MicroPython Documentation
Release 1.18

Damien P. George, Paul Sokolovsky, and contributors

Jan 16, 2022

1.1

1.2

1.3

CONTENTS

1 MicroPython libraries 1
Python standard libraries and micro-libraries oo 0oL 1
1.1.1 array—arraysof numericdata 2
1.1.2 binascii —binary/ASCIIconversions o o e 2
1.1.3 builtins - builtin functions and exceptions 3
1.1.4 cmath — mathematical functions for complex numbers 5
1.1.5 collections —collection and container types 6
1.1.6 errno —System error COdes v v v v vt i e e e e e e e e e e e e e e e 7
1.1.7 gc—control the garbage collector 8
1.1.8 hashlib —hashing algorithms 9
1.1.9 heapq—heap queue algorithm 10
1.1.10 10 —input/Output StrEAMS« v v v v v v et ot e e e e e e e e e e e e e e e 10
1.1.11 json—JSON encoding and decoding 12
1.1.12 math — mathematical functions 12
1.1.13 os —basic operating SyStem SEIViCes v v it it e e e 15
1.1.14 random — generate random NUMDbETS v v vt e e e e e e e e e e e 19
1.1.15 re—simple regular eXpressionso 20
1.1.16 select —waitforeventsonasetofstreams 23
1.1.17 socket —socketmodule o 24
1.1.18 ss1—SSL/TLSmodule. 29
1.1.19 struct — pack and unpack primitive datatypes oL 30
1.1.20 sys —system specificfunctions L. L e 31
1.1.21 time —time related functions L L 33
1.1.22 uasyncio asynchronous I/O scheduler 36
1.1.23 zlib-zlibdecompression 41
1.1.24 _thread — multithreading support 41
MicroPython-specific libraries e e e e 42
1.2.1 bluetooth low-level Bluetooth 42
1.2.2 btree—simple BTree database 53
1.2.3 cryptolib —cryptographic ciphers o oo oo 56
1.2.4 framebuf frame buffer manipulation L Lo, 56
1.2.5 machine functions related to the hardware 59
1.2.6 micropython — access and control MicroPython internals 86
1.2.7 neopixel control of WS2812/NeoPixel LEDs 88
1.2.8 network network configuration 89
1.29 uctypes —access binary datainastructuredway L. 99
Port-specific libraries e 104
1.3.1 Libraries specifictothe pyboard e 104
1.3.2 Libraries specifictothe WiPy L oo 152
1.3.3 Libraries specific to the ESP8266 and ESP32 156

2

1.3.4 Libraries specific to the RP2040 e 162

1.3.5 Libraries specific to Zephyr e e e e 168
1.4 Extending built-in libraries from Python. oo oo o 172
MicroPython language and implementation 173
2.1 GIOSSATY . v v o e e e e e e e e e e e e e e e e e e e 173
2.2 The MicroPython Interactive Interpreter Mode (akaREPL) 175
22,1 Auto-indent L e e e e e e e e e 175
222 Auto-completionl e e e e 176
2.2.3 Interrupting a running programt ue e e e e e e e e e e e e e 176
224 Pastemode 177
225 Softreset 178
2.2.6 The special variable _ (underscore) e e 178
227 Rawmodeandraw-pastemode L.l 179
2.3 MicroPython remote control: mpremoteo 180
231 Commands 180
232 Shortcuts 182
233 Examples . . .o e e e e e e e e e e 182
24 MicroPython .mpy files 183
2.4.1 Versioning and compatibility of . mpy files oL 183
2.4.2 Binary encoding of .mpy files e 185
2.5 Writinginterrupt handlers L e e e 186
2.5.1 Tips and recommended practices L oo 186
2.5.2 MicroPythonissues L e 186
253 EXCepHons e 189
254 General iSSUES o e e e e e e e e 190
2.6 Maximising MicroPythonspeed e 193
2.6.1 Designing forspeed L e e e e e e 194
2.6.2 Identifying the slowest sectionofcode 195
2.6.3 MicroPython code improvements Lo oL 196
2.64 TheNativecode emitter L e e 196
2.6.5 The Vipercodeemitter o i i e e e e e e e e e e 197
2.6.6 Accessing hardware directly L e 198
2.7 MicroPython on microcontrollers L 199
27.1 Flashmemory e 199
272 RAM . . 200
273 Theheap e e e e e e 203
274 String Operations it e 205
277.5 POSESCript L e e e e 205
2.8 MicroPython manifestfiles o 205
2.8.1 Freezingsource code L e e e e e e e e 206
2.8.2 Including other manifestfiles L 206
2.83 Examples e e e e e e e e e e e 207
2.9 Distribution packages, package management, and deploying applications 207
20.1 Overview e e e 207
29.2 Distribution packages e 208
2.9.3 upippackage managero e e e e e e e e e 208
2.9.4 Cross-installing packages e e e e 209
2.9.5 Cross-installing packages with freezing 209
29.6 Creating distribution packages L o e 210
29.7 Application reSOUICESo e e e e e 210
29.8 References. o e e 211
2.10 Inline assembler for Thumb2 architectures L o 212
2.10.1 Document CONVENtIONS v v v vt vttt e e e e e e e e e e e e e 212

3

2.10.2 InStruction cate@ories i i i e e e e e e e e e e e 212

2.10.3 Usage examples v v i v e e e e e e e e e e e e e e e e e e 221
2.10.4 References. o e e 226
2.11 Working with filesystems L e 226
2111 VES o 227
2.11.2 Blockdevices 227
20113 Filesystems o . o i e e e e e e e e e e e e e e e e e e 229
2.12 The pyboard.py tool e e e e e e e e e 231
2.12.1 Running acommand onthedevice 232
2.12.2 Running ascriptonthedevice L o L o 233
2.12.3 FilesyStem aCCeSS . . . « v v v v v i e e e e e e e e e e e e e e e e e e e 233
2.12.4 Using the pyboard library 234
MicroPython differences from CPython 235
3.1 Python3.5 . . o 235
32 Python3.6 . . . e e e 237
3.3 Python 3.7 . o o e e e e e e e e e e e 239
34 Python3.8 . . . e 240
3.5 Python3.9 . o 242
3.6 SYNEAX e e e e 245
3.6.1 Operators e e e e e e e e e e e e e 245
3.6.2 SPACES . v v i e e e e e e e e e e e 245
3,63 Unicode e e 246
37 Corelanguage e e e 246
3.7.1 f-strings dont support concatenation with adjacent literals if the adjacent literals contain
braces orare f-strings L. L e 246
3.7.2 f-strings cannot support expressions that require parsing to resolve unbalanced nested braces
andbrackets 247
3.7.3 Raw f-strings are not supported oL e e 247
3.74 f-strings dont support the !r, !s, and laconversions 247
3.7.5 Special method __del__ not implemented for user-defined classes 248
3.7.6 Method Resolution Order (MRO) is not compliant with CPython 248
3.7.7 When inheriting from multiple classes super() only callsoneclass 249
3.7.8 Calling super() getter property in subclass will return a property object, not the value 250
3.7.9 Error messages for methods may display unexpected argument counts 250
3.7.10 Function objects do not have the __module__ attribute 251
3.7.11 User-defined attributes for functions are not supported 251
3.7.12 Context manager __exit__() not called in a generator which does not run to completion . . . 252
3.7.13 Local variables arent included in locals() result 252
3.7.14 Code running in eval() function doesnt have access to local variables 253
3.7.15 __all__isunsupported in __init__.py in MicroPython. 253
3.7.16 __path__ attribute of a package has a different type (single string instead of list of strings) in
MicroPython e e e e e e e e 254
3.7.17 Failed to load modules are still registered asloaded 254
3.7.18 MicroPython doest support namespace packages split across filesystem. 255
3.8 Builtintypes 255
3.8.1 EXCepHion e e e 255
3.8.2 DYLEAITAY . . v v v e 258
3.83 DYLeS . . . e e e e e e e 258
3.8.4 dict ..o e 259
385 float . ..o 260
38.6 ANt . . e 260
387 LISt . oo 261
388 S L 262

