Release v1.20.0

(continued from previous page)

p2 = Pin('D2', Pin.IN) # create input pin on GPIO2
print(p2.value()) # get value, 0 or 1

p4 = Pin('D4', Pin.IN, Pin.PULL_UP) # enable internal pull-up resistor
p7 = Pin("PA07", Pin.OUT, value=1) # set pin high on creation

Pins can be denoted by a string or a number. The string is either the pin label of the respective board, like “D0” or “SDA”,
or in the form “Pxnn”, where x is A,B,C or D, and nn a two digit number in the range 0-31. Examples: “PA03”, PD31”.
Pin numbers are the MCU port numbers in the range:

PA0..PA31: 0..31
PB0..PB31: 32..63
PC0..PC31: 64..95
PD0..PD31: 96..127

Note: On Adafruit Feather and ItsyBity boards, pin D5 is connected to an external gate output and can therefore only be
used as input.

15.10 UART (serial bus)

See machine.UART .

Use UART 3 on a ItsyBitsy M4 board
from machine import UART

uart3 = UART(3, tx=Pin(1), rx=Pin(0), baudrate=115200)
uart3.write('hello') # write 5 bytes
uart3.read(5) # read up to 5 bytes

The SAMD21/SAMD51 MCUs have up to eight hardware so called SERCOM devices, which can be used as UART,
SPI or I2C device, but not every MCU variant and board exposes all TX and RX pins for users. For the assignment of
Pins to devices and UART signals, refer to the SAMD pinout.

15.11 PWM (pulse width modulation)

Up to five timer device of the SAMD21/SAMD51 MCUs are used for creating PWM signals.
The PWM functions are provided by the machine.PWM class. It supports all basic methods listed for that class.

Samples for Adafruit ItsyBitsy M4 Express

from machine import Pin, PWM

pwm = PWM(Pin(7)) # create PWM object from a pin
pwm.freq() # get current frequency
pwm.freq(1000) # set frequency
pwm.duty_u16() # get current duty cycle, range 0-65535
pwm.duty_u16(200) # set duty cycle, range 0-65535
pwm.deinit() # turn off PWM on the pin

pwm # show the PWM objects properties

546 Chapter 15. Quick reference for the SAMD21/SAMD51 family

MicroPython Documentation, Release v1.20.0

15.11.1 PWM Constructor

class PWM(dest, freq, duty_u16, duty_ns, *, invert, device)

Construct and return a new PWM object using the following parameters:
• dest is the Pin object on which the PWM is output.

PWM objects are provided by TCC timer module. The TCC timer modules have up to six channels and
eight outputs. All channels of a module run at the same frequency, but allow for different duty cycles.
Outputs are assigned to channels in modulo-n fashion, where n is the number of channels. Outputs of
a channel have the same frequency and duty rate, but may have different polarity. So if for instance a
module has four channels, output 0 and 4, 1 and 5, 2 and 6, 3, and 7 share the same frequency and duty
rate.
Only one of duty_u16 and duty_ns should be specified at a time.
Keyword arguments:
• freq should be an integer which sets the frequency in Hz for the PWM cycle. The valid frequency
range is 1 Hz to 24 MHz.

• duty_u16 sets the duty cycle as a ratio duty_u16 / 65536. The duty cycle of a X channel can
only be changed, if the A and B channel of the respective submodule is not used. Otherwise the
duty_16 value of the X channel is 32768 (50%).

• duty_ns sets the pulse width in nanoseconds. The limitation for X channels apply as well.
• invert=True|False. Setting a bit inverts the respective output.
• device=n Use TCC module n if available. At some pins two TCC modules could be used. If not
device is mentioned, the software tries to use a module which is not yet used for a PWM signal.
But if pins shall have the same frequency and/or duty cycle to be changed synchronously, they must
be driven by the same TCC module.

15.11.2 PWM Methods

The methods are identical to the generic machine.PWM class, with additional keyword arguments to the init() method,
matchings those of the constructor.

15.11.3 PWM Pin Assignment

Pins are specified in the same way as for the Pin class. For the assignment of Pins to PWM signals, refer to the SAMD
pinout.

15.12 ADC (analog to digital conversion)

On the SAMD21/SAMD51 ADC functionality is available on Pins labelled ‘Ann’.
Use the machine.ADC class:

from machine import ADC

adc0 = ADC(Pin("A0")) # create ADC object on ADC pin, average=16

(continues on next page)

15.12. ADC (analog to digital conversion) 547

MicroPython Documentation, Release v1.20.0

(continued from previous page)
adc0.read_u16() # read value, 0-65536 across voltage range 0.0v - 3.
↪→3v
adc1 = ADC(Pin("A1"), average=1) # create ADC object on ADC pin, average=1

The resolution of the ADC is 12 bit with 12 bit accuracy, irrespective of the value returned by read_u16(). If you need a
higher resolution or better accuracy, use an external ADC.

15.12.1 ADC Constructor

class ADC(dest, *, average=16, vref=n)
Construct and return a new ADC object using the following parameters:

• dest is the Pin object on which the ADC is output.
Keyword arguments:

• average is used to reduce the noise. With a value of 16 the LSB noise is about 1 digit.
• vref sets the reference voltage for the ADC.
The default setting is for 3.3V. Other values are:

vref SAMD21 SAMD51
0 1.0V voltage reference internal bandgap reference (1V)
1 1/1.48 Analogue voltage supply Analogue voltage supply
2 1/2 Analogue voltage supply 1/2 Analogue voltage supply
3 External reference A External reference A
4 External reference B External reference B
5 – External reference C

15.12.2 ADC Methods

read_u16()

Read a single ADC value as unsigned 16 bit quantity. The voltage range is defined by the vref option of the constructor,
the resolutions by the bits option.

15.13 DAC (digital to analog conversion)

The DAC class provides a fast digital to analog conversion. Usage example:

from machine import DAC

dac0 = DAC(0) # create DAC object on DAC pin A0
dac0.write(1023) # write value, 0-4095 across voltage range 0.0v - 3.
↪→3v
dac1 = DAC(1) # create DAC object on DAC pin A1
dac1.write(2000) # write value, 0-4095 across voltage range 0.0v - 3.
↪→3v

548 Chapter 15. Quick reference for the SAMD21/SAMD51 family

MicroPython Documentation, Release v1.20.0

The resolution of the DAC is 12 bit for SAMD51 and 10 bit for SAMD21. SAMD21 devices have 1 DAC channel at
GPIO PA02, SAMD51 devices have 2 DAC channels at GPIO PA02 and PA05.

15.13.1 DAC Constructor

class DAC(id, *, vref=3)
The vref arguments defines the output voltage range, the callback option is used for dac_timed(). Suitable values for vref
are:

vref SAMD21 SAMD51
0 Internal voltage reference Internal bandgap reference (~1V)
1 Analogue voltage supply Analogue voltage supply
2 External reference Unbuffered external reference
3 • Buffered external reference

15.13.2 DAC Methods

write(value)

Write a single value to the selected DAC output. The value range is 0-1023 for SAMD21 and 0-4095 for SAMD51. The
voltage range depends on the vref setting.

15.14 Software SPI bus

Software SPI (using bit-banging) works on all pins, and is accessed via the machine.SoftSPI class.

from machine import Pin, SoftSPI

construct a SoftSPI bus on the given pins
polarity is the idle state of SCK
phase=0 means sample on the first edge of SCK, phase=1 means the second
spi = SoftSPI(baudrate=100000, polarity=1, phase=0, sck=Pin(7), mosi=Pin(9),␣
↪→miso=Pin(10))

spi.init(baudrate=200000) # set the baud rate

spi.read(10) # read 10 bytes on MISO
spi.read(10, 0xff) # read 10 bytes while outputting 0xff on MOSI

buf = bytearray(50) # create a buffer
spi.readinto(buf) # read into the given buffer (reads 50 bytes in this case)
spi.readinto(buf, 0xff) # read into the given buffer and output 0xff on MOSI

spi.write(b'12345') # write 5 bytes on MOSI

buf = bytearray(4) # create a buffer
spi.write_readinto(b'1234', buf) # write to MOSI and read from MISO into the buffer
spi.write_readinto(buf, buf) # write buf to MOSI and read MISO back into buf

The highest supported baud rate is 500000.

15.14. Software SPI bus 549

MicroPython Documentation, Release v1.20.0

15.15 Hardware SPI bus

The SAMD21/SAMD51 MCUs have up to eight hardware so called SERCOM devices, which can be used as UART,
SPI or I2C device, but not every MCU variant and board exposes all signal pins for users. Hardware SPI is accessed via
the machine.SPI class and has the same methods as software SPI above:

from machine import SPI

spi = SPI(1, sck=Pin("SCK"), mosi=Pin("MOSI"), miso=Pin("MISO"), baudrate=10000000)
spi.write('Hello World')

If miso is not specified, it is not used. For the assignment of Pins to SPI devices and signals, refer to SAMD pinout.
Note: Even if the highest reliable baud rate at the moment is about 24 Mhz, setting a baud rate will not always result in
exactly that frequency, especially at high baud rates.

15.16 Software I2C bus

Software I2C (using bit-banging) works on all output-capable pins, and is accessed via the machine.SoftI2C class:

from machine import Pin, SoftI2C

i2c = SoftI2C(scl=Pin(10), sda=Pin(11), freq=100000)

i2c.scan() # scan for devices

i2c.readfrom(0x3a, 4) # read 4 bytes from device with address 0x3a
i2c.writeto(0x3a, '12') # write '12' to device with address 0x3a

buf = bytearray(10) # create a buffer with 10 bytes
i2c.writeto(0x3a, buf) # write the given buffer to the slave

The highest supported freq is 400000.

15.17 Hardware I2C bus

The SAMD21/SAMD51 MCUs have up to eight hardware so called SERCOM devices, which can be used as UART,
SPI or I2C device, but not every MCU variant and board exposes all signal pins for users. For the assignment of Pins to
devices and I2C signals, refer to SAMD pinout.
Hardware I2C is accessed via the machine.I2C class and has the same methods as software SPI above:

from machine import I2C

i2c = I2C(2, scl=Pin("SCL"), sda=Pin("SDA"), freq=400_000)
i2c.writeto(0x76, b"Hello World")

550 Chapter 15. Quick reference for the SAMD21/SAMD51 family

MicroPython Documentation, Release v1.20.0

15.18 OneWire driver

The OneWire driver is implemented in software and works on all pins:

from machine import Pin
import onewire

ow = onewire.OneWire(Pin(12)) # create a OneWire bus on GPIO12
ow.scan() # return a list of devices on the bus
ow.reset() # reset the bus
ow.readbyte() # read a byte
ow.writebyte(0x12) # write a byte on the bus
ow.write('123') # write bytes on the bus
ow.select_rom(b'12345678') # select a specific device by its ROM code

There is a specific driver for DS18S20 and DS18B20 devices:

import time, ds18x20
ds = ds18x20.DS18X20(ow)
roms = ds.scan()
ds.convert_temp()
time.sleep_ms(750)
for rom in roms:

print(ds.read_temp(rom))

Be sure to put a 4.7k pull-up resistor on the data line. Note that the convert_temp() method must be called each
time you want to sample the temperature.

15.19 DHT driver

The DHT driver is implemented in software and works on all pins:

import dht
import machine

d = dht.DHT11(machine.Pin(4))
d.measure()
d.temperature() # eg. 23 (°C)
d.humidity() # eg. 41 (% RH)

d = dht.DHT22(machine.Pin(4))
d.measure()
d.temperature() # eg. 23.6 (°C)
d.humidity() # eg. 41.3 (% RH)

Be sure to have a 4.7k pull-up resistor on the data line. Some DHT modules may already have one.