3.89 tuple . ..o e e e e e e e 264

39 Modules 265
300 armay . ..o e e e e e e e e e e e 265

392 builtins 267

393 deque . ..o 267

394 JSON ... e 268

305 05 Lo 268

396 random ... 269

39T SIUCE . . o o 270

308 SYS L. e 272

4 MicroPython Internals 273
4.1 Getting Started L e e e 273
4.1.1 Sourcecontrol withgit L 273

4.1.2 Getthecode L 273

4.1.3 Compileandbuildthecode e 274

4.1.4 Building the documentation e e e 276

4.1.5 Runningthetests e e 277

4.1.6 Folderstructure o . o i i e e e e e e e e e 277

4.2 Writing tests o i i e e e e e e e e e 278
43 TheCompiler. e e e e e e e e e 279
43.1 Addingagrammarrule L L e e e e e e 279

43.2 Addingalexicaltoken e 280

433 Parsing e 281

434 Compiler passes e e e 281

4.3.5 Emittingbytecode e 283

43.6 Emittingnativecode L e e e e e e 283

4.4 Memory Management it e 284
44.1 Theobjectmodel e 284

442 Allocationof objects L e 285

4.5 TImplementingaModule L 286
4.5.1 Implementingacoremodule e 287

4.6 Optmizations v v i i e 288
4.6.1 Frozenbytecode e e 288

4.6.2 Variables e e 288

4.6.3 Allocation of MemMOryl e e e e e 289

47 MicroPython string interning L e e e e e e e e e e e e e e e e 289
477.1 Compile-time QSTR generation vttt 289

4.7.2 Run-time QSTR generation e 290

4.8 Maps and Dictionaries L 291
4.8.1 Openaddressing e 291

4.8.2 Linearprobing e 291

49 ThepublicCAPL. 292
4.10 Extending MicroPythonin C e e e 292
4.10.1 MicroPython external Cmodules oL oo 293
4.10.2 Native machine code in .mpy files o oL 0oL 296

4.11 Porting MicroPython e 300
4.11.1 Minimal MicroPython firmware 301
4.11.2 MicroPython Configurations o i it i e e e e e 302
4.11.3 Support for standard input/output oL Lo 303
4.11.4 Buildingandrunning Lo oL e 304
4.11.5 Addingamoduletotheport e 305

5 MicroPython license information 307

6 Quick reference for the pyboard

6.1 General information about the pyboard e
6.1.1 Local filesystemand SDcard
6.1.2 Bootmodes e e e e e e e e e e
6.1.3 Errors: flashing LEDs e
6.1.4 Guide for using the pyboard with Windows
6.1.5 Thepyboard hardware e e e
6.1.6 Datasheets for the components on the pyboard
6.1.7 Datasheets for other components L o e
6.2 MicroPython tutorial for the pyboard
6.2.1 Introductiontothe pyboard
6.2.2 Running your firSt SCript e e e e e e e e e e e
6.2.3 Getting a MicroPython REPL prompt
6.2.4 Turning on LEDs and basic Pythonconcepts
6.2.5 Switches, callbacks and interrupts e
6.2.6 Theaccelerometer e
6.2.7 Safemode and factory reset. L.
6.2.8 Making the pyboard actasaUSBmouse v it
6.2.9 TheTimers e
6.2.10 Inlineassembler L e e e e e e e e
6.2.11 Powercontrol e e e e e e e e e
6.2.12 Tutorials requiring extra COMpONeNts o v v v vttt e e e
6.2.13 Tips, tricks and useful thingstoknow
6.3 General board control L
6.4 Delayand timing L L e e e e e e e e e
6.5 Internal LEDs L e e e e
6.6 Internal switch L
6.7 Pinsand GPIO e
6.8 Servocontrol L. e e
6.9 External interrupts e e e e e e e e
6.10 Timers e e e e e e e e e e e
6.11 RTC (real time clock) e
6.12 PWM (pulse width modulation) e e e e
6.13 ADC (analog to digital conversion) e e e e
6.14 DAC (digital to analog conversion) i e e e e e e e e e e
6.15 UART (serial bus) e e e e
6.16 SPIbus
6.17 T2CbUS o o e e
6.18 I2Sbus e
6.19 CAN bus (controller area network) e e e e e e e
6.20 Internal accelerometer L e e e
7 Quick reference for the ESP8266
7.1 General information about the ESP8266 port
7.1.1 Multitude of boards L
7.1.2 Technical specifications and SoC datasheets
7.1.3 Scarcity of runtime reSourceso e e e e e e
T 14 BOOUPIOCESS v v v v o e v e
7.1.5 Knownlssues e
7.2 MicroPython tutorial for ESP8266 L
7.2.1 Getting started with MicroPython on the ESP8266
7.2.2 Getting a MicroPython REPL prompt
7.2.3 Theinternal filesystem L e e e e e e e e e
7.2.4 Network basics e e e

309
310
310
310
311
311
311
311
312
312
312
313
316
318
320
321
323
324
326
328
330
330
342
343
344
344
344
344
345
345
345
345
346
346
346
346
347
347
347
348
348

349
350
350
350
351
351
351
353
353
356
359
361

725 Network - TCPsockets o o v i i e e e e e e e e 362

7.2.6 GPIOPIns o o e 364

7.277 Pulse Width Modulation 365

7.2.8 Analogto Digital Conversion L o 367

729 Powercontrol e e e e 367

7.2.10 Controlling 1-wire devices e 368

7.2.11 Controlling NeoPixels e e 369

7.2.12 Controlling APAI02LEDs e 371

7.2.13 Temperature and Humidity Lo oo 372

7.2.14 Usinga SSDI1306 OLED display ittt i 373

T205 NEXUSIEPS « v v v v v e e e e e e e e e e e e e e e 375
7.3 Installing MicroPython e e e e e e e e 375
7.4 General board control L. 375
7.5 Networking o . e e e e e e e 376
7.6 Delayand timing 376
TT 0 TIMEIS . o v v vt e 377
7.8 Pinsand GPIO e e 377
7.9 UART (serial bus) e e e e e 377
7.10 PWM (pulse width modulation) 0 i e e e 378
7.11 ADC (analog to digital conversion) L. o 378
7.12 Software SPIbus L 379
7.13 Hardware SPIbus 379
T4 T2CDUS . . o o o e e e 379
7.15 Realtimeclock (RTC) e e e 380
7.16 WDT (Watchdog timer) o e e e e e e e e e e e 380
707 Deep-sleepmode 380
718 OneWire driver o o L e e e e e 381
7.19 NeoPixeldriver o o e e e e 381
7.20 APATO2driver o e e e e e e e 382
721 DHTAriver o e e e e e 382
7.22 SSDI306driver e e e e e 383
7.23 WebREPL (web browser interactive prompt)o e e 383
Quick reference for the ESP32 385
8.1 General information about the ESP32porto Lo 386

8.1.1 Multitude of boards L. 386

8.1.2 Technical specifications and SoC datasheets 386
8.2 MicroPython tutorial for ESP32 e e 387

8.2.1 Getting started with MicroPythononthe ESP32 387

8.2.2 Pulse Width Modulation e 389

8.2.3 Accessing peripherals directly viaregisterso oo 391
8.3 Imstalling MicroPython L e 392
8.4 General board control e e e e 392
8.5 Networking o o e e e e e e e 393
8.6 Delayandtiming L e e e e e e e 394
87 TIMErs o o e e e e e e e e e e 394
88 Pinsand GPIO e 394
8.9 UART (serial bus) e e e e e e e e e e e e 395
8.10 PWM (pulse width modulation) e 395
8.11 ADC (analog to digital conversion) e 396
8.12 Software SPIbus e e 397
8.13 Hardware SPIbus e 398
8.14 Software I2C bus e e e e 398
8.15 Hardware I2Cbus e e e e 398

vi

10

8.16
8.17
8.18
8.19
8.20
8.21
8.22
8.23
8.24
8.25
8.26

I2S bus . . . o e e e e e e
Real time clock (RTC) e e e e e
WDT (Watchdog timer) o o e e e e e e e e e e e e e e e
Deep-sleepmode L e e
SDecard e e e e e e e e e e e
RMT .
OneWire driver o e e e e e e e e e
NeoPixel and APA106 driver e
Capacitive touch L e e e e e
DHT driver e e e e e e e e e e e e e e e e
WebREPL (web browser interactive prompt)o e e e e

Quick reference for the RP2

9.1

9.2

9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13
9.14
9.15
9.16
9.17
9.18
9.19
9.20