15.18. OneWire driver 551

MicroPython Documentation, Release v1.20.0

15.20 Driving an APA102 LED

The APA102 on some Adafruit boards can be controlled using SoftSPI:

from machine import SoftSPI, Pin
create the SPI object. miso can be any unused pin.
spi=SoftSPI(sck=Pin(25), mosi=Pin(26), miso=Pin(14))

define a little function that writes the data with
preamble and postfix
def write(red, green, blue):

spi.write(b"\x00\x00\x00\x00\xff")
spi.write(bytearray((blue, green, red)))
spi.write(b"\xff\xff\xff")

set the LED to red
write(128, 0, 0)

Since SoftSPI does not allow miso to be undefined, miso has to be assigned to an otherwise unused pin.

15.21 Driving a Neopixel LED

The built-in machine.bitstream() method supports driving Neopixel LEDs in combination with the Neopixel driver from
the MicroPython driver library:

import neopixel
import machine

1 LED connected to Pin D8 on Adafruit Feather boards
p = machine.Pin(8, machine.Pin.OUT)
n = neopixel.NeoPixel(p, 1)

set the led to red.
n[0] = (128, 0, 0)

Update the LED.
n.write()

machine.bitstream() is set up for a SAMD21 clock frequency of 48MHz and a SAMD51 clock frequency of 120 MHz.
At other clock frequencies, the timing will not fit.

15.22 Transferring files

Files can be transferred to the SAMD21/SAMD51 devices for instance with the mpremote tool. See the MicroPython
forum for community-supported alternatives to transfer files to an SAMD21/SAMD51 board, like rshell or Thonny.

552 Chapter 15. Quick reference for the SAMD21/SAMD51 family

PYTHON MODULE INDEX

_
_thread, 43

a
array, 2

b
binascii, 3
bluetooth, 43
btree, 55

c
cmath, 6
collections, 7
cryptolib, 57

e
errno, 8
esp, 168
esp32, 170

f
framebuf, 58

g
gc, 9

h
hashlib, 10
heapq, 10

i
io, 11

j
json, 13

l
lcd160cr, 158

m
machine, 60

math, 13
micropython, 91

n
neopixel, 93
network, 94

o
os, 15

p
pyb, 115

r
random, 20
re, 21
rp2, 175

s
select, 23
socket, 25
ssl, 30
stm, 156
struct, 31
sys, 32

t
time, 34

u
uasyncio, 38
uctypes, 104

w
wipy, 164

z
zephyr, 181
zlib, 42
zsensor, 184

553

MicroPython Documentation, Release v1.20.0

554 Python Module Index

INDEX

Non-alphabetical
<args>

command line option, 479
<script>

command line option, 479
__add__() (array.array method), 2
__call__() (machine.Pin method), 66
__call__() (pyb.Switch method), 146
__contains__() (btree.btree method), 56
__delitem__() (btree.btree method), 56
__getitem__() (array.array method), 2
__getitem__() (btree.btree method), 56
__getitem__() (neopixel.NeoPixel method), 94
__iadd__() (array.array method), 2
__init__() (cryptolib.aes class method), 57
__iter__() (btree.btree method), 56
__len__() (array.array method), 2
__len__() (neopixel.NeoPixel method), 94
__repr__() (array.array method), 2
__setitem__() (array.array method), 2
__setitem__() (btree.btree method), 56
__setitem__() (neopixel.NeoPixel method), 94
__str__() (pyb.Pin method), 139
__str__() (pyb.pinaf method), 141
_thread

module, 43

A
a2b_base64() (in module binascii), 3
abs()

built-in function, 3
AbstractBlockDev (class in os), 19
AbstractNIC (class in network), 95
Accel (class in pyb), 119
ACCEL_X (in module zsensor), 184
ACCEL_Y (in module zsensor), 184
ACCEL_Z (in module zsensor), 184
accept() (socket.socket method), 27
acos() (in module math), 13
acosh() (in module math), 13
acquire() (uasyncio.Lock method), 40
active() (bluetooth.BLE method), 44

active() (network.AbstractNIC method), 95
active() (network.LAN method), 103
active() (network.WLAN method), 96
active() (rp2.StateMachine method), 180
ADC (built-in class), 414
ADC (class in machine), 70
ADC (class in pyb), 120
ADCBlock (built-in class), 414
ADCBlock (class in machine), 71
adcchannel() (in module machine), 165
ADCWiPy (class in machine), 165
add_program() (rp2.PIO method), 178
addressof() (in module uctypes), 107
aes (class in cryptolib), 57
af() (pyb.Pin method), 139
AF_INET (in module socket), 27
AF_INET6 (in module socket), 27
af_list() (pyb.Pin method), 139
alarm() (machine.RTC method), 85
alarm_left() (machine.RTC method), 85
alc_gain() (WM8960 method), 112
alc_mode() (WM8960 method), 112
alc_time() (WM8960 method), 113
all()

built-in function, 3
alloc_emergency_exception_buf() (in module

micropython), 91
alt_list() (machine.Pin method), 463
ALTITUDE (in module zsensor), 185
angle() (pyb.Servo method), 143
antenna() (network.WLANWiPy method), 100
any()

built-in function, 3
any() (machine.UART method), 75
any() (pyb.CAN method), 126
any() (pyb.UART method), 152
any() (pyb.USB_VCP method), 155
append() (array.array method), 2
append() (collections.deque method), 7
argv (in module sys), 33
array

module, 2

555

MicroPython Documentation, Release v1.20.0

array (class in array), 2
ARRAY (in module uctypes), 107
asin() (in module math), 13
asinh() (in module math), 13
asm_pio() (in module rp2), 175
asm_pio_encode() (in module rp2), 175
AssertionError, 5
atan() (in module math), 13
atan2() (in module math), 13
atanh() (in module math), 14
atexit() (in module sys), 32
atten() (ADC method), 415
AttributeError, 5
auth() (network.WLANWiPy method), 100

B
b2a_base64() (in module binascii), 3
baremetal, 187
BIG_ENDIAN (in module uctypes), 107
bin()

built-in function, 3
binascii

module, 3
bind() (socket.socket method), 27
bitstream() (in module machine), 63
bitstream_channel() (esp32.RMT static method),

173
BLE (class in bluetooth), 44
blit() (framebuf.FrameBuffer method), 59
block() (machine.ADC method), 70
bluetooth

module, 43
board, 187
bool (built-in class), 3
bootloader() (in module machine), 61
bootloader() (in module pyb), 116
bootsel_button() (in module rp2), 175
btree

module, 55
buffer protocol, 187
built-in function

abs(), 3
all(), 3
any(), 3
bin(), 3
callable(), 3
chr(), 3
classmethod(), 3
compile(), 3
delattr(), 3
dir(), 4
divmod(), 4
enumerate(), 4
eval(), 4

exec(), 4
filter(), 4
freeze(), 222
freeze_as_mpy(), 223
freeze_as_str(), 223
freeze_mpy(), 223
getattr(), 4
globals(), 4
hasattr(), 4
hash(), 4
hex(), 4
id(), 4
include(), 222
input(), 4
isinstance(), 4
issubclass(), 4
iter(), 4
len(), 4
locals(), 4
main(), 465
map(), 4
max(), 4
metadata(), 222
min(), 4
mkfs(), 465
module(), 222
mount(), 465
next(), 4
oct(), 4
open(), 4
ord(), 5
package(), 221
pow(), 5
print(), 5
property(), 5
range(), 5
repr(), 5
require(), 222
reversed(), 5
round(), 5
setattr(), 5
sorted(), 5
staticmethod(), 5
sum(), 5
super(), 5
type(), 5
unmount(), 465
zip(), 5

bytearray (built-in class), 3
bytearray_at() (in module uctypes), 107
bytecode, 187
byteorder (in module sys), 33
bytes (built-in class), 3
bytes_at() (in module uctypes), 107

556 Index

MicroPython Documentation, Release v1.20.0

BytesIO (class in io), 12

C
-c <command>

command line option, 479
calcsize() (in module struct), 32
calibration() (pyb.RTC method), 142
calibration() (pyb.Servo method), 143
call_exception_handler() (uasyncio.Loop

method), 42
callable()

built-in function, 3
callback() (pyb.Switch method), 146
callback() (pyb.Timer method), 148
callback() (pyb.timerchannel method), 150
callee-owned tuple, 187
CAN (class in pyb), 123
CAN.BUS_OFF (in module pyb), 127
cancel() (machine.RTC method), 85
cancel() (uasyncio.Task method), 39
CAN.DUAL (in module pyb), 128
CAN.ERROR_ACTIVE (in module pyb), 127
CAN.ERROR_PASSIVE (in module pyb), 127
CAN.ERROR_WARNING (in module pyb), 127
CAN.LIST16 (in module pyb), 128
CAN.LIST32 (in module pyb), 128
CAN.LOOPBACK (in module pyb), 127
CAN.MASK (in module pyb), 128
CAN.MASK16 (in module pyb), 128
CAN.MASK32 (in module pyb), 128
CAN.NORMAL (in module pyb), 127
CAN.RANGE (in module pyb), 128
CAN.SILENT (in module pyb), 127
CAN.SILENT_LOOPBACK (in module pyb), 127
CAN.STOPPED (in module pyb), 127
capture() (pyb.timerchannel method), 150
ceil() (in module math), 14
channel() (machine.ADCWiPy method), 165
channel() (machine.TimerWiPy method), 166
channel() (network.WLANWiPy method), 100
channel() (pyb.Timer method), 148
chdir() (in module os), 16
choice() (in module random), 21
chr()

built-in function, 3
CircuitPython, 187
classmethod()

built-in function, 3
clear() (uasyncio.Event method), 39
clear() (uasyncio.ThreadSafeFlag method), 40
clearfilter() (pyb.CAN method), 126
clock_div() (esp32.RMT method), 172
close() (btree.btree method), 56
close() (pyb.USB_VCP method), 155

close() (socket.socket method), 27
close() (uasyncio.Loop method), 42
close() (uasyncio.Server method), 41
close() (uasyncio.Stream method), 41
cmath

module, 6
collect() (in module gc), 9
collections

module, 7
command line option

<args>, 479
<script>, 479
-c <command>, 479
-h, 479
-i, 479
-m <module>, 479
-O | -O<level> | -OO..., 479
-v, 479
-X <option>, 479

command() (pyb.LCD method), 136
commit() (esp32.NVS method), 174
compare() (pyb.timerchannel method), 150
compile()

built-in function, 3
compile() (in module re), 22
complex (built-in class), 3
config() (bluetooth.BLE method), 44
config() (network.AbstractNIC method), 96
config() (network.LAN method), 103
config() (network.WLAN method), 97
connect() (ADCBlock method), 414
connect() (machine.ADCBlock method), 71
connect() (network.AbstractNIC method), 95
connect() (network.WLAN method), 96
connect() (network.WLANWiPy method), 99
connect() (socket.socket method), 28
const() (in module micropython), 91
contrast() (pyb.LCD method), 136
copysign() (in module math), 14
cos() (in module cmath), 6
cos() (in module math), 14
cosh() (in module math), 14
counter() (pyb.Timer method), 149
country() (in module network), 103
CPython, 187
create_task() (in module uasyncio), 38
create_task() (uasyncio.Loop method), 42
cross-compiler, 187
cryptolib

module, 57
current_task() (in module uasyncio), 38
current_tid() (in module zephyr), 182

Index 557

MicroPython Documentation, Release v1.20.0

D
DAC (class in pyb), 129
DAC.CIRCULAR (in module pyb), 130
DAC.NORMAL (in module pyb), 130
datetime() (machine.RTC method), 85
datetime() (pyb.RTC method), 141
DEBUG (in module re), 22
debug() (pyb.Pin class method), 138
DecompIO (class in zlib), 43
decompress() (in module zlib), 43
decrypt() (cryptolib.aes method), 57
deemphasis() (WM8960 method), 113
deepsleep() (in module esp), 168
deepsleep() (in module machine), 62
default_exception_handler() (uasyncio.Loop

method), 42
degrees() (in module math), 14
deinit() (machine.adcchannel method), 165
deinit() (machine.ADCWiPy method), 165
deinit() (machine.I2C method), 80
deinit() (machine.I2S method), 84
deinit() (machine.PWM method), 72
deinit() (machine.RTC method), 85
deinit() (machine.SD method), 88
deinit() (machine.SPI method), 78
deinit() (machine.Timer method), 87
deinit() (machine.TimerWiPy method), 166
deinit() (machine.UART method), 75
deinit() (pyb.CAN method), 124
deinit() (pyb.DAC method), 129
deinit() (pyb.I2C method), 134
deinit() (pyb.SPI method), 144
deinit() (pyb.Timer method), 148
deinit() (pyb.UART method), 152
deinit() (server method), 465
deinit() (WM8960 method), 113
delattr()

built-in function, 3
delay() (in module pyb), 115
deque (class in collections), 7
DESC (in module btree), 57
dict (built-in class), 4
dict() (pyb.Pin class method), 138
DIE_TEMP (in module zsensor), 185
digest() (hashlib.hash method), 10
dir()

built-in function, 4
disable() (in module gc), 9
disable() (pyb.ExtInt method), 131
disable_irq() (in module machine), 61
disable_irq() (in module pyb), 116
disable_module() (WM8960 method), 112
disconnect() (network.AbstractNIC method), 95
disconnect() (network.WLAN method), 96

disconnect() (network.WLANWiPy method), 100
DiskAccess (class in zephyr), 182
divmod()

built-in function, 4
dot() (lcd160cr.LCD160CR method), 161
dot_no_clip() (lcd160cr.LCD160CR method), 161
drain() (uasyncio.Stream method), 41
drive() (machine.Pin method), 67
driver, 188
dump() (in module json), 13
dumps() (in module json), 13
dupterm() (in module os), 17
duty_cycle() (machine.timerchannel method), 168
duty_ns() (machine.PWM method), 72
duty_u16() (machine.PWM method), 72

E
e (in module cmath), 7
e (in module math), 15
elapsed_micros() (in module pyb), 115
elapsed_millis() (in module pyb), 115
ellipse() (framebuf.FrameBuffer method), 59
enable() (in module gc), 9
enable() (pyb.ExtInt method), 131
enable_irq() (in module machine), 61
enable_irq() (in module pyb), 116
enable_module() (WM8960 method), 112
encrypt() (cryptolib.aes method), 57
end() (re.match method), 23
enumerate()

built-in function, 4
environment variable

MICROPYINSPECT, 479, 480
MICROPYPATH, 480

erase() (lcd160cr.LCD160CR method), 161
erase_key() (esp32.NVS method), 174
erf() (in module math), 14
erfc() (in module math), 14
errno

module, 8
errorcode (in module errno), 8
esp

module, 168
esp32

module, 170
esp32.WAKEUP_ALL_LOW (in module esp32), 174
esp32.WAKEUP_ANY_HIGH (in module esp32), 174
eval()

built-in function, 4
Event (class in uasyncio), 39
Exception, 5
exec()

built-in function, 4
exec() (rp2.StateMachine method), 181

558 Index

MicroPython Documentation, Release v1.20.0

exit() (in module sys), 32
exp() (in module cmath), 6
exp() (in module math), 14
expand_3d() (WM8960 method), 112
expm1() (in module math), 14
extend() (array.array method), 2
ExtInt (class in pyb), 131
ExtInt.IRQ_FALLING (in module pyb), 131
ExtInt.IRQ_RISING (in module pyb), 131
ExtInt.IRQ_RISING_FALLING (in module pyb),

131

F
fabs() (in module math), 14
fast_spi() (lcd160cr.LCD160CR method), 162
fault_debug() (in module pyb), 116
feed() (machine.WDT method), 87
feed_wdt() (lcd160cr.LCD160CR method), 163
FFI, 188
FileIO (class in io), 12
filesystem, 188
fill() (framebuf.FrameBuffer method), 58
fill() (neopixel.NeoPixel method), 94
fill() (pyb.LCD method), 136
filter()

built-in function, 4
filtered_xyz() (pyb.Accel method), 119
find() (esp32.Partition class method), 171
Flash (class in pyb), 132
Flash (class in rp2), 178
flash_erase() (in module esp), 169
flash_id() (in module esp), 169
flash_read() (in module esp), 169
flash_size() (in module esp), 169
flash_user_start() (in module esp), 169
flash_write() (in module esp), 169
FlashArea (class in zephyr), 183
float (built-in class), 4
FLOAT32 (in module uctypes), 107
FLOAT64 (in module uctypes), 107
floor() (in module math), 14
flush() (btree.btree method), 56
flush() (machine.UART method), 76
fmod() (in module math), 14
framebuf

module, 58
FrameBuffer (class in framebuf), 58
framebuf.GS2_HMSB (in module framebuf), 60
framebuf.GS4_HMSB (in module framebuf), 60
framebuf.GS8 (in module framebuf), 60
framebuf.MONO_HLSB (in module framebuf), 60
framebuf.MONO_HMSB (in module framebuf), 60
framebuf.MONO_VLSB (in module framebuf), 60
framebuf.RGB565 (in module framebuf), 60

freeze()
built-in function, 222

freeze_as_mpy()
built-in function, 223

freeze_as_str()
built-in function, 223

freeze_mpy()
built-in function, 223

freq() (in module machine), 62
freq() (in module pyb), 116
freq() (machine.PWM method), 72
freq() (machine.timerchannel method), 168
freq() (pyb.Timer method), 149
frexp() (in module math), 14
from_bytes() (int class method), 4
frozen module, 188
frozenset (built-in class), 4

G
gamma() (in module math), 14
gap_advertise() (bluetooth.BLE method), 48
gap_connect() (bluetooth.BLE method), 49
gap_disconnect() (bluetooth.BLE method), 50
gap_pair() (bluetooth.BLE method), 54
gap_passkey() (bluetooth.BLE method), 54
gap_scan() (bluetooth.BLE method), 49
Garbage Collector, 188
gather() (in module uasyncio), 39
gattc_discover_characteristics() (blue-

tooth.BLE method), 52
gattc_discover_descriptors() (bluetooth.BLE

method), 52
gattc_discover_services() (bluetooth.BLE

method), 52
gattc_exchange_mtu() (bluetooth.BLE method), 52
gattc_read() (bluetooth.BLE method), 52
gattc_write() (bluetooth.BLE method), 52
gatts_indicate() (bluetooth.BLE method), 51
gatts_notify() (bluetooth.BLE method), 51
gatts_read() (bluetooth.BLE method), 51
gatts_register_services() (bluetooth.BLE

method), 50
gatts_set_buffer() (bluetooth.BLE method), 52
gatts_write() (bluetooth.BLE method), 51
gc

module, 9
get() (btree.btree method), 56
get() (pyb.LCD method), 136
get() (rp2.StateMachine method), 181
get_blob() (esp32.NVS method), 174
get_event_loop() (in module uasyncio), 42
get_exception_handler() (uasyncio.Loop

method), 42
get_extra_info() (uasyncio.Stream method), 41

Index 559

MicroPython Documentation, Release v1.20.0

get_float() (zsensor.Sensor method), 184
get_i32() (esp32.NVS method), 174
get_int() (zsensor.Sensor method), 184
get_line() (lcd160cr.LCD160CR method), 160
get_micros() (zsensor.Sensor method), 184
get_millis() (zsensor.Sensor method), 184
get_next_update() (esp32.Partition method), 171
get_pixel() (lcd160cr.LCD160CR method), 160
get_touch() (lcd160cr.LCD160CR method), 162
getaddrinfo() (in module socket), 26
getattr()

built-in function, 4
getcwd() (in module os), 16
getrandbits() (in module random), 20
getvalue() (io.BytesIO method), 12
globals()

built-in function, 4
gmtime() (in module time), 35
GPIO, 188
GPIO port, 188
gpio() (pyb.Pin method), 139
GPIO_BSRR (in module stm), 157
gpio_deep_sleep_hold() (in module esp32), 170
GPIO_IDR (in module stm), 157
GPIO_ODR (in module stm), 157
GPIOA (in module stm), 157
GPIOB (in module stm), 157
group() (re.match method), 23
groups() (re.match method), 23
GYRO_X (in module zsensor), 184
GYRO_Y (in module zsensor), 184
GYRO_Z (in module zsensor), 185

H
-h

command line option, 479
hall_sensor() (in module esp32), 170
hard_reset() (in module pyb), 116
hasattr()

built-in function, 4
hash()

built-in function, 4
hashlib

module, 10
hashlib.md5 (class in hashlib), 10
hashlib.sha1 (class in hashlib), 10
hashlib.sha256 (class in hashlib), 10
have_cdc() (in module pyb), 117
heap, 188
HEAP_DATA (in module esp32), 171
HEAP_EXEC (in module esp32), 171
heap_lock() (in module micropython), 92
heap_locked() (in module micropython), 92
heap_unlock() (in module micropython), 92

heapify() (in module heapq), 11
heappop() (in module heapq), 11
heappush() (in module heapq), 11
heapq

module, 10
heartbeat() (in module wipy), 164
hex()

built-in function, 4
hexdigest() (hashlib.hash method), 10
hexlify() (in module binascii), 3
hid() (in module pyb), 117
high() (machine.Pin method), 67
hline() (framebuf.FrameBuffer method), 58
hostname() (in module network), 103
HUMIDITY (in module zsensor), 185

I
-i

command line option, 479
I2C (class in machine), 79
I2C (class in pyb), 133
I2C.CONTROLLER (in module pyb), 135
I2C.PERIPHERAL (in module pyb), 135
I2S (class in machine), 83
I2S.MONO (in module machine), 84
I2S.RX (in module machine), 84
I2S.STEREO (in module machine), 84
I2S.TX (in module machine), 84
id()

built-in function, 4
idf_heap_info() (in module esp32), 170
idle() (in module machine), 62
ifconfig() (network.AbstractNIC method), 95
ifconfig() (network.LAN method), 103
ifconfig() (network.WIZNET5K method), 102
ifconfig() (network.WLAN method), 97
ifconfig() (network.WLANWiPy method), 100
ilistdir() (in module os), 16
implementation (in module sys), 33
ImportError, 5
INCL (in module btree), 57
include()

built-in function, 222
index() (pyb.pinaf method), 141
IndexError, 5
inet_ntop() (in module socket), 26
inet_pton() (in module socket), 26
info() (esp32.Partition method), 171
info() (in module pyb), 117
info() (pyb.CAN method), 124
info() (pyb.RTC method), 142
init() (machine.ADC method), 70
init() (machine.ADCBlock method), 71
init() (machine.adcchannel method), 165