General information about the RP2xxx port
9.1.1 Technical specifications and SoC datasheets
Getting started with MicroPythononthe RP2xxx,
9.2.1 Programmable IO L e e e e
Installing MicroPython e
General board control L L e e e e e e
Delay and timing L. L e e e e
TIMErS o e e e e e
Pinsand GPIO e e e e
Programmable IO (PIO) e e e
UART (serial bus) o e e e e e e e e
PWM (pulse width modulation) e
ADC (analog to digital conversion) Lo
Software SPIbus e
Hardware SPIbus e
Software I2Cbus L e e e e e e e
Hardware I2C bus e e e e e e e e e e e
I2Sbus . . . e e e e e e
Real time clock (RTC) e e e e
WDT (Watchdog timer) v o ot e e e e e e e e e e e e e e e e e
OneWire driver o e e e e e e e e e
NeoPixel and APA106 driver e e e e e e e e

Quick reference for the WiPy

10.1

10.2

General information aboutthe WiPy o oo
10.1.1 No floating point SUPPOTt L o i e e e e e e e e
10.1.2 Before applying power L e e
10.1.3 WLAN default behaviour
10.1.4 TelnetREPL
10.1.5 Localfilesystemand FTPaccess
10.1.6 FileZilla settings o o i i e e e e e e e e e e e e e
10.1.7 Upgrading the firmware Over The Air
10.1.8 Bootmodesandsafeboot.
10.1.9 Theheartbeat LED
10.1.10 Detailsonsleepmodes e e
10.1.11 Additional details for machine.Pin 0000,
10.1.12 Additional details for machine I2C o
10.1.13 Knownissues o o i e e e e e e e e e
WiPy tutorials and examples e e e e e e e e e
10.2.1 Introductiontothe WiPy e
10.2.2 Getting a MicroPython REPL prompt

405
406
406
406
406
409
409
409
409
410
410
411
411
411
412
412
413
413
413
414
414
414
415

417
417
417
418
418
418
418
419
419
419
420
420
420
421
422
424
424
425

vii

10.2.3 Getting started with Blynk andthe WiPy,

10.24 WLANSIEDDY SIED .+« o v o o e

10.2.5 Hardware timers v i i e e e e e e e e e e e e e e e e

10.2.6 Resetandbootmodes e e e e e e e e e e e e e e
10.3 General board control (including sleepmodes) L o
104 Pinsand GPIO e e e e e e e e e
10.5 TIMETS . . v v o o e
10.6 PWM (pulse width modulation) e
10.7 ADC (analog to digital conversion) o
10.8 UART (serial bus) e e e e e e e
109 SPIDUS o e e e e e e e e e
T0.I0 T2CDUS . . o v e e e e e e e e e e e e e e e e e e
10.11 Watchdog timer (WDT) e e e e e e
10.12 Real time clock (RTC) e e e e e e e e e e e
1013 SDcard e e e e e e e e e e e e e e e
10.14 WLAN (WiFi) . . . o . e e e e e e e e e e e e e e e e e
10.15 Telnet and FTP SEIrVer o v it e
10.16 Heartbeat LED e e e e e e e e e e e

11 Quick reference for the UNIX and Windows ports

11.1 Command line options o v i e e e e e e e e e e e e e
11.2 Environment variables e e e e

12 Quick reference for the Zephyr port

12.1 General information about the Zephyrport i e
12.1.1 Multitude of boards
12.2 MicroPython tutorial for the Zephyrport
12.2.1 Getting started with MicroPython on the Zephyrport
12.2.2 Getting a MicroPython REPL prompt,
12.2.3 Filesystems and Storage i e e e e e e e e e e e e e e
1224 GPIOPIns
12.3 Running MicroPython e
12.4 Delay and timing e e e
12.5 Pinsand GPIO e e e
12.6 Hardware I2C bus L . e e
12.7 Hardware SPIbus e
12.8 Disk AcCeSs o o i
129 Flash Area e e
12,10 Sensor o o o e e e e e e e e e e e e

Python Module Index

437
437
438

439
439
439
439
439
440
441
442
443
443
443
444
444
445
445
446

447

viii

CHAPTER
ONE

MICROPYTHON LIBRARIES

Warning: Important summary of this section

* MicroPython provides built-in modules that mirror the functionality of the Python standard library (e.g. os,
time), as well as MicroPython-specific modules (e.g. bIuetooth, machine).

* Most standard library modules implement a subset of the functionality of the equivalent Python module, and
in a few cases provide some MicroPython-specific extensions (e.g. array, os)

* Due to resource constraints or other limitations, some ports or firmware versions may not include all the
functionality documented here.

* To allow for extensibility, the built-in modules can be extended from Python code loaded onto the device.

This chapter describes modules (function and class libraries) which are built into MicroPython. This documentation
in general aspires to describe all modules and functions/classes which are implemented in the MicroPython project.
However, MicroPython is highly configurable, and each port to a particular board/embedded system may include only
a subset of the available MicroPython libraries.

With that in mind, please be warned that some functions/classes in a module (or even the entire module) described in
this documentation may be unavailable in a particular build of MicroPython on a particular system. The best place
to find general information of the availability/non-availability of a particular feature is the General Information section
which contains information pertaining to a specific MicroPython port.

On some ports you are able to discover the available, built-in libraries that can be imported by entering the following
at the REPL:

help('modules")

Beyond the built-in libraries described in this documentation, many more modules from the Python standard library,
as well as further MicroPython extensions to it, can be found in micropython-lib.

1.1 Python standard libraries and micro-libraries

The following standard Python libraries have been micro-ified to fit in with the philosophy of MicroPython. They
provide the core functionality of that module and are intended to be a drop-in replacement for the standard Python
library.

MicroPython Documentation, Release 1.18

1.1.1 array - arrays of humeric data

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: array.

Supported format codes: b, B, h, H, i, I, 1, L, g, Q, £, d (the latter 2 depending on the floating-point support).

Classes

class array.array(typecode [iterable])
Create array with elements of given type. Initial contents of the array are given by iferable. If it is not provided,
an empty array is created.

append (val)
Append new element val to the end of array, growing it.

extend (iterable)
Append new elements as contained in iterable to the end of array, growing it.

1.1.2 binascii — binary/ASCII conversions

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: binascii.

This module implements conversions between binary data and various encodings of it in ASCII form (in both direc-
tions).

Functions

binascii.hexlify (data[, sep])
Convert the bytes in the data object to a hexadecimal representation. Returns a bytes object.

If the additional argument sep is supplied it is used as a separator between hexadecimal values.

binascii.unhexlify(data)
Convert hexadecimal data to binary representation. Returns bytes string. (i.e. inverse of hexlify)

binascii.a2b_base64 (data)
Decode base64-encoded data, ignoring invalid characters in the input. Conforms to RFC 2045 5.6.8. Returns a
bytes object.

binascii.b2a_base64 (data)
Encode binary data in base64 format, as in RFC 3548. Returns the encoded data followed by a newline character,
as a bytes object.

2 Chapter 1. MicroPython libraries

https://docs.python.org/3.5/library/array.html#module-array
https://docs.python.org/3.5/library/binascii.html#module-binascii
https://tools.ietf.org/html/rfc2045#section-6.8
https://tools.ietf.org/html/rfc3548.html

MicroPython Documentation, Release 1.18

1.1.3 builtins - builtin functions and exceptions

All builtin functions and exceptions are described here. They are also available via builtins module.

Functions and types

abs(

allO

any)

bin()

class bool
class bytearray

class bytes
See CPython documentation: bytes.

callable()
chr(O
classmethod ()
compile()
class complex

delattr(obj, name)
The argument name should be a string, and this function deletes the named attribute from the object given by
obj.

class dict
dirQO
divmod O
enumerate()
eval(
exec()
filter()
class float
class frozenset
getattr()
globals()
hasattr(
hash()
hex()

idO
input()

1.1. Python standard libraries and micro-libraries 3

https://docs.python.org/3.5/library/functions.html#bytes

MicroPython Documentation, Release 1.18

class int

classmethod from_bytes(bytes, byteorder)

In MicroPython, byteorder parameter must be positional (this is compatible with CPython).

to_bytes(size, byteorder)

In MicroPython, byteorder parameter must be positional (this is compatible with CPython).

isinstance()
issubclass()
iter(Q)

len(

class list
locals()
map O

max()

class memoryview
min(Q)

next(Q

class object
oct()

open()

ord()

pow ()
print(Q
property()
range ()
repr()
reversed()
round ()
class set
setattr()

class slice

The slice builtin is the type that slice objects have.

sorted()
staticmethod ()
class str
sum()

super ()

Chapter 1. MicroPython libraries

MicroPython Documentation, Release 1.18

class tuple
type O
zipQ

Exceptions

exception AssertionError
exception AttributeError
exception Exception
exception ImportError
exception IndexError
exception KeyboardInterrupt
exception KeyError
exception MemoryError
exception NameError
exception NotImplementedError
exception OSError

exception RuntimeError
exception StopIteration
exception SyntaxError

exception SystemExit
See CPython documentation: SystemExit.

exception TypeError
See CPython documentation: TypeError.

exception ValueError

exception ZeroDivisionError

1.1.4 cmath — mathematical functions for complex nhumbers

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: cmath.