560 Index

MicroPython Documentation, Release v1.20.0

init() (machine.ADCWiPy method), 165
init() (machine.I2C method), 80
init() (machine.I2S method), 84
init() (machine.Pin method), 65
init() (machine.PWM method), 72
init() (machine.RTC method), 85
init() (machine.SD method), 88
init() (machine.SPI method), 78
init() (machine.Timer method), 86
init() (machine.TimerWiPy method), 166
init() (machine.UART method), 74
init() (network.WLANWiPy method), 99
init() (pyb.DAC method), 129
init() (pyb.I2C method), 134
init() (pyb.Pin method), 139
init() (pyb.SPI method), 144
init() (pyb.Timer method), 147
init() (pyb.UART method), 152
init() (pyb.USB_VCP method), 155
init() (rp2.StateMachine method), 180
init() (server method), 465
input()

built-in function, 4
int (built-in class), 4
INT8 (in module uctypes), 107
INT16 (in module uctypes), 107
INT32 (in module uctypes), 107
INT64 (in module uctypes), 107
intensity() (pyb.LED method), 137
interned string, 188
io

module, 11
ioctl() (esp32.Partition method), 171
ioctl() (os.AbstractBlockDev method), 19
ioctl() (pyb.Flash method), 132
ioctl() (rp2.Flash method), 178
ioctl() (zephyr.DiskAccess method), 183
ioctl() (zephyr.FlashArea method), 183
ipoll() (select.poll method), 24
IPPROTO_SEC (in module socket), 27
IPPROTO_TCP (in module socket), 27
IPPROTO_UDP (in module socket), 27
irq() (bluetooth.BLE method), 45
irq() (machine.I2S method), 84
irq() (machine.Pin method), 66
irq() (machine.RTC method), 85
irq() (machine.timerchannel method), 167
irq() (machine.UART method), 75
irq() (network.WLANWiPy method), 100
irq() (pyb.USB_VCP method), 156
irq() (rp2.PIO method), 179
irq() (rp2.StateMachine method), 181
is_preempt_thread() (in module zephyr), 182
is_ready() (pyb.I2C method), 134

is_set() (uasyncio.Event method), 39
is_touched() (lcd160cr.LCD160CR method), 162
isconnected() (network.AbstractNIC method), 95
isconnected() (network.LAN method), 103
isconnected() (network.WIZNET5K method), 102
isconnected() (network.WLAN method), 97
isconnected() (network.WLANWiPy method), 100
isconnected() (pyb.USB_VCP method), 155
isfinite() (in module math), 14
isinf() (in module math), 14
isinstance()

built-in function, 4
isnan() (in module math), 14
isrunning() (server method), 465
issubclass()

built-in function, 4
items() (btree.btree method), 56
iter()

built-in function, 4

J
jpeg() (lcd160cr.LCD160CR method), 163
jpeg_data() (lcd160cr.LCD160CR method), 163
jpeg_start() (lcd160cr.LCD160CR method), 163
json

module, 13

K
kbd_intr() (in module micropython), 92
KeyboardInterrupt, 5
KeyError, 5
keys() (btree.btree method), 56

L
l2cap_connect() (bluetooth.BLE method), 53
l2cap_disconnect() (bluetooth.BLE method), 53
l2cap_listen() (bluetooth.BLE method), 53
l2cap_recvinto() (bluetooth.BLE method), 53
l2cap_send() (bluetooth.BLE method), 53
LAN (class in network), 102
LCD (class in pyb), 136
lcd160cr

module, 158
LCD160CR (class in lcd160cr), 159
LCD160CR.h (in module lcd160cr), 160
lcd160cr.LANDSCAPE (in module lcd160cr), 164
lcd160cr.LANDSCAPE_UPSIDEDOWN (in module

lcd160cr), 164
lcd160cr.PORTRAIT (in module lcd160cr), 164
lcd160cr.PORTRAIT_UPSIDEDOWN (in module

lcd160cr), 164
lcd160cr.STARTUP_DECO_INFO (in module

lcd160cr), 164

Index 561

MicroPython Documentation, Release v1.20.0

lcd160cr.STARTUP_DECO_MLOGO (in module
lcd160cr), 164

lcd160cr.STARTUP_DECO_NONE (in module
lcd160cr), 164

LCD160CR.w (in module lcd160cr), 160
ldexp() (in module math), 14
LED (class in pyb), 137
len()

built-in function, 4
lgamma() (in module math), 14
LIGHT (in module zsensor), 185
light() (pyb.LCD method), 136
lightsleep() (in module machine), 62
line() (framebuf.FrameBuffer method), 59
line() (lcd160cr.LCD160CR method), 161
line() (pyb.ExtInt method), 131
line_no_clip() (lcd160cr.LCD160CR method), 162
list (built-in class), 4
listdir() (in module os), 16
listen() (socket.socket method), 27
LITTLE_ENDIAN (in module uctypes), 107
load() (in module json), 13
load_binary() (esp32.ULP method), 173
loads() (in module json), 13
locals()

built-in function, 4
localtime() (in module time), 35
Lock (class in uasyncio), 40
locked() (uasyncio.Lock method), 40
log() (in module cmath), 6
log() (in module math), 14
log2() (in module math), 15
log10() (in module cmath), 6
log10() (in module math), 15
Loop (class in uasyncio), 42
loop() (esp32.RMT method), 172
low() (machine.Pin method), 66

M
-m <module>

command line option, 479
mac() (network.WLANWiPy method), 100
machine

module, 60
machine.DEEPSLEEP (in module machine), 63
machine.DEEPSLEEP_RESET (in module machine),

63
machine.HARD_RESET (in module machine), 63
machine.IDLE (in module machine), 63
machine.PIN_WAKE (in module machine), 63
machine.PWRON_RESET (in module machine), 63
machine.RTC_WAKE (in module machine), 63
machine.SLEEP (in module machine), 63
machine.SOFT_RESET (in module machine), 63

machine.WDT_RESET (in module machine), 63
machine.WLAN_WAKE (in module machine), 63
MAGN_X (in module zsensor), 185
MAGN_Y (in module zsensor), 185
MAGN_Z (in module zsensor), 185
main()

built-in function, 465
main() (in module pyb), 117
makefile() (socket.socket method), 29
map()

built-in function, 4
mapper() (pyb.Pin class method), 138
mark_app_valid_cancel_rollback()

(esp32.Partition class method), 171
match() (in module re), 22
match() (re.regex method), 23
math

module, 13
max()

built-in function, 4
maxsize (in module sys), 33
MCU, 188
measure() (zsensor.Sensor method), 184
mem8 (in module machine), 60
mem8 (in module stm), 156
mem16 (in module machine), 60
mem16 (in module stm), 156
mem32 (in module machine), 60
mem32 (in module stm), 156
mem_alloc() (in module gc), 9
mem_free() (in module gc), 9
mem_info() (in module micropython), 92
mem_read() (pyb.I2C method), 134
mem_write() (pyb.I2C method), 134
MemoryError, 5
memoryview (built-in class), 4
metadata()

built-in function, 222
MICROPYINSPECT, 479
micropython

module, 91
MicroPython port, 188
MicroPython Unix port, 188
micropython-lib, 188
micros() (in module pyb), 115
millis() (in module pyb), 115
min()

built-in function, 4
mip, 188
mkdir() (in module os), 16
mkfs()

built-in function, 465
mkfs() (os.VfsFat static method), 18
mkfs() (os.VfsLfs1 static method), 18

562 Index

MicroPython Documentation, Release v1.20.0

mkfs() (os.VfsLfs2 static method), 18
mktime() (in module time), 35
mode() (machine.Pin method), 67
mode() (network.WLANWiPy method), 100
mode() (pyb.Pin method), 139
modf() (in module math), 15
modify() (select.poll method), 24
module

_thread, 43
array, 2
binascii, 3
bluetooth, 43
btree, 55
cmath, 6
collections, 7
cryptolib, 57
errno, 8
esp, 168
esp32, 170
framebuf, 58
gc, 9
hashlib, 10
heapq, 10
io, 11
json, 13
lcd160cr, 158
machine, 60
math, 13
micropython, 91
neopixel, 93
network, 94
os, 15
pyb, 115
random, 20
re, 21
rp2, 175
select, 23
socket, 25
ssl, 30
stm, 156
struct, 31
sys, 32
time, 34
uasyncio, 38
uctypes, 104
wipy, 164
zephyr, 181
zlib, 42
zsensor, 184

module()
built-in function, 222

modules (in module sys), 33
mono() (WM8960 method), 112
mount()

built-in function, 465
mount() (in module os), 17
mount() (in module pyb), 117
mpremote, 189
.mpy file, 189
mute() (WM8960 method), 112

N
name() (pyb.Pin method), 139
name() (pyb.pinaf method), 141
namedtuple() (in module collections), 7
NameError, 5
names() (pyb.Pin method), 140
native, 189
NATIVE (in module uctypes), 107
neopixel

module, 93
NeoPixel (class in neopixel), 93
network

module, 94
network.Server (built-in class), 465
new_event_loop() (in module uasyncio), 42
next()

built-in function, 4
noise() (pyb.DAC method), 129
NotImplementedError, 5
now() (machine.RTC method), 85
NVS (class in esp32), 174

O
-O | -O<level> | -OO...

command line option, 479
object (built-in class), 4
oct()

built-in function, 4
off() (machine.Pin method), 66
off() (machine.Signal method), 69
off() (pyb.LED method), 137
on() (machine.Pin method), 66
on() (machine.Signal method), 69
on() (pyb.LED method), 137
open()

built-in function, 4
open() (in module btree), 56
open() (in module io), 12
open_connection() (in module uasyncio), 40
opt_level() (in module micropython), 91
ord()

built-in function, 5
OrderedDict (class in collections), 7
os

module, 15
osdebug() (in module esp), 169
OSError, 5

Index 563

MicroPython Documentation, Release v1.20.0

P
pack() (in module struct), 32
pack_into() (in module struct), 32
package()

built-in function, 221
Partition (class in esp32), 171
Partition.BOOT (in module esp32), 171
Partition.RUNNING (in module esp32), 171
Partition.TYPE_APP (in module esp32), 171
Partition.TYPE_DATA (in module esp32), 171
path (in module sys), 33
period() (machine.timerchannel method), 168
period() (pyb.Timer method), 149
phase() (in module cmath), 6
phy_mode() (in module network), 104
pi (in module cmath), 7
pi (in module math), 15
Pin (class in machine), 64
Pin (class in pyb), 138
pin() (pyb.Pin method), 140
Pin.AF_OD (in module pyb), 140
Pin.AF_PP (in module pyb), 140
Pin.ALT (in module machine), 67
Pin.ALT (in module pyb), 140
Pin.ALT_OPEN_DRAIN (in module machine), 67
Pin.ANALOG (in module machine), 67
Pin.ANALOG (in module pyb), 140
Pin.DRIVE_0 (in module machine), 67
Pin.DRIVE_1 (in module machine), 67
Pin.DRIVE_2 (in module machine), 67
Pin.IN (in module machine), 67
Pin.IN (in module pyb), 140
Pin.IRQ_FALLING (in module machine), 67
Pin.IRQ_HIGH_LEVEL (in module machine), 67
Pin.IRQ_LOW_LEVEL (in module machine), 67
Pin.IRQ_RISING (in module machine), 67
Pin.OPEN_DRAIN (in module machine), 67
Pin.OUT (in module machine), 67
Pin.OUT_OD (in module pyb), 140
Pin.OUT_PP (in module pyb), 140
Pin.PULL_DOWN (in module machine), 67
Pin.PULL_DOWN (in module pyb), 140
Pin.PULL_HOLD (in module machine), 67
Pin.PULL_NONE (in module pyb), 140
Pin.PULL_UP (in module machine), 67
Pin.PULL_UP (in module pyb), 140
PIO (class in rp2), 178
PIOASMError (class in rp2), 175
PIO.IN_HIGH (in module rp2), 179
PIO.IN_LOW (in module rp2), 179
PIO.IRQ_SM0 (in module rp2), 179
PIO.IRQ_SM1 (in module rp2), 179
PIO.IRQ_SM2 (in module rp2), 179
PIO.IRQ_SM3 (in module rp2), 179

PIO.JOIN_NONE (in module rp2), 179
PIO.JOIN_RX (in module rp2), 179
PIO.JOIN_TX (in module rp2), 179
PIO.OUT_HIGH (in module rp2), 179
PIO.OUT_LOW (in module rp2), 179
PIO.SHIFT_LEFT (in module rp2), 179
PIO.SHIFT_RIGHT (in module rp2), 179
pixel() (framebuf.FrameBuffer method), 58
pixel() (pyb.LCD method), 136
platform (in module sys), 34
polar() (in module cmath), 6
poll() (in module select), 24
poll() (select.poll method), 24
poly() (framebuf.FrameBuffer method), 59
poly_dot() (lcd160cr.LCD160CR method), 162
poly_line() (lcd160cr.LCD160CR method), 162
popleft() (collections.deque method), 7
port, 189
port() (pyb.Pin method), 140
pow()

built-in function, 5
pow() (in module math), 15
prescaler() (pyb.Timer method), 149
PRESS (in module zsensor), 185
print()

built-in function, 5
print_exception() (in module sys), 32
property()

built-in function, 5
PROX (in module zsensor), 185
ps1 (in module sys), 34
ps2 (in module sys), 34
PTR (in module uctypes), 107
pull() (machine.Pin method), 67
pull() (pyb.Pin method), 140
pulse_width() (pyb.Servo method), 143
pulse_width() (pyb.timerchannel method), 150
pulse_width_percent() (pyb.timerchannel

method), 150
put() (rp2.StateMachine method), 181
PWM (class in machine), 72
.py file, 189
pyb

module, 115
pyb.hid_keyboard (in module pyb), 119
pyb.hid_mouse (in module pyb), 119
Python Enhancement Proposals

PEP 526, 261
PEP 618, 261

Q
qstr_info() (in module micropython), 92

564 Index

MicroPython Documentation, Release v1.20.0

R
radians() (in module math), 15
randint() (in module random), 20
random

module, 20
random() (in module random), 21
randrange() (in module random), 20
range()

built-in function, 5
raw_temperature() (in module esp32), 170
re

module, 21
read() (ADC method), 415
read() (machine.SPI method), 78
read() (machine.UART method), 75
read() (pyb.ADC method), 120
read() (pyb.UART method), 152
read() (pyb.USB_VCP method), 155
read() (socket.socket method), 29
read() (uasyncio.Stream method), 41
read_timed() (pyb.ADC method), 120
read_timed_multi() (pyb.ADC method), 121
read_u16(), 548
read_u16() (machine.ADC method), 70
read_uv() (ADC method), 414
read_uv() (machine.ADC method), 70
readblocks() (esp32.Partition method), 171
readblocks() (os.AbstractBlockDev method), 19
readblocks() (pyb.Flash method), 132
readblocks() (rp2.Flash method), 178
readblocks() (zephyr.DiskAccess method), 183
readblocks() (zephyr.FlashArea method), 183
readchar() (pyb.UART method), 152
readexactly() (uasyncio.Stream method), 41
readfrom() (machine.I2C method), 81
readfrom_into() (machine.I2C method), 81
readfrom_mem() (machine.I2C method), 81
readfrom_mem_into() (machine.I2C method), 81
readinto() (machine.I2C method), 80
readinto() (machine.I2S method), 84
readinto() (machine.SPI method), 78
readinto() (machine.UART method), 75
readinto() (pyb.UART method), 152
readinto() (pyb.USB_VCP method), 155
readinto() (socket.socket method), 29
readinto() (uasyncio.Stream method), 41
readline() (machine.UART method), 75
readline() (pyb.UART method), 152
readline() (pyb.USB_VCP method), 155
readline() (socket.socket method), 29
readline() (uasyncio.Stream method), 41
readlines() (pyb.USB_VCP method), 155
rect() (framebuf.FrameBuffer method), 59
rect() (in module cmath), 6

rect() (lcd160cr.LCD160CR method), 161
rect_interior() (lcd160cr.LCD160CR method),

161
rect_interior_no_clip() (lcd160cr.LCD160CR

method), 162
rect_no_clip() (lcd160cr.LCD160CR method), 161
rect_outline() (lcd160cr.LCD160CR method), 161
rect_outline_no_clip() (lcd160cr.LCD160CR

method), 161
recv() (pyb.CAN method), 126
recv() (pyb.I2C method), 134
recv() (pyb.SPI method), 144
recv() (pyb.USB_HID method), 154
recv() (pyb.USB_VCP method), 155
recv() (socket.socket method), 28
recvfrom() (socket.socket method), 28
reg() (pyb.pinaf method), 141
register() (select.poll method), 24
regs() (network.WIZNET5K method), 102
regs() (pyb.ExtInt class method), 131
release() (uasyncio.Lock method), 40
remove() (in module os), 16
remove_program() (rp2.PIO method), 178
rename() (in module os), 16
REPL, 189
repl_uart() (in module pyb), 118
repr()

built-in function, 5
require()

built-in function, 222
reset() (in module machine), 61
reset() (lcd160cr.LCD160CR method), 163
reset_cause() (in module machine), 61
restart() (pyb.CAN method), 124
restart() (rp2.StateMachine method), 180
reversed()

built-in function, 5
rfcore_fw_version() (in module stm), 157
rfcore_status() (in module stm), 157
rfcore_sys_hci() (in module stm), 157
rgb() (lcd160cr.LCD160CR static method), 159
rmdir() (in module os), 16
RMT (class in esp32), 172
rng() (in module machine), 63
rng() (in module pyb), 118
round()

built-in function, 5
rp2

module, 175
RTC (class in machine), 85
RTC (class in pyb), 141
RTC.ALARM0 (in module machine), 86
run() (esp32.ULP method), 173
run() (in module uasyncio), 38

Index 565

MicroPython Documentation, Release v1.20.0

run_forever() (uasyncio.Loop method), 42
run_until_complete() (uasyncio.Loop method), 42
RuntimeError, 5
rx_fifo() (rp2.StateMachine method), 181
rxcallback() (pyb.CAN method), 127

S
save_to_flash() (lcd160cr.LCD160CR method),

160
scan() (machine.I2C method), 80
scan() (network.AbstractNIC method), 95
scan() (network.WLAN method), 97
scan() (network.WLANWiPy method), 99
scan() (pyb.I2C method), 135
schedule() (in module micropython), 92
screen_dump() (lcd160cr.LCD160CR method), 160
screen_load() (lcd160cr.LCD160CR method), 161
scroll() (framebuf.FrameBuffer method), 59
SD (class in machine), 88
SDCard (class in machine), 88
search() (in module re), 22
search() (re.regex method), 23
seed() (in module random), 21
select

module, 23
select() (in module select), 24
send() (pyb.CAN method), 126
send() (pyb.I2C method), 134
send() (pyb.SPI method), 145
send() (pyb.USB_HID method), 154
send() (pyb.USB_VCP method), 156
send() (socket.socket method), 28
send_recv() (pyb.SPI method), 145
sendall() (socket.socket method), 28
sendbreak() (machine.UART method), 75
sendbreak() (pyb.UART method), 153
sendto() (socket.socket method), 28
Sensor (class in zsensor), 184
Server (class in uasyncio), 41
Servo (class in pyb), 143
set (built-in class), 5
set() (uasyncio.Event method), 39
set() (uasyncio.ThreadSafeFlag method), 40
set_blob() (esp32.NVS method), 174
set_boot() (esp32.Partition method), 171
set_brightness() (lcd160cr.LCD160CR method),

160
set_data_route() (WM8960 method), 112
set_exception_handler() (uasyncio.Loop

method), 42
set_font() (lcd160cr.LCD160CR method), 161
set_i2c_addr() (lcd160cr.LCD160CR method), 160
set_i32() (esp32.NVS method), 174
set_left_input() (WM8960 method), 111

set_module() (WM8960 method), 112
set_native_code_location() (in module esp),

169
set_orient() (lcd160cr.LCD160CR method), 160
set_pen() (lcd160cr.LCD160CR method), 161
set_pixel() (lcd160cr.LCD160CR method), 160
set_pos() (lcd160cr.LCD160CR method), 161
set_power() (lcd160cr.LCD160CR method), 160
set_right_input() (WM8960 method), 111
set_scroll() (lcd160cr.LCD160CR method), 162
set_scroll_buf() (lcd160cr.LCD160CR method),

163
set_scroll_win() (lcd160cr.LCD160CR method),

163
set_scroll_win_param() (lcd160cr.LCD160CR

method), 163
set_spi_win() (lcd160cr.LCD160CR method), 162
set_startup_deco() (lcd160cr.LCD160CR

method), 160
set_text_color() (lcd160cr.LCD160CR method),

161
set_uart_baudrate() (lcd160cr.LCD160CR

method), 160
set_wakeup_period() (esp32.ULP method), 173
setattr()

built-in function, 5
setblocking() (socket.socket method), 29
setfilter() (pyb.CAN method), 125
setinterrupt() (pyb.USB_VCP method), 155
setsockopt() (socket.socket method), 28
settimeout() (socket.socket method), 28
settrace() (in module sys), 32
shell_exec() (in module zephyr), 182
shift() (machine.I2S static method), 84
show() (pyb.LCD method), 136
show_framebuf() (lcd160cr.LCD160CR method),

162
Signal (class in machine), 69
sin() (in module cmath), 6
sin() (in module math), 15
sinh() (in module math), 15
sizeof() (in module uctypes), 107
sleep() (in module machine), 62
sleep() (in module time), 35
sleep() (in module uasyncio), 38
sleep_ms() (in module time), 35
sleep_ms() (in module uasyncio), 38
sleep_type() (in module esp), 168
sleep_us() (in module time), 35
slice (built-in class), 5
SOCK_DGRAM (in module socket), 27
SOCK_STREAM (in module socket), 27
socket

module, 25

566 Index

MicroPython Documentation, Release v1.20.0

socket (class in socket), 27
socket.error, 29
soft_reset() (in module machine), 61
SoftI2C (class in machine), 80
SoftSPI (class in machine), 77
SoftSPI.LSB (in module machine), 78
SoftSPI.MSB (in module machine), 78
sorted()

built-in function, 5
source_freq() (esp32.RMT method), 172
source_freq() (pyb.Timer method), 149
span() (re.match method), 23
speed() (pyb.Servo method), 143
SPI (class in machine), 77
SPI (class in pyb), 144
SPI.CONTROLLER (in module machine), 78
SPI.CONTROLLER (in module pyb), 145
SPI.LSB (in module machine), 78
SPI.LSB (in module pyb), 145
SPI.MSB (in module machine), 78
SPI.MSB (in module pyb), 145
SPI.PERIPHERAL (in module pyb), 145
split() (re.regex method), 23
sqrt() (in module cmath), 6
sqrt() (in module math), 15
ssid() (network.WLANWiPy method), 100
ssl

module, 30
ssl.CERT_NONE (in module ssl), 31
ssl.CERT_OPTIONAL (in module ssl), 31
ssl.CERT_REQUIRED (in module ssl), 31
ssl.SSLError (in module ssl), 31
ssl.wrap_socket() (in module ssl), 30
stack_use() (in module micropython), 92
standby() (in module pyb), 117
start() (machine.I2C method), 80
start() (re.match method), 23
start_server() (in module uasyncio), 40
stat() (in module os), 16
state() (pyb.CAN method), 124
state_machine() (rp2.PIO method), 179
StateMachine (class in rp2), 180
staticmethod()

built-in function, 5
status() (network.AbstractNIC method), 95
status() (network.LAN method), 103
status() (network.WLAN method), 97
statvfs() (in module os), 16
stderr (in module sys), 34
stdin (in module sys), 34
stdout (in module sys), 34
stm

module, 156
stop() (in module pyb), 117

stop() (machine.I2C method), 80
stop() (uasyncio.Loop method), 42
StopIteration, 5
str (built-in class), 5
stream, 189
Stream (class in uasyncio), 40
StringIO (class in io), 12
struct

module, 31
struct (class in uctypes), 107
sub() (in module re), 22
sub() (re.regex method), 23
sum()

built-in function, 5
super()

built-in function, 5
swint() (pyb.ExtInt method), 131
Switch (class in pyb), 146
sync() (in module os), 17
sync() (in module pyb), 118
SyntaxError, 5
sys

module, 32
SystemExit, 6

T
tan() (in module math), 15
tanh() (in module math), 15
Task (class in uasyncio), 39
text() (framebuf.FrameBuffer method), 59
text() (pyb.LCD method), 136
TextIOWrapper (class in io), 12
thread_analyze() (in module zephyr), 182
ThreadSafeFlag (class in uasyncio), 40
threshold() (in module gc), 9
ticks_add() (in module time), 36
ticks_cpu() (in module time), 36
ticks_diff() (in module time), 36
ticks_ms() (in module time), 35
ticks_us() (in module time), 36
tilt() (pyb.Accel method), 119
time

module, 34
time() (in module time), 37
time_ns() (in module time), 37
time_pulse_us() (in module machine), 63
timeout() (server method), 465
Timer (class in machine), 86
Timer (class in pyb), 147
Timer.A (built-in variable), 472
Timer.B (built-in variable), 472
Timer.BRK_HIGH (in module pyb), 150
Timer.BRK_LOW (in module pyb), 150
Timer.BRK_OFF (in module pyb), 150