The cmath module provides some basic mathematical functions for working with complex numbers.

Availability: not available on WiPy and ESP8266. Floating point support required for this module.

1.1. Python standard libraries and micro-libraries 5

https://docs.python.org/3.5/library/exceptions.html#SystemExit
https://docs.python.org/3.5/library/exceptions.html#TypeError
https://docs.python.org/3.5/library/cmath.html#module-cmath

MicroPython Documentation, Release 1.18

Functions
cmath.cos(z)
Return the cosine of z.

cmath.exp(z)
Return the exponential of z.

cmath.log(z)
Return the natural logarithm of z. The branch cut is along the negative real axis.

cmath.log10(z)
Return the base-10 logarithm of z. The branch cut is along the negative real axis.

cmath.phase(z)
Returns the phase of the number z, in the range (-pi, +pi].

cmath.polar(z)
Returns, as a tuple, the polar form of z.

cmath.rect (r, phi)
Returns the complex number with modulus r and phase phi.

cmath.sin(z)
Return the sine of z.

cmath.sqrt(z)
Return the square-root of z.

Constants
cmath.e
base of the natural logarithm

cmath.pi
the ratio of a circles circumference to its diameter

1.1.5 collections — collection and container types
This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: collections.

This module implements advanced collection and container types to hold/accumulate various objects.

Classes

collections.deque (iterable, maxlen [, flags])
Deques (double-ended queues) are a list-like container that support O(1) appends and pops from either side of
the deque. New deques are created using the following arguments:

e iterable must be the empty tuple, and the new deque is created empty.

» maxlen must be specified and the deque will be bounded to this maximum length. Once the deque is full,
any new items added will discard items from the opposite end.

* The optional flags can be 1 to check for overflow when adding items.

As well as supporting bool and 1en, deque objects have the following methods:

6 Chapter 1. MicroPython libraries

https://docs.python.org/3.5/library/collections.html#module-collections

MicroPython Documentation, Release 1.18

deque.append(x)
Add x to the right side of the deque. Raises IndexError if overflow checking is enabled and there is no more
room left.

deque.popleft()
Remove and return an item from the left side of the deque. Raises IndexError if no items are present.

collections.namedtuple (name, fields)
This is factory function to create a new namedtuple type with a specific name and set of fields. A namedtuple is
a subclass of tuple which allows to access its fields not just by numeric index, but also with an attribute access
syntax using symbolic field names. Fields is a sequence of strings specifying field names. For compatibility with
CPython it can also be a a string with space-separated field named (but this is less efficient). Example of use:

from collections import namedtuple

MyTuple = namedtuple("MyTuple", ("id", "name"))
tl = MyTuple(l, "foo")

t2 = MyTuple(2, "bar")

print(tl.name)

assert t2.name == t2[1]

collections.OrderedDict(...)
dict type subclass which remembers and preserves the order of keys added. When ordered dict is iterated over,
keys/items are returned in the order they were added:

from collections import OrderedDict

To make benefit of ordered keys, OrderedDict should be initialized
from sequence of (key, value) pairs.

d = OrderedDict([("z", 1), ("a", 2)1)

More items can be added as usual

df"w"] =5

d["b"] = 3

for k, v in d.items(Q):
print(k, v)

Output:

z 1

a 2

w5

b 3

1.1.6 errno — system error codes
This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: errno.

This module provides access to symbolic error codes for OSError exception. A particular inventory of codes depends
on MicroPython port.

1.1. Python standard libraries and micro-libraries 7

https://docs.python.org/3.5/library/errno.html#module-errno

MicroPython Documentation, Release 1.18

Constants

EEXIST, EAGAIN, etc.
Error codes, based on ANSI C/POSIX standard. All error codes start with E. As mentioned above, inventory of
the codes depends on MicroPython port. Errors are usually accessible as exc.errno where exc is an instance
of OSError. Usage example:

try:
os.mkdir("my_dir")
except OSError as exc:
if exc.errno == errno.EEXIST:
print("Directory already exists")

errno.errorcode
Dictionary mapping numeric error codes to strings with symbolic error code (see above):

>>> print(errno.errorcode[errno.EEXIST])
EEXIST

1.1.7 gc — control the garbage collector

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: gc.

Functions

gc.enable()
Enable automatic garbage collection.

gc.disable()
Disable automatic garbage collection. Heap memory can still be allocated, and garbage collection can still be
initiated manually using gc.collect().

gc.collect()
Run a garbage collection.

gc.mem_alloc()
Return the number of bytes of heap RAM that are allocated.

Difference to CPython

This function is MicroPython extension.

gc.mem_free()
Return the number of bytes of available heap RAM, or -1 if this amount is not known.

Difference to CPython

This function is MicroPython extension.

gc.threshold([amount])
Set or query the additional GC allocation threshold. Normally, a collection is triggered only when a new allo-
cation cannot be satisfied, i.e. on an out-of-memory (OOM) condition. If this function is called, in addition to

8 Chapter 1. MicroPython libraries

https://docs.python.org/3.5/library/gc.html#module-gc

MicroPython Documentation, Release 1.18

OOM, a collection will be triggered each time after amount bytes have been allocated (in total, since the previous
time such an amount of bytes have been allocated). amount is usually specified as less than the full heap size,
with the intention to trigger a collection earlier than when the heap becomes exhausted, and in the hope that an
early collection will prevent excessive memory fragmentation. This is a heuristic measure, the effect of which
will vary from application to application, as well as the optimal value of the amount parameter.

Calling the function without argument will return the current value of the threshold. A value of -1 means a
disabled allocation threshold.

Difference to CPython

This function is a MicroPython extension. CPython has a similar function - set_threshold(), but due to
different GC implementations, its signature and semantics are different.

1.1.8 hashlib — hashing algorithms

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: hashlib.

This module implements binary data hashing algorithms. The exact inventory of available algorithms depends on a
board. Among the algorithms which may be implemented:

e SHA256 - The current generation, modern hashing algorithm (of SHA2 series). It is suitable for
cryptographically-secure purposes. Included in the MicroPython core and any board is recommended to pro-
vide this, unless it has particular code size constraints.

* SHALI - A previous generation algorithm. Not recommended for new usages, but SHAI is a part of number of
Internet standards and existing applications, so boards targeting network connectivity and interoperability will
try to provide this.

e MDS5 - A legacy algorithm, not considered cryptographically secure. Only selected boards, targeting interoper-
ability with legacy applications, will offer this.

Constructors

class hashlib.sha256([dara |)
Create an SHA256 hasher object and optionally feed data into it.

class hashlib.shal([data |)
Create an SHA1 hasher object and optionally feed data into it.

class hashlib.md5([dara])
Create an MDS5 hasher object and optionally feed data into it.

Methods

hash.update (data)
Feed more binary data into hash.

hash.digest()
Return hash for all data passed through hash, as a bytes object. After this method is called, more data cannot be
fed into the hash any longer.

hash.hexdigest ()
This method is NOT implemented. Use binascii.hexlify(hash.digest()) to achieve a similar effect.

1.1. Python standard libraries and micro-libraries 9

https://docs.python.org/3.5/library/hashlib.html#module-hashlib

MicroPython Documentation, Release 1.18

1.1.9 heapq — heap queue algorithm

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: heapq.

This module implements the min heap queue algorithm.

A heap queue is essentially a list that has its elements stored in such a way that the first item of the list is always the
smallest.

Functions
heapq.heappush (eap, item)
Push the item onto the heap.

heapq.heappop (reap)
Pop the first item from the heap, and return it. Raise IndexError if heap is empty.

The returned item will be the smallest item in the heap.

heapq.heapify(x)
Convert the list x into a heap. This is an in-place operation.

1.1.10 io - input/output streams

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: io.

This module contains additional types of stream (file-like) objects and helper functions.

Conceptual hierarchy

Difference to CPython

Conceptual hierarchy of stream base classes is simplified in MicroPython, as described in this section.