Index 567

MicroPython Documentation, Release v1.20.0

Timer.CENTER (in module pyb), 150
Timer.DOWN (in module pyb), 150
Timer.MATCH (built-in variable), 472
Timer.NEGATIVE (built-in variable), 472
Timer.ONE_SHOT (in module machine), 87
Timer.PERIODIC (in module machine), 87
Timer.POSITIVE (built-in variable), 472
Timer.PWM (built-in variable), 472
Timer.TIMEOUT (built-in variable), 472
Timer.UP (in module pyb), 150
TimerWiPy (class in machine), 166
TimerWiPy.ONE_SHOT (in module machine), 168
TimerWiPy.PERIODIC (in module machine), 168
to_bytes() (int method), 4
toggle() (pyb.LED method), 137
touch_config() (lcd160cr.LCD160CR method), 162
tracebacklimit (in module sys), 34
triangle() (pyb.DAC method), 129
trunc() (in module math), 15
tuple (built-in class), 5
tx_fifo() (rp2.StateMachine method), 181
txdone() (machine.UART method), 76
type()

built-in function, 5
TypeError, 6

U
UART, 189
UART (class in machine), 74
UART (class in pyb), 151
UART.CTS (in module pyb), 153
UART.RTS (in module pyb), 153
UART.RX_ANY (in module machine), 76
uasyncio

module, 38
uctypes

module, 104
udelay() (in module pyb), 115
UINT8 (in module uctypes), 107
UINT16 (in module uctypes), 107
UINT32 (in module uctypes), 107
UINT64 (in module uctypes), 107
ULP (class in esp32), 173
umount() (in module os), 18
uname() (in module os), 16
unhexlify() (in module binascii), 3
uniform() (in module random), 21
unique_id() (in module machine), 63
unique_id() (in module pyb), 118
unmount()

built-in function, 465
unpack() (in module struct), 32
unpack_from() (in module struct), 32
unregister() (select.poll method), 24

update() (hashlib.hash method), 10
upip, 189
urandom() (in module os), 16
USB_HID (class in pyb), 154
usb_mode() (in module pyb), 118
USB_VCP (class in pyb), 155
USB_VCP.CTS (in module pyb), 156
USB_VCP.IRQ_RX (in module pyb), 156
USB_VCP.RTS (in module pyb), 156
UUID (class in bluetooth), 54

V
-v

command line option, 479
value() (machine.adcchannel method), 165
value() (machine.Pin method), 65
value() (machine.Signal method), 69
value() (pyb.Pin method), 139
value() (pyb.Switch method), 146
ValueError, 6
values() (btree.btree method), 56
version (in module sys), 34
version_info (in module sys), 34
VfsFat (class in os), 18
VfsLfs1 (class in os), 18
VfsLfs2 (class in os), 18
vline() (framebuf.FrameBuffer method), 58
VOID (in module uctypes), 107
volume() (WM8960 method), 111

W
wait() (uasyncio.Event method), 39
wait() (uasyncio.ThreadSafeFlag method), 40
wait_closed() (uasyncio.Server method), 41
wait_closed() (uasyncio.Stream method), 41
wait_done() (esp32.RMT method), 172
wait_for() (in module uasyncio), 39
wait_for_ms() (in module uasyncio), 39
wake_on_ext0() (in module esp32), 170
wake_on_ext1() (in module esp32), 170
wake_on_touch() (in module esp32), 170
wake_on_ulp() (in module esp32), 170
wake_reason() (in module machine), 62
wakeup() (pyb.RTC method), 142
WDT (class in machine), 87
webrepl, 189
wfi() (in module pyb), 117
width() (ADC method), 415
wipy

module, 164
WIZNET5K (class in network), 101
WLAN (class in network), 96
WLANWiPy (class in network), 99
WLANWiPy.AP (in module network), 100

568 Index

MicroPython Documentation, Release v1.20.0

WLANWiPy.EXT_ANT (in module network), 101
WLANWiPy.INT_ANT (in module network), 100
WLANWiPy.STA (in module network), 100
WLANWiPy.WEP (in module network), 100
WLANWiPy.WPA (in module network), 100
WLANWiPy.WPA2 (in module network), 100
WM8960 (built-in class), 109
write(), 549
write() (lcd160cr.LCD160CR method), 161
write() (machine.I2C method), 80
write() (machine.I2S method), 84
write() (machine.SPI method), 78
write() (machine.UART method), 75
write() (neopixel.NeoPixel method), 94
write() (pyb.DAC method), 129
write() (pyb.LCD method), 136
write() (pyb.UART method), 153
write() (pyb.USB_VCP method), 155
write() (socket.socket method), 29
write() (uasyncio.Stream method), 41
write_pulses() (esp32.RMT method), 173
write_readinto() (machine.SPI method), 78
write_timed() (pyb.DAC method), 129
writeblocks() (esp32.Partition method), 171
writeblocks() (os.AbstractBlockDev method), 19
writeblocks() (pyb.Flash method), 132
writeblocks() (rp2.Flash method), 178
writeblocks() (zephyr.DiskAccess method), 183
writeblocks() (zephyr.FlashArea method), 183
writechar() (pyb.UART method), 153
writeto() (machine.I2C method), 81
writeto_mem() (machine.I2C method), 81
writevto() (machine.I2C method), 81

X
-X <option>

command line option, 479
x() (pyb.Accel method), 119

Y
y() (pyb.Accel method), 119

Z
z() (pyb.Accel method), 120
zephyr

module, 181
ZeroDivisionError, 6
zip()

built-in function, 5
zlib

module, 42
zsensor

module, 184

Index 569

	MicroPython libraries
	Python standard libraries and micro-libraries
	array – arrays of numeric data
	Classes

	binascii – binary/ASCII conversions
	Functions

	builtins – builtin functions and exceptions
	Functions and types
	Exceptions

	cmath – mathematical functions for complex numbers
	Functions
	Constants

	collections – collection and container types
	Classes

	errno – system error codes
	Constants

	gc – control the garbage collector
	Functions

	hashlib – hashing algorithms
	Constructors
	Methods

	heapq – heap queue algorithm
	Functions

	io – input/output streams
	Conceptual hierarchy
	Functions
	Classes

	json – JSON encoding and decoding
	Functions

	math – mathematical functions
	Functions
	Constants

	os – basic “operating system” services
	General functions
	Filesystem access
	Terminal redirection and duplication
	Filesystem mounting
	Block devices
	Simple and extended interface

	random – generate random numbers
	Functions for integers
	Functions for floats
	Other Functions

	re – simple regular expressions
	Functions
	Regex objects
	Match objects

	select – wait for events on a set of streams
	Functions
	class Poll
	Methods

	socket – socket module
	Socket address format(s)
	Functions
	Constants
	class socket

	Methods

	ssl – SSL/TLS module
	Functions
	Exceptions
	Constants

	struct – pack and unpack primitive data types
	Functions

	sys – system specific functions
	Functions
	Constants

	time – time related functions
	Functions

	uasyncio — asynchronous I/O scheduler
	Core functions
	Additional functions
	class Task
	class Event
	class ThreadSafeFlag
	class Lock
	TCP stream connections
	Event Loop

	zlib – zlib decompression
	Functions

	_thread – multithreading support

	MicroPython-specific libraries
	bluetooth — low-level Bluetooth
	class BLE
	Constructor
	Configuration
	Event Handling
	Broadcaster Role (Advertiser)
	Observer Role (Scanner)
	Central Role
	Peripheral Role
	Central & Peripheral Roles
	GATT Server
	GATT Client
	L2CAP connection-oriented-channels
	Pairing and bonding
	class UUID
	Constructor

	btree – simple BTree database
	Functions
	Methods
	Constants

	cryptolib – cryptographic ciphers
	Classes

	framebuf — frame buffer manipulation
	class FrameBuffer
	Constructors
	Drawing primitive shapes
	Drawing text
	Other methods
	Constants

	machine — functions related to the hardware
	Memory access
	Reset related functions
	Interrupt related functions
	Power related functions
	Miscellaneous functions
	Constants
	Classes
	class Pin – control I/O pins
	Constructors
	Methods
	Constants

	class Signal – control and sense external I/O devices
	Constructors
	Methods

	class ADC – analog to digital conversion
	Constructors
	Methods

	class ADCBlock – control ADC peripherals
	Constructors
	Methods

	class PWM – pulse width modulation
	Constructors
	Methods
	Specific PWM class implementations
	Limitations of PWM

	class UART – duplex serial communication bus
	Constructors
	Methods
	Constants

	class SPI – a Serial Peripheral Interface bus protocol (controller side)
	Constructors
	Methods
	Constants

	class I2C – a two-wire serial protocol
	Constructors
	General Methods
	Primitive I2C operations
	Standard bus operations
	Memory operations

	class I2S – Inter-IC Sound bus protocol
	Constructor
	Methods
	Constants

	class RTC – real time clock
	Constructors
	Methods
	Constants

	class Timer – control hardware timers
	Constructors
	Methods
	Constants

	class WDT – watchdog timer
	Constructors
	Methods

	class SD – secure digital memory card (cc3200 port only)
	Constructors
	Methods

	class SDCard – secure digital memory card
	Implementation-specific details
	PyBoard
	ESP32
	cc3200
	mimxrt

	micropython – access and control MicroPython internals
	Functions

	neopixel — control of WS2812 / NeoPixel LEDs
	class NeoPixel
	Constructors
	Pixel access methods
	Output methods

	network — network configuration
	Common network adapter interface
	Specific network class implementations
	class WLAN – control built-in WiFi interfaces
	Constructors
	Methods

	class WLANWiPy – WiPy specific WiFi control
	Constructors
	Methods
	Constants

	class WIZNET5K – control WIZnet5x00 Ethernet modules
	Constructors
	Methods

	class LAN – control an Ethernet module
	Constructors
	Methods
	Specific LAN class implementations

	Network functions

	uctypes – access binary data in a structured way
	Defining structure layout
	Module contents
	Structure descriptors and instantiating structure objects
	Structure objects
	Limitations

	WM8960 – Driver for the WM8960 codec
	Constructor
	Tables of parameter constants
	Methods
	Examples

	Port-specific libraries
	Libraries specific to the pyboard
	pyb — functions related to the board
	Time related functions
	Reset related functions
	Interrupt related functions
	Power related functions
	Miscellaneous functions
	Constants
	Classes
	class Accel – accelerometer control
	Constructors
	Methods
	Hardware Note
	class ADC – analog to digital conversion
	Constructors
	Methods
	The ADCAll Object
	class CAN – controller area network communication bus
	Constructors
	Methods
	Constants
	class DAC – digital to analog conversion
	Constructors
	Methods
	Constants
	class ExtInt – configure I/O pins to interrupt on external events
	Constructors
	Class methods
	Methods
	Constants
	class Flash – access to built-in flash storage
	Constructors
	Methods
	Hardware Note
	class I2C – a two-wire serial protocol
	Constructors
	Methods
	Constants
	class LCD – LCD control for the LCD touch-sensor pyskin
	Constructors
	Methods
	class LED – LED object
	Constructors
	Methods
	class Pin – control I/O pins
	Constructors
	Class methods
	Methods
	Constants
	class PinAF – Pin Alternate Functions
	Methods
	class RTC – real time clock
	Constructors
	Methods
	class Servo – 3-wire hobby servo driver
	Constructors
	Methods
	class SPI – a controller-driven serial protocol
	Constructors
	Methods
	Constants
	class Switch – switch object
	Constructors
	Methods
	class Timer – control internal timers
	Constructors
	Methods
	class TimerChannel — setup a channel for a timer
	Methods
	Constants
	class UART – duplex serial communication bus
	Constructors
	Methods
	Constants
	Flow Control
	CTS: target controls Pyboard transmitter
	RTS: Pyboard controls target’s transmitter
	class USB_HID – USB Human Interface Device (HID)
	Constructors
	Methods
	class USB_VCP – USB virtual comm port
	Constructors
	Methods
	Constants

	stm — functionality specific to STM32 MCUs
	Memory access
	Peripheral register constants
	Functions specific to STM32WBxx MCUs

	lcd160cr — control of LCD160CR display
	class LCD160CR
	Constructors
	Static methods
	Instance members
	Setup commands
	Pixel access methods
	Drawing text
	Drawing primitive shapes
	Touch screen methods
	Advanced commands
	Constants

	Libraries specific to the WiPy
	wipy – WiPy specific features
	Functions

	class ADCWiPy – analog to digital conversion
	Constructors
	Methods

	class ADCChannel — read analog values from internal or external sources
	class TimerWiPy – control hardware timers
	Constructors
	Methods

	class TimerChannel — setup a channel for a timer
	Methods
	Constants

	Libraries specific to the ESP8266 and ESP32
	esp — functions related to the ESP8266 and ESP32
	Functions

	esp32 — functionality specific to the ESP32
	Functions
	Flash partitions
	Constants

	RMT
	Ultra-Low-Power co-processor
	Constants
	Non-Volatile Storage

	Libraries specific to the RP2040
	rp2 — functionality specific to the RP2040
	PIO related functions
	PIO assembly language instructions
	Classes
	class Flash – access to built-in flash storage
	Constructors
	Methods
	class PIO – advanced PIO usage
	Constructors
	Methods
	Constants
	class StateMachine – access to the RP2040’s programmable I/O interface
	Constructors
	Methods

	Libraries specific to Zephyr
	zephyr — functionality specific to the Zephyr port
	Functions
	Classes
	class DiskAccess – access to disk storage
	Constructors
	Methods
	class FlashArea – access to built-in flash storage
	Constructors
	Methods

	Additional Modules
	zsensor — Zephyr sensor bindings
	class Sensor — sensor control for the Zephyr port
	Constructor
	Methods
	Channels

	Extending built-in libraries from Python

	MicroPython language and implementation
	Glossary
	The MicroPython Interactive Interpreter Mode (aka REPL)
	Auto-indent
	Auto-completion
	Interrupting a running program
	Paste mode
	Soft reset
	The special variable _ (underscore)
	Raw mode and raw-paste mode

	MicroPython remote control: mpremote
	Commands
	Auto connection and soft-reset
	Shortcuts
	Examples

	MicroPython .mpy files
	Versioning and compatibility of .mpy files
	Binary encoding of .mpy files
	The header
	The global qstr and constant tables
	Raw code elements

	Writing interrupt handlers
	Tips and recommended practices
	MicroPython issues
	The emergency exception buffer
	Simplicity
	Communication between an ISR and the main program
	The use of object methods as callbacks
	Creation of Python objects
	Use of Python objects
	Overcoming the float limitation
	Using micropython.schedule

	Exceptions
	Interfacing to uasyncio
	General issues
	Interrupt handler design
	Reentrancy
	Critical sections
	Interrupts and the REPL

	Maximising MicroPython speed
	Designing for speed
	Algorithms
	RAM allocation
	Buffers
	Floating point
	Arrays

	Identifying the slowest section of code
	MicroPython code improvements
	The const() declaration
	Caching object references
	Controlling garbage collection

	The Native code emitter
	The Viper code emitter
	Accessing hardware directly

	MicroPython on microcontrollers
	Flash memory
	RAM
	Compilation phase
	Execution phase

	The heap
	Fragmentation
	Reporting
	Control of garbage collection

	String operations
	Postscript
	Footnote: gc.collect() return value

	MicroPython manifest files
	Summary
	Writing manifest files
	Building with a custom manifest
	Adding a manifest to a board definition
	High-level functions
	Low-level functions

	Examples

	Package management
	Installing packages with mip
	Using mip on the Unix port

	Installing packages with mpremote
	Installing packages manually
	Writing & publishing packages
	Freezing packages

	Inline assembler for Thumb2 architectures
	Document conventions
	Instruction categories
	Register move instructions
	Document conventions
	Register moves

	Load register from memory
	Document conventions
	Register Load

	Store register to memory
	Document conventions
	Register Store

	Logical & bitwise instructions
	Document conventions
	Logical instructions
	Shift and rotation instructions
	Special instructions

	Arithmetic instructions
	Document conventions
	Addition
	Subtraction
	Negation
	Multiplication and division

	Comparison instructions
	Document conventions
	The Application Program Status Register (APSR)
	APSR Bits
	Comparison instructions
	Conditional execution

	Branch instructions
	Document conventions
	Branch to label
	Long branches
	Subroutines (functions)

	Stack push and pop
	Document conventions
	Stack operations

	Miscellaneous instructions
	Floating point instructions
	Document conventions
	Arithmetic
	Move between ARM core and FPU registers
	Move between FPU register and memory
	Data comparison
	Convert between integer and float

	Assembler directives
	Labels
	Defining inline data

	Usage examples
	Hints and tips
	Code branches and subroutines
	Argument passing and return
	Multiple arguments
	Non-integer data types

	Named constants
	Assembler code as class methods
	Use of unsupported instructions
	Overcoming MicroPython’s integer restriction

	References

	Working with filesystems
	VFS
	Block devices
	Built-in block devices
	STM32 / Pyboard
	ESP8266
	ESP32

	Custom block devices

	Filesystems
	FAT
	Littlefs
	Hybrid (STM32)
	Hybrid (ESP32)

	The pyboard.py tool
	Running a command on the device
	Running a script on the device
	Filesystem access
	Using the pyboard library

	MicroPython differences from CPython
	Python 3.5
	Python 3.6
	Python 3.7
	Python 3.8
	Python 3.9
	Python 3.10
	Syntax
	Argument unpacking does not work if the argument being unpacked is the nth or greater argument where n is the number of bits in an MP_SMALL_INT.
	Operators

	MicroPython allows using := to assign to the variable of a comprehension, CPython raises a SyntaxError.
	Spaces

	uPy requires spaces between literal numbers and keywords, CPy doesn’t
	Unicode

	Unicode name escapes are not implemented

	Core language
	f-strings don’t support concatenation with adjacent literals if the adjacent literals contain braces or are f-strings
	f-strings cannot support expressions that require parsing to resolve unbalanced nested braces and brackets
	Raw f-strings are not supported
	f-strings don’t support the !r, !s, and !a conversions
	Classes

	Special method __del__ not implemented for user-defined classes
	Method Resolution Order (MRO) is not compliant with CPython
	When inheriting from multiple classes super() only calls one class
	Calling super() getter property in subclass will return a property object, not the value
	Functions

	Error messages for methods may display unexpected argument counts
	Function objects do not have the __module__ attribute
	User-defined attributes for functions are not supported
	Generator

	Context manager __exit__() not called in a generator which does not run to completion
	Runtime

	Local variables aren’t included in locals() result
	Code running in eval() function doesn’t have access to local variables
	import

	__all__ is unsupported in __init__.py in MicroPython.
	__path__ attribute of a package has a different type (single string instead of list of strings) in MicroPython
	Failed to load modules are still registered as loaded
	MicroPython does’t support namespace packages split across filesystem.

	Builtin types
	Exception
	All exceptions have readable value and errno attributes, not just StopIteration and OSError.
	Exception chaining not implemented
	User-defined attributes for builtin exceptions are not supported
	Exception in while loop condition may have unexpected line number
	Exception.__init__ method does not exist.

	bytearray
	Array slice assignment with unsupported RHS

	bytes
	bytes objects support .format() method
	bytes() with keywords not implemented
	Bytes subscription with step != 1 not implemented

	dict
	Dictionary keys view does not behave as a set.

	float
	uPy allows implicit conversion of objects in maths operations while CPython does not.
	uPy and CPython outputs formats may differ

	int
	bit_length method doesn’t exist.
	No int conversion for int-derived types available

	list
	List delete with step != 1 not implemented
	List slice-store with non-iterable on RHS is not implemented
	List store with step != 1 not implemented

	str
	Start/end indices such as str.endswith(s, start) not implemented
	Attributes/subscr not implemented
	str(…) with keywords not implemented
	str.ljust() and str.rjust() not implemented
	None as first argument for rsplit such as str.rsplit(None, n) not implemented
	Subscript with step != 1 is not yet implemented

	tuple
	Tuple load with step != 1 not implemented

	Modules
	array
	Comparison between different typecodes not supported
	Overflow checking is not implemented
	Looking for integer not implemented
	Array deletion not implemented
	Subscript with step != 1 is not yet implemented

	builtins
	Second argument to next() is not implemented

	deque
	Deque not implemented

	json
	JSON module does not throw exception when object is not serialisable

	os
	environ attribute is not implemented
	getenv returns actual value instead of cached value

	random
	getrandbits method can only return a maximum of 32 bits at a time.
	randint method can only return an integer that is at most the native word size.

	struct
	Struct pack with too few args, not checked by uPy
	Struct pack with too many args, not checked by uPy
	Struct pack with whitespace in format, whitespace ignored by CPython, error on uPy

	sys
	Overriding sys.stdin, sys.stdout and sys.stderr not possible

	MicroPython Internals
	Getting Started
	Source control with git
	Get the code
	Compile and build the code
	Required dependencies
	Building the MicroPython cross-compiler
	Building the Unix port of MicroPython
	Building the Windows port
	Building the STM32 port

	Building the documentation
	Running the tests
	Folder structure

	Writing tests
	The Compiler
	Adding a grammar rule
	Adding a lexical token
	Parsing
	Compiler passes
	First pass
	Second and third passes
	Fourth pass

	Emitting bytecode
	Emitting native code

	Memory Management
	The object model
	Allocation of objects

	Implementing a Module
	Implementing a core module

	Optimizations
	Frozen bytecode
	Variables
	Allocation of memory

	MicroPython string interning
	Compile-time QSTR generation
	Run-time QSTR generation

	Maps and Dictionaries
	Open addressing
	Linear probing

	The public C API
	Extending MicroPython in C
	MicroPython external C modules
	Structure of an external C module
	Basic example
	Compiling the cmodule into MicroPython
	Module usage in MicroPython

	Native machine code in .mpy files
	Supported features and limitations
	Defining a native module
	Minimal example
	Compiling the module
	Module usage in MicroPython
	Further examples

	Porting MicroPython
	Minimal MicroPython firmware
	MicroPython Configurations
	Support for standard input/output
	Building and running
	Adding a module to the port

	MicroPython license information
	Quick reference for the pyboard
	General information about the pyboard
	Local filesystem and SD card
	Boot modes
	Errors: flashing LEDs
	Guide for using the pyboard with Windows
	The pyboard hardware
	Datasheets for the components on the pyboard
	Datasheets for other components