(Abstract) base stream classes, which serve as a foundation for behaviour of all the concrete classes, adhere to few
dichotomies (pair-wise classifications) in CPython. In MicroPython, they are somewhat simplified and made implicit
to achieve higher efficiencies and save resources.

An important dichotomy in CPython is unbuffered vs buffered streams. In MicroPython, all streams are currently
unbuffered. This is because all modern OSes, and even many RTOSes and filesystem drivers already perform buffering
on their side. Adding another layer of buffering is counter- productive (an issue known as bufferbloat) and takes precious
memory. Note that there still cases where buffering may be useful, so we may introduce optional buffering support at
a later time.

But in CPython, another important dichotomy is tied with bufferedness - its whether a stream may incur short read/writes
or not. A short read is when a user asks e.g. 10 bytes from a stream, but gets less, similarly for writes. In CPython,
unbuffered streams are automatically short operation susceptible, while buffered are guarantee against them. The no
short read/writes is an important trait, as it allows to develop more concise and efficient programs - something which
is highly desirable for MicroPython. So, while MicroPython doesnt support buffered streams, it still provides for no-
short-operations streams. Whether there will be short operations or not depends on each particular class needs, but
developers are strongly advised to favour no-short-operations behaviour for the reasons stated above. For example,

10 Chapter 1. MicroPython libraries

https://docs.python.org/3.5/library/heapq.html#module-heapq
https://en.wikipedia.org/wiki/Heap_%28data_structure%29
https://docs.python.org/3.5/library/io.html#module-io

MicroPython Documentation, Release 1.18

MicroPython sockets are guaranteed to avoid short read/writes. Actually, at this time, there is no example of a short-
operations stream class in the core, and one would be a port-specific class, where such a need is governed by hardware
peculiarities.

The no-short-operations behaviour gets tricky in case of non-blocking streams, blocking vs non-blocking behaviour
being another CPython dichotomy, fully supported by MicroPython. Non-blocking streams never wait for data either
to arrive or be written - they read/write whatever possible, or signal lack of data (or ability to write data). Clearly, this
conflicts with no-short-operations policy, and indeed, a case of non-blocking buffered (and this no-short-ops) streams is
convoluted in CPython - in some places, such combination is prohibited, in some its undefined or just not documented,
in some cases it raises verbose exceptions. The matter is much simpler in MicroPython: non-blocking stream are
important for efficient asynchronous operations, so this property prevails on the no-short-ops one. So, while blocking
streams will avoid short reads/writes whenever possible (the only case to get a short read is if end of file is reached, or
in case of error (but errors dont return short data, but raise exceptions)), non-blocking streams may produce short data
to avoid blocking the operation.

The final dichotomy is binary vs text streams. MicroPython of course supports these, but while in CPython text streams
are inherently buffered, they arent in MicroPython. (Indeed, thats one of the cases for which we may introduce buffering
support.)

Note that for efficiency, MicroPython doesnt provide abstract base classes corresponding to the hierarchy above, and
its not possible to implement, or subclass, a stream class in pure Python.

Functions

io.open(name, mode='r', **kwargs)
Open a file. Builtin open() function is aliased to this function. All ports (which provide access to file system)
are required to support mode parameter, but support for other arguments vary by port.

Classes

class io.FileIOC(...)
This is type of a file open in binary mode, e.g. using open(name, "rb"). You should not instantiate this class
directly.

class io.TextIOWrapper(...)
This is type of a file open in text mode, e.g. using open(name, "rt"). You should not instantiate this class
directly.

class io.StringIO([string])

class io.BytesIO([string)
In-memory file-like objects for input/output. StringIO is used for text-mode I/O (similar to a normal file opened
with t modifier). BytesIO is used for binary-mode I/O (similar to a normal file opened with b modifier). Initial
contents of file-like objects can be specified with string parameter (should be normal string for StringIO or
bytes object for BytesIO). All the usual file methods like read(), write(), seek (), flush(), close() are
available on these objects, and additionally, a following method:

getvalue()
Get the current contents of the underlying buffer which holds data.

class io.StringIO(alloc_size)

class io.BytesIO(alloc_size)
Create an empty StringIO/BytesIO object, preallocated to hold up to alloc_size number of bytes. That means
that writing that amount of bytes wont lead to reallocation of the buffer, and thus wont hit out-of-memory situation
or lead to memory fragmentation. These constructors are a MicroPython extension and are recommended for
usage only in special cases and in system-level libraries, not for end-user applications.

1.1. Python standard libraries and micro-libraries 11

MicroPython Documentation, Release 1.18

Difference to CPython

These constructors are a MicroPython extension.

1.1.11 json - JSON encoding and decoding

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: json.

This modules allows to convert between Python objects and the JSON data format.

Functions

json.dump (obj, stream, separators=None)
Serialise obj to a JSON string, writing it to the given stream.

' [

If specified, separators should be an (item_separator, key_separator) tuple. The defaultis (', ',

). To get the most compact JSON representation, you should specify (',', ':') to eliminate whitespace.

json.dumps (obj, separators=None)
Return obj represented as a JSON string.

The arguments have the same meaning as in dump.

json.load (stream)
Parse the given stream, interpreting it as a JSON string and deserialising the data to a Python object. The resulting
object is returned.

Parsing continues until end-of-file is encountered. A ValueError is raised if the data in stream is not correctly
formed.

json.loads (str)
Parse the JSON str and return an object. Raises ValueError if the string is not correctly formed.

1.1.12 math — mathematical functions

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: math.

The math module provides some basic mathematical functions for working with floating-point numbers.

Note: On the pyboard, floating-point numbers have 32-bit precision.

Availability: not available on WiPy. Floating point support required for this module.

12 Chapter 1. MicroPython libraries

https://docs.python.org/3.5/library/json.html#module-json
https://docs.python.org/3.5/library/math.html#module-math

MicroPython Documentation, Release 1.18

Functions

math.

math.

math.

math.

math.

math.

math.

math.

math.

math.

math.

math.

math.

math.

math

math.

math

math.

math

math.

acos(x)
Return the inverse cosine of x.

acosh(x)
Return the inverse hyperbolic cosine of x.

asin(x)
Return the inverse sine of x.

asinh(x)
Return the inverse hyperbolic sine of x.

atan(x)
Return the inverse tangent of x.

atan2(y, x)
Return the principal value of the inverse tangent of y/x.

atanh(x)
Return the inverse hyperbolic tangent of x.

ceil (x)
Return an integer, being x rounded towards positive infinity.

copysign(x, y)
Return x with the sign of y.

cos(x)
Return the cosine of x.

cosh(x)
Return the hyperbolic cosine of x.

degrees(x)
Return radians x converted to degrees.

erf(x)
Return the error function of x.

erfc(x)
Return the complementary error function of x.

.exp(x)

Return the exponential of x.

expml (x)
Return exp(x) - 1.

.fabs(x)

Return the absolute value of x.

floor(x)

Return an integer, being x rounded towards negative infinity.

. fmod (x, y)

Return the remainder of x/y.

frexp (x)

Decomposes a floating-point number into its mantissa and exponent. The returned value is the tuple (m, e)
such that x == m * 2**e exactly. If x == 0 then the function returns (0.0, 0), otherwise the relation 0.5

<= abs(m) < 1 holds.

1.1.

Python standard libraries and micro-libraries

13

MicroPython Documentation, Release 1.18

math.gamma(x)
Return the gamma function of x.

math.isfinite(x)
Return True if x is finite.

math.isinf(x)
Return True if x is infinite.

math.isnan(x)
Return True if x is not-a-number

math.ldexp (x, exp)
Return x * (2*%*exp).
math.lgamma (x)

Return the natural logarithm of the gamma function of x.

math.log(x)
Return the natural logarithm of x.

math.logl®(x)
Return the base-10 logarithm of x.

math.log2(x)
Return the base-2 logarithm of x.

math.modf (x)
Return a tuple of two floats, being the fractional and integral parts of x. Both return values have the same sign
as X.

math.pow(x, y)
Returns x to the power of y.

math.radians(x)
Return degrees x converted to radians.

math.sin(x)
Return the sine of x.

math.sinh(x)
Return the hyperbolic sine of x.

math.sqrt(x)
Return the square root of x.

math.tan(x)
Return the tangent of x.

math.tanh(x)
Return the hyperbolic tangent of x.

math.trunc(x)
Return an integer, being x rounded towards 0.