	MicroPython tutorial for the pyboard
	Introduction to the pyboard
	Caring for your pyboard
	Layout of the pyboard
	Plugging in and powering on
	Powering by an external power source

	Running your first script
	Connecting your pyboard
	Opening the pyboard USB drive
	Editing main.py
	Resetting the pyboard

	Getting a MicroPython REPL prompt
	Windows
	Mac OS X
	Linux
	Using the REPL prompt
	Resetting the board

	Turning on LEDs and basic Python concepts
	A Disco on your pyboard
	The Special LEDs

	Switches, callbacks and interrupts
	Switch callbacks
	Technical details of interrupts
	Further reading

	The accelerometer
	Using the accelerometer
	Making a spirit level

	Safe mode and factory reset
	Safe mode
	Factory reset the filesystem

	Making the pyboard act as a USB mouse
	Sending mouse events by hand
	Making a mouse with the accelerometer
	Restoring your pyboard to normal

	The Timers
	Timer counter
	Timer callbacks
	Making a microsecond counter

	Inline assembler
	Returning a value
	Accessing peripherals
	Accepting arguments
	Loops
	Further reading

	Power control
	Tutorials requiring extra components
	Controlling hobby servo motors
	Creating a Servo object
	Continuous rotation servos
	Calibration

	Fading LEDs
	Components
	Connecting Things Up
	Code
	Breathing Effect
	Advanced Exercise
	Addendum

	The LCD and touch-sensor skin
	Using the LCD
	Using the touch sensor

	The AMP audio skin
	Example code

	The LCD160CR skin
	Plugging in the display
	Getting the driver
	Testing the display
	Drawing some graphics
	Using the touch sensor
	Directing the MicroPython output to the display

	Tips, tricks and useful things to know
	Debouncing a pin input
	Making a UART - USB pass through

	General board control
	Delay and timing
	Internal LEDs
	Internal switch
	Pins and GPIO
	Servo control
	External interrupts
	Timers
	RTC (real time clock)
	PWM (pulse width modulation)
	ADC (analog to digital conversion)
	DAC (digital to analog conversion)
	UART (serial bus)
	SPI bus
	I2C bus
	I2S bus
	CAN bus (controller area network)
	Internal accelerometer

	Quick reference for the ESP8266
	General information about the ESP8266 port
	Multitude of boards
	Technical specifications and SoC datasheets
	Scarcity of runtime resources
	Boot process
	Known Issues
	Real-time clock
	Simultaneous operation of STA_IF and AP_IF
	Sockets and WiFi buffers overflow
	SSL/TLS limitations

	MicroPython tutorial for ESP8266
	Getting started with MicroPython on the ESP8266
	Requirements
	Powering the board
	Getting the firmware
	Deploying the firmware
	Serial prompt
	WiFi
	Troubleshooting installation problems

	Getting a MicroPython REPL prompt
	REPL over the serial port
	WebREPL - a prompt over WiFi
	Using the REPL
	Line editing
	Input history
	Tab completion
	Line continuation and auto-indent
	Paste mode
	Other control commands

	The internal filesystem
	Creating and reading files
	Listing file and more
	Start up scripts
	Accessing the filesystem via WebREPL

	Network basics
	Configuration of the WiFi
	Sockets

	Network - TCP sockets
	Star Wars Asciimation
	HTTP GET request
	Simple HTTP server

	GPIO Pins
	External interrupts

	Pulse Width Modulation
	Fading an LED
	Control a hobby servo

	Analog to Digital Conversion
	Power control
	Changing the CPU frequency
	Deep-sleep mode

	Controlling 1-wire devices
	Controlling NeoPixels
	Controlling APA102 LEDs
	Temperature and Humidity
	Using a SSD1306 OLED display
	Next steps

	Installing MicroPython
	General board control
	Networking
	Delay and timing
	Timers
	Pins and GPIO
	UART (serial bus)
	PWM (pulse width modulation)
	ADC (analog to digital conversion)
	Software SPI bus
	Hardware SPI bus
	I2C bus
	Real time clock (RTC)
	WDT (Watchdog timer)
	Deep-sleep mode
	OneWire driver
	NeoPixel driver
	APA102 driver
	DHT driver
	SSD1306 driver
	WebREPL (web browser interactive prompt)

	Quick reference for the ESP32
	General information about the ESP32 port
	Multitude of boards
	Technical specifications and SoC datasheets

	MicroPython tutorial for ESP32
	Getting started with MicroPython on the ESP32
	Requirements
	Powering the board
	Getting the firmware
	Deploying the firmware
	Serial prompt
	Troubleshooting installation problems

	Pulse Width Modulation
	Accessing peripherals directly via registers

	Installing MicroPython
	General board control
	Networking
	WLAN
	LAN

	Delay and timing
	Timers
	Pins and GPIO
	UART (serial bus)
	PWM (pulse width modulation)
	ADC (analog to digital conversion)
	Software SPI bus
	Hardware SPI bus
	Software I2C bus
	Hardware I2C bus
	I2S bus
	Real time clock (RTC)
	WDT (Watchdog timer)
	Deep-sleep mode
	SD card
	RMT
	OneWire driver
	NeoPixel and APA106 driver
	Capacitive touch
	DHT driver
	WebREPL (web browser interactive prompt)

	Quick reference for the RP2
	General information about the RP2xxx port
	Technical specifications and SoC datasheets

	Getting started with MicroPython on the RP2xxx
	Programmable IO
	An example

	Installing MicroPython
	General board control
	Delay and timing
	Timers
	Pins and GPIO
	Programmable IO (PIO)
	UART (serial bus)
	PWM (pulse width modulation)
	ADC (analog to digital conversion)
	Software SPI bus
	Hardware SPI bus
	Software I2C bus
	Hardware I2C bus
	I2S bus
	Real time clock (RTC)
	WDT (Watchdog timer)
	OneWire driver
	NeoPixel and APA106 driver

	Quick reference for the i.MXRT family
	General information about the MIMXRT port
	Multitude of boards
	Supported MCUs
	Technical specifications and SoC datasheets

	Getting started with MicroPython on the i.MXRT
	Requirements
	Powering the board
	Getting the firmware
	Deploying the firmware
	Teensy 4.0 and 4.1
	IMXRT10xx-EVK boards
	Seed ARCH MIX board

	Serial prompt
	Troubleshooting installation problems

	Pinout for the i.MXRT machine modules
	UART pin assignment
	PWM pin assignment
	Hardware SPI pin assignment
	Hardware I2C pin assignment
	Hardware I2S pin assignment

	Installing MicroPython
	General board control
	Delay and timing
	Timers
	Pins and GPIO
	UART (serial bus)
	PWM (pulse width modulation)
	PWM Constructor
	PWM Methods
	PWM Pin Assignment

	ADC (analog to digital conversion)
	Software SPI bus
	Hardware SPI bus
	Software I2C bus
	Hardware I2C bus
	I2S bus
	Real time clock (RTC)
	SD card
	OneWire driver
	DHT driver
	Ethernet driver
	Transferring files

	Quick reference for the WiPy
	General information about the WiPy
	No floating point support
	Before applying power
	WLAN default behaviour
	Telnet REPL
	Local file system and FTP access
	FileZilla settings
	Upgrading the firmware Over The Air
	Boot modes and safe boot
	The heartbeat LED
	Details on sleep modes
	Additional details for machine.Pin
	Additional details for machine.I2C
	Known issues
	Incompatible way to create SSL sockets
	Incompatibilities in hashlib module
	Unrelated function in machine module
	Adhoc way to control telnet/FTP server via network module
	Adhoc VFS-like support

	WiPy tutorials and examples
	Introduction to the WiPy
	Caring for your WiPy and expansion board
	Plugging into the expansion board and powering on
	Expansion board hardware guide
	Powering by an external power source
	Performing firmware upgrades

	Getting a MicroPython REPL prompt
	Windows
	Mac OS X
	Linux
	Using the REPL prompt
	Resetting the board

	Getting started with Blynk and the WiPy
	WLAN step by step
	Connecting to your home router
	Assigning a static IP address when booting

	Hardware timers
	Additional constants for Timer class

	Reset and boot modes
	Safe boot
	Factory reset the filesystem

	General board control (including sleep modes)
	Pins and GPIO
	Timers
	PWM (pulse width modulation)
	ADC (analog to digital conversion)
	UART (serial bus)
	SPI bus
	I2C bus
	Watchdog timer (WDT)
	Real time clock (RTC)
	SD card
	WLAN (WiFi)
	Telnet and FTP server
	Heart beat LED

	Quick reference for the UNIX and Windows ports
	Command line options
	Environment variables

	Quick reference for the Zephyr port
	General information about the Zephyr port
	Multitude of boards

	MicroPython tutorial for the Zephyr port
	Getting started with MicroPython on the Zephyr port
	Requirements
	Powering up
	Getting and deploying the firmware

	Getting a MicroPython REPL prompt
	REPL over the serial port
	Using the REPL

	Filesystems and Storage
	Disk Access
	Flash Area

	GPIO Pins
	Interrupts

	Running MicroPython
	Delay and timing
	Pins and GPIO
	Hardware I2C bus
	Hardware SPI bus
	Disk Access
	Flash Area
	Sensor

	Quick reference for the Renesas RA
	General information about Renesas RA port
	Overview

	MicroPython tutorial for Renesas RA port
	Getting started with MicroPython on the Renesas RA
	Requirements
	Flashing the MicroPython image with J-Link OB
	Getting a prompt of MicroPython

	Using peripherals
	LED blinking

	Write a program in internal file system
	Internal file system
	Write a program in the internal file system

	Reset and boot mode
	Resetting the board
	boot mode

	Trouble Shooting
	Flash file system

	Installing MicroPython
	General board control
	Delay and timing
	Timers
	Pins and GPIO
	UART (serial bus)
	Real time clock (RTC)
	ADC (analog to digital conversion)
	SPI bus
	I2C bus
	PWM (pulse width modulation)
	WDT (Watchdog timer)
	SDCard
	OneWire driver
	NeoPixel and APA106 driver

	Quick reference for the SAMD21/SAMD51 family
	General information about the SAMD port
	Multitude of boards
	Technical specifications and SoC data sheets

	Getting started with MicroPython on the SAMD
	Requirements
	Powering the board
	Getting the firmware
	Deploying the firmware
	Serial prompt
	Troubleshooting installation problems

	Pinout for the SAMD machine modules
	Adafruit ItsyBitsy M0 Express pin assignment table
	SAMD21 UART assignments
	SAMD21 I2C assignments
	SAMD21 SPI assignments
	SAMD21 PWM assignments

	Adafruit ItsyBitsy M4 Express pin assignment table
	SAMD51 UART assignments
	SAMD51 I2C assignments
	SAMD51 SPI assignments
	SAMD51 PWM assignments

	Adafruit Feather M4 Express pin assignment table
	SEEED XIAO pin assignment table
	Adafruit Feather M0 Express pin assignment table
	Adafruit Trinket M0 pin assignment table
	SAMD21 Xplained PRO pin assignment table
	Minisam M4 pin assignment table
	Seeed WIO Terminal pin assignment table
	Sparkfun SAMD51 Thing Plus pin assignment table
	Scripts for creating the pin assignment tables

	Installing MicroPython
	General board control
	Delay and timing
	Clock and time
	Timers
	Pins and GPIO
	UART (serial bus)
	PWM (pulse width modulation)
	PWM Constructor
	PWM Methods
	PWM Pin Assignment

	ADC (analog to digital conversion)
	ADC Constructor
	ADC Methods

	DAC (digital to analog conversion)
	DAC Constructor
	DAC Methods

	Software SPI bus
	Hardware SPI bus
	Software I2C bus
	Hardware I2C bus
	OneWire driver
	DHT driver
	Driving an APA102 LED
	Driving a Neopixel LED
	Transferring files

	Python Module Index
	Index