14 Chapter 1. MicroPython libraries

MicroPython Documentation, Release 1.18

Constants
math.e
base of the natural logarithm

math.pi
the ratio of a circles circumference to its diameter

1.1.13 os — basic operating system services
This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: os.

The os module contains functions for filesystem access and mounting, terminal redirection and duplication, and the
uname and urandom functions.

General functions

os.uname ()
Return a tuple (possibly a named tuple) containing information about the underlying machine and/or its operating
system. The tuple has five fields in the following order, each of them being a string:

* sysname — the name of the underlying system

¢ nodename — the network name (can be the same as sysname)

* release — the version of the underlying system

* version — the MicroPython version and build date

* machine — an identifier for the underlying hardware (eg board, CPU)

os.urandom(n)
Return a bytes object with n random bytes. Whenever possible, it is generated by the hardware random number
generator.

Filesystem access
os.chdir (path)
Change current directory.

os.getcwd()
Get the current directory.

os.ilistdir([dir])
This function returns an iterator which then yields tuples corresponding to the entries in the directory that it is
listing. With no argument it lists the current directory, otherwise it lists the directory given by dir.

The tuples have the form (name, type, inode/, size]):
* name is a string (or bytes if dir is a bytes object) and is the name of the entry;

* type is an integer that specifies the type of the entry, with 0x4000 for directories and 0x8000 for regular
files;

* inode is an integer corresponding to the inode of the file, and may be 0 for filesystems that dont have such
a notion.

1.1. Python standard libraries and micro-libraries 15

https://docs.python.org/3.5/library/os.html#module-os

MicroPython Documentation, Release 1.18

* Some platforms may return a 4-tuple that includes the entrys size. For file entries, size is an integer repre-
senting the size of the file or -1 if unknown. Its meaning is currently undefined for directory entries.

os.listdir([dir |
With no argument, list the current directory. Otherwise list the given directory.

os.mkdir (path)
Create a new directory.

os.remove (path)
Remove a file.

os.rmdir (path)
Remove a directory.

os.rename (old_path, new_path)
Rename a file.

os.stat(path)
Get the status of a file or directory.

os.statvfs(path)
Get the status of a fileystem.

Returns a tuple with the filesystem information in the following order:
e f_bsize —file system block size
e f_frsize — fragment size
e f blocks —size of fs in f frsize units
e f_bfree — number of free blocks
e f_bavail — number of free blocks for unprivileged users
e f_files — number of inodes
o f_ffree — number of free inodes
e f_favail — number of free inodes for unprivileged users
e f_flag— mount flags
e f_namemax — maximum filename length

Parameters related to inodes: £_files, £_ffree, f_avail and the £_flags parameter may return 0 as they
can be unavailable in a port-specific implementation.

os.sync()
Sync all filesystems.

Terminal redirection and duplication

os.dupterm(stream_object, index=0, /)
Duplicate or switch the MicroPython terminal (the REPL) on the given stream-like object. The stream_object
argument must be a native stream object, or derive from io.IOBase and implement the readinto() and
write() methods. The stream should be in non-blocking mode and readinto () should return None if there is
no data available for reading.

After calling this function all terminal output is repeated on this stream, and any input that is available on the
stream is passed on to the terminal input.

16 Chapter 1. MicroPython libraries

MicroPython Documentation, Release 1.18

The index parameter should be a non-negative integer and specifies which duplication slot is set. A given port
may implement more than one slot (slot 0 will always be available) and in that case terminal input and output is
duplicated on all the slots that are set.

If None is passed as the stream_object then duplication is cancelled on the slot given by index.

The function returns the previous stream-like object in the given slot.

Filesystem mounting

Some ports provide a Virtual Filesystem (VFS) and the ability to mount multiple real filesystems within this VFS.
Filesystem objects can be mounted at either the root of the VFS, or at a subdirectory that lives in the root. This allows
dynamic and flexible configuration of the filesystem that is seen by Python programs. Ports that have this functionality
provide the mount () and umount () functions, and possibly various filesystem implementations represented by VFS
classes.

os.mount (fsobj, mount_point, *, readonly)
Mount the filesystem object fsobj at the location in the VFS given by the mount_point string. fsobj can be a
a VFS object that has a mount () method, or a block device. If its a block device then the filesystem type is
automatically detected (an exception is raised if no filesystem was recognised). mount_point may be '/' to
mount fsobj at the root, or ' /<name>" to mount it at a subdirectory under the root.

If readonly is True then the filesystem is mounted read-only.
During the mount process the method mount () is called on the filesystem object.
Will raise OSError (EPERM) if mount_point is already mounted.

os.umount (mount_point)
Unmount a filesystem. mount_point can be a string naming the mount location, or a previously-mounted filesys-
tem object. During the unmount process the method umount () is called on the filesystem object.

Will raise OSError (EINVAL) if mount_point is not found.

class os.VfsFat(block_dev)
Create a filesystem object that uses the FAT filesystem format. Storage of the FAT filesystem is provided by
block_dev. Objects created by this constructor can be mounted using mount ().

static mkfs (block_dev)
Build a FAT filesystem on block_dev.

class os.VEsLfsl(block_dev, readsize=32, progsize=32, lookahead=32)
Create a filesystem object that uses the littlefs v1 filesystem format. Storage of the littlefs filesystem is provided
by block_dev, which must support the extended interface. Objects created by this constructor can be mounted
using mount ().

See Working with filesystems for more information.

static mkfs(block_dev, readsize=32, progsize=32, lookahead=32)
Build a Lfs1 filesystem on block_dev.

Note: There are reports of littlefs v1 failing in certain situations, for details see littlefs issue 347.

class 0s.VEsLfs2(block_dev, readsize=32, progsize=32, lookahead=32, mtime=True)
Create a filesystem object that uses the littlefs v2 filesystem format. Storage of the littlefs filesystem is provided
by block_dev, which must support the extended interface. Objects created by this constructor can be mounted
using mount ().

1.1. Python standard libraries and micro-libraries 17

https://github.com/ARMmbed/littlefs/tree/v1
https://github.com/ARMmbed/littlefs/issues/347
https://github.com/ARMmbed/littlefs

MicroPython Documentation, Release 1.18

The mtime argument enables modification timestamps for files, stored using littlefs attributes. This option can be
disabled or enabled differently each mount time and timestamps will only be added or updated if mtime is enabled,
otherwise the timestamps will remain untouched. Littlefs v2 filesystems without timestamps will work without
reformatting and timestamps will be added transparently to existing files once they are opened for writing. When
mtime is enabled os. stat on files without timestamps will return O for the timestamp.

See Working with filesystems for more information.

static mkfs(block_dev, readsize=32, progsize=32, lookahead=32)
Build a Lfs2 filesystem on block_dev.

Note: There are reports of littlefs v2 failing in certain situations, for details see littlefs issue 295.

Block devices

A block device is an object which implements the block protocol. This enables a device to support MicroPython
filesystems. The physical hardware is represented by a user defined class. The AbstractBlockDev class is a template
for the design of such a class: MicroPython does not actually provide that class, but an actual block device class must
implement the methods described below.

A concrete implementation of this class will usually allow access to the memory-like functionality of a piece of hardware
(like flash memory). A block device can be formatted to any supported filesystem and mounted using os methods.

See Working with filesystems for example implementations of block devices using the two variants of the block protocol
described below.

Simple and extended interface

There are two compatible signatures for the readblocks and writeblocks methods (see below), in order to support a
variety of use cases. A given block device may implement one form or the other, or both at the same time. The second
form (with the offset parameter) is referred to as the extended interface.

Some filesystems (such as littlefs) that require more control over write operations, for example writing to sub-block
regions without erasing, may require that the block device supports the extended interface.

class os.AbstractBlockDev(...)
Construct a block device object. The parameters to the constructor are dependent on the specific block device.

readblocks (block_num, buf)

readblocks (block_num, buf, offset)
The first form reads aligned, multiples of blocks. Starting at the block given by the index block_num, read
blocks from the device into buf (an array of bytes). The number of blocks to read is given by the length of
buf, which will be a multiple of the block size.

The second form allows reading at arbitrary locations within a block, and arbitrary lengths. Starting at
block index block_num, and byte offset within that block of offset, read bytes from the device into buf (an
array of bytes). The number of bytes to read is given by the length of buf.

writeblocks (block_num, buf)

writeblocks (block_num, buf, offset)
The first form writes aligned, multiples of blocks, and requires that the blocks that are written to be first
erased (if necessary) by this method. Starting at the block given by the index block_num, write blocks from
buf (an array of bytes) to the device. The number of blocks to write is given by the length of buf, which
will be a multiple of the block size.

18 Chapter 1. MicroPython libraries

https://github.com/ARMmbed/littlefs/issues/295

MicroPython Documentation, Release 1.18

The second form allows writing at arbitrary locations within a block, and arbitrary lengths. Only the bytes
being written should be changed, and the caller of this method must ensure that the relevant blocks are
erased via a prior ioctl call. Starting at block index block_num, and byte offset within that block of offset,
write bytes from buf (an array of bytes) to the device. The number of bytes to write is given by the length
of buf.

Note that implementations must never implicitly erase blocks if the offset argument is specified, even if it
is zero.

ioctl(op, arg)

Control the block device and query its parameters. The operation to perform is given by op which
is one of the following integers:

* 1 —initialise the device (arg is unused)

» 2 — shutdown the device (arg is unused)

* 3 —sync the device (arg is unused)

* 4 — get a count of the number of blocks, should return an integer (arg is unused)

* 5 — get the number of bytes in a block, should return an integer, or None in which case the
default value of 512 is used (arg is unused)

* 6 — erase a block, arg is the block number to erase

As aminimum ioctl(4, ...) mustbe intercepted; for littlefs ioct1(6, ...) mustalso be intercepted.
The need for others is hardware dependent.

Prior to any call to writeblocks(block, ...) littlefsissues ioctl(6, block). This enables a device
driver to erase the block prior to a write if the hardware requires it. Alternatively a driver might intercept
ioctl(6, block) and return O (success). In this case the driver assumes responsibility for detecting the
need for erasure.

Unless otherwise stated ioctl(op, arg) can return None. Consequently an implementation can ignore
unused values of op. Where op is intercepted, the return value for operations 4 and 5 are as detailed above.
Other operations should return 0 on success and non-zero for failure, with the value returned being an
OSError errno code.

1.1.14 random — generate random numbers

This module implements a pseudo-random number generator (PRNG).

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: random .

Note: The following notation is used for intervals:

* () are open interval brackets and do not include their endpoints. For example, (0, 1) means greater than 0 and
less than 1. In set notation: (0, 1) = {x[0<x < 1}.

* [] are closed interval brackets which include all their limit points. For example, [0, 1] means greater than or equal
to 0 and less than or equal to 1. In set notation: [0, 1] = {x]0<=x<=1}.

Note: The randrange(), randint() and choice() functions are only available if the
MICROPY_PY_URANDOM_EXTRA_FUNCS configuration option is enabled.

1.1. Python standard libraries and micro-libraries 19

https://docs.python.org/3.5/library/random.html#module-random

MicroPython Documentation, Release 1.18

Functions for integers
random.getrandbits(n)
Return an integer with n random bits (0 <= n <= 32).

random.randint (a, b)
Return a random integer in the range [a, b].

random.randrange (stop)
random.randrange (start, stop)

random.randrange (start, stop[, step])
The first form returns a random integer from the range [0, sfop). The second form returns a random integer from
the range [start, stop). The third form returns a random integer from the range [start, stop) in steps of step. For
instance, calling randrange (1, 10, 2) will return odd numbers between 1 and 9 inclusive.

Functions for floats
random.random()
Return a random floating point number in the range [0.0, 1.0).

random.uniform(a, b)
Return a random floating point number N such that a <= N <= b fora <= b, and b <= N <=a for b < a.

Other Functions

random. seed (n=None, /)
Initialise the random number generator module with the seed n which should be an integer. When no argument
(or None) is passed in it will (if supported by the port) initialise the PRNG with a true random number (usually
a hardware generated random number).

The None case only works if MICROPY_PY_URANDOM_SEED_INIT_FUNC is enabled by the port, otherwise it
raises ValueError.

random. choice (sequence)
Chooses and returns one item at random from sequence (tuple, list or any object that supports the subscript
operation).

1.1.15 re — simple regular expressions
This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: re.

This module implements regular expression operations. Regular expression syntax supported is a subset of CPython
re module (and actually is a subset of POSIX extended regular expressions).

Supported operators and special sequences are:

. Match any character.

[...] Match set of characters. Individual characters and ranges are supported, including negated sets (e.g. [*a-c]).
A Match the start of the string.

$ Match the end of the string.

? Match zero or one of the previous sub-pattern.

* Match zero or more of the previous sub-pattern.

20 Chapter 1. MicroPython libraries

https://docs.python.org/3.5/library/re.html#module-re

MicroPython Documentation, Release 1.18

+ Match one or more of the previous sub-pattern.

?? Non-greedy version of ?, match zero or one, with the preference for zero.

*? Non-greedy version of *, match zero or more, with the preference for the shortest match.
+? Non-greedy version of +, match one or more, with the preference for the shortest match.
| Match either the left-hand side or the right-hand side sub-patterns of this operator.

(...) Grouping. Each group is capturing (a substring it captures can be accessed with match. group () method).
\d Matches digit. Equivalent to [0-9].

\D Matches non-digit. Equivalent to [40-9].

\s Matches whitespace. Equivalent to [\t-\r].

\S Matches non-whitespace. Equivalent to [* \t-\r].

\w Matches word characters (ASCII only). Equivalent to [A-Za-z0-9_].

\W Matches non word characters (ASCII only). Equivalent to [AA-Za-z0-9_].

\ Escape character. Any other character following the backslash, except for those listed above, is taken literally. For
example, * is equivalent to literal * (not treated as the * operator). Note that \r, \n, etc. are not handled
specially, and will be equivalent to literal letters r, n, etc. Due to this, its not recommended to use raw Python
strings (r"") for regular expressions. For example, r"\r\n" when used as the regular expression is equivalent
to "rn". To match CR character followed by LF, use "\r\n".

NOT SUPPORTED:
* counted repetitions ({m,n})
* named groups ((?P<name>...))
* non-capturing groups ((?:...))
¢ more advanced assertions (\b, \B)
* special character escapes like \r, \n - use Pythons own escaping instead
* etc.

Example:

import re

As re doesn't support escapes itself, use of r""
recommended.

regex = re.compile("[\r\n]")

strings is not

regex.split("linel\rline2\nline3\r\n")

Result:
['1inel’, 'line2', 'line3', ", "]

1.1. Python standard libraries and micro-libraries 21

MicroPython Documentation, Release 1.18

Functions

re.compile (regex_str[, flags])
Compile regular expression, return regex object.

re.match(regex_str, string)
Compile regex_str and match against string. Match always happens from starting position in a string.

re.search(regex_str, string)
Compile regex_str and search it in a string. Unlike match, this will search string for first position which matches
regex (which still may be O if regex is anchored).

re.sub(regex_str, replace, string, count=0, flags=0, /)
Compile regex_str and search for it in string, replacing all matches with replace, and returning the new string.

replace can be a string or a function. If it is a string then escape sequences of the form \<number> and \
g<number> can be used to expand to the corresponding group (or an empty string for unmatched groups). If
replace is a function then it must take a single argument (the match) and should return a replacement string.

If count is specified and non-zero then substitution will stop after this many substitutions are made. The flags
argument is ignored.

Note: availability of this function depends on MicroPython port.

re.DEBUG
Flag value, display debug information about compiled expression. (Availability depends on MicroPython port.)

Regex objects
Compiled regular expression. Instances of this class are created using re.compile().

&x: gﬁ rep flté‘é §z)rmg, count=0, flags=0, /)

Similar to the module-level functions match(), search() and sub(). Using methods is (much) more efficient
if the same regex is applied to multiple strings.

gex matc Ky rln

regex.split(string, max_split=-1,/)
Split a string using regex. If max_split is given, it specifies maximum number of splits to perform. Returns list
of strings (there may be up to max_split+1 elements if its specified).

Match objects

Match objects as returned by match() and search () methods, and passed to the replacement function in sub().

match.group (index)
Return matching (sub)string. index is O for entire match, 1 and above for each capturing group. Only numeric
groups are supported.

match.groups()
Return a tuple containing all the substrings of the groups of the match.

Note: availability of this method depends on MicroPython port.

match.start(|index |)
match.end(zn[dexj)]

Return the index in the original string of the start or end of the substring group that was matched. index defaults
to the entire group, otherwise it will select a group.

Note: availability of these methods depends on MicroPython port.

22 Chapter 1. MicroPython libraries

MicroPython Documentation, Release 1.18

match.span([index])
Returns the 2-tuple (match.start(index), match.end(index)).

Note: availability of this method depends on MicroPython port.

1.1.16 select — wait for events on a set of streams

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: select.

This module provides functions to efficiently wait for events on multiple streams (select streams which are ready for
operations).

Functions

select.poll()
Create an instance of the Poll class.

select.select (rlist, wlist, xlist[, timeout])
Wiait for activity on a set of objects.

This function is provided by some MicroPython ports for compatibility and is not efficient. Usage of Poll is
recommended instead.

class Poll

Methods

poll.register (obj[, eventmask])
Register stream obj for polling. eventmask is logical OR of:

* select.POLLIN - data available for reading
e select.POLLOUT - more data can be written

Note that flags like select.POLLHUP and select.POLLERR are not valid as input eventmask (these are unso-
licited events which will be returned from poll () regardless of whether they are asked for). This semantics is
per POSIX.

eventmask defaults to select.POLLIN | select.POLLOUT.

It is OK to call this function multiple times for the same 0bj. Successive calls will update objs eventmask to the
value of eventmask (i.e. will behave as modify ()).

poll.unregister (obj)
Unregister obj from polling.

poll.modify (obj, eventmask)
Modify the eventmask for obj. If obj is not registered, OSError is raised with error of ENOENT.

poll.poll (timeout=-1,/)
Wait for at least one of the registered objects to become ready or have an exceptional condition, with optional
timeout in milliseconds (if timeout arg is not specified or -1, there is no timeout).

Returns list of (obj, event,) tuples. There may be other elements in tuple, depending on a platform and version,
so dont assume that its size is 2. The event element specifies which events happened with a stream and is a com-
bination of select.POLL* constants described above. Note that flags select .POLLHUP and select.POLLERR
can be returned at any time (even if were not asked for), and must be acted on accordingly (the corresponding

1.1. Python standard libraries and micro-libraries 23

https://docs.python.org/3.5/library/select.html#module-select

MicroPython Documentation, Release 1.18

stream unregistered from poll and likely closed), because otherwise all further invocations of poIl1 () may return
immediately with these flags set for this stream again.

In case of timeout, an empty list is returned.

Difference to CPython

Tuples returned may contain more than 2 elements as described above.

poll.ipoll (timeout=- 1, flags=0, /)
Like pol1.poll(),butinstead returns an iterator which yields a callee-owned tuple. This function provides
an efficient, allocation-free way to poll on streams.

If flags is 1, one-shot behaviour for events is employed: streams for which events happened will have their event
masks automatically reset (equivalent to poll.modify(obj, 0)), so new events for such a stream wont be
processed until new mask is set with po11.modify (). This behaviour is useful for asynchronous I/O schedulers.

Difference to CPython

This function is a MicroPython extension.

1.1.17 socket — socket module

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: socket.

This module provides access to the BSD socket interface.

Difference to CPython

For efficiency and consistency, socket objects in MicroPython implement a stream (file-like) interface directly. In
CPython, you need to convert a socket to a file-like object using makefile () method. This method is still supported
by MicroPython (but is a no-op), so where compatibility with CPython matters, be sure to use it.

Socket address format(s)

The native socket address format of the socket module is an opaque data type returned by getaddrinfo function,
which must be used to resolve textual address (including numeric addresses):

sockaddr = socket.getaddrinfo('www.micropython.org', 80)[0][-1]
You must use getaddrinfo() even for numeric addresses
sockaddr = socket.getaddrinfo('127.0.0.1", 80)[0][-1]

Now you can use that address

sock.connect (addr)

Using getaddrinfo is the most efficient (both in terms of memory and processing power) and portable way to work
with addresses.

However, socket module (note the difference with native MicroPython socket module described here) provides
CPython-compatible way to specify addresses using tuples, as described below. Note that depending on a MicroPython
port, socket module can be builtin or need to be installed from micropython-1ib (as in the case of MicroPython

24 Chapter 1. MicroPython libraries

https://docs.python.org/3.5/library/socket.html#module-socket

MicroPython Documentation, Release 1.18

Unix port), and some ports still accept only numeric addresses in the tuple format, and require to use getaddrinfo
function to resolve domain names.

Summing up:
* Always use getaddrinfo when writing portable applications.

* Tuple addresses described below can be used as a shortcut for quick hacks and interactive use, if your port
supports them.

Tuple address format for socket module:

» IPv4: (ipv4_address, port), where ipv4_address is a string with dot-notation numeric IPv4 address, e.g. "8.8.
8.8", and port is and integer port number in the range 1-65535. Note the domain names are not accepted as
ipv4_address, they should be resolved first using socket.getaddrinfo().

» IPv6: (ipv6_address, port, flowinfo, scopeid), where ipv6_address is a string with colon-notation numeric IPv6
address, e.g. "2001:db8::1", and port is an integer port number in the range 1-65535. flowinfo must be
0. scopeid is the interface scope identifier for link-local addresses. Note the domain names are not accepted
as ipv6_address, they should be resolved first using socket.getaddrinfo(). Availability of IPv6 support
depends on a MicroPython port.

Functions

socket.socket (af=AF_INET, type=SOCK_STREAM, proto=IPPROTO_TCP, /)
Create a new socket using the given address family, socket type and protocol number. Note that specifying
proto in most cases is not required (and not recommended, as some MicroPython ports may omit IPPROTO_*
constants). Instead, rype argument will select needed protocol automatically:

Create STREAM TCP socket
socket (AF_INET, SOCK_STREAM)
Create DGRAM UDP socket
socket (AF_INET, SOCK_DGRAM)

socket.getaddrinfo (host, port, af=0, type=0, proto=0, flags=0, /)
Translate the host/port argument into a sequence of 5-tuples that contain all the necessary arguments for creating
a socket connected to that service. Arguments af, type, and proto (which have the same meaning as for the
socket () function) can be used to filter which kind of addresses are returned. If a parameter is not specified or
zero, all combinations of addresses can be returned (requiring filtering on the user side).

The resulting list of 5-tuples has the following structure:

(family, type, proto, canonname, sockaddr)

The following example shows how to connect to a given url:

s = socket.socket()

This assumes that if "type" is not specified, an address for
SOCK_STREAM will be returned, which may be not true

s.connect (socket.getaddrinfo('www.micropython.org', 80)[0][-1])

Recommended use of filtering params:

s = socket.socket()

Guaranteed to return an address which can be connect'ed to for

stream operation.

s.connect (socket.getaddrinfo('www.micropython.org', 80, 0, SOCK_STREAM)[0][-1]1)

1.1. Python standard libraries and micro-libraries 25

MicroPython Documentation, Release 1.18

Difference to CPython

CPython raises a socket.gaierror exception (OSError subclass) in case of error in this function. MicroPy-
thon doesnt have socket.gaierror and raises OSError directly. Note that error numbers of getaddrinfo()
form a separate namespace and may not match error numbers from the errno module. To distinguish
getaddrinfo() errors, they are represented by negative numbers, whereas standard system errors are posi-
tive numbers (error numbers are accessible using e.args[0] property from an exception object). The use of
negative values is a provisional detail which may change in the future.

socket.inet_ntop(af, bin_addr)
Convert a binary network address bin_addr of the given address family af to a textual representation:

>>> socket.inet_ntop(socket.AF_INET, b"\x7£\0\0\1")
'127.0.0.1"

socket.inet_pton(af, txt_addr)
Convert a textual network address #xt_addr of the given address family af to a binary representation:

>>> socket.inet_pton(socket.AF_INET, "1.2.3.4")
b'\x01\x02\x03\x04"'

Constants

socket.AF_INET
socket.AF_INET6
Address family types. Availability depends on a particular MicroPython port.

socket.SOCK_STREAM
socket.SOCK_DGRAM
Socket types.

socket .IPPROTO_UDP

socket .IPPROTO_TCP
IP protocol numbers. Availability depends on a particular MicroPython port. Note that you dont need to specify
these in a call to socket. socket (), because SOCK_STREAM socket type automatically selects TPPROTO_TCP,
and SOCK_DGRAIM - TPPROTO_UDP. Thus, the only real use of these constants is as an argument to setsockopt ().

socket.SOL_*
Socket option levels (an argument to setsockopt ()). The exact inventory depends on a MicroPython port.

socket.SO_*
Socket options (an argument to setsockopt ()). The exact inventory depends on a MicroPython port.

Constants specific to WiPy:

socket.IPPROTO_SEC
Special protocol value to create SSL-compatible socket.

26 Chapter 1. MicroPython libraries

MicroPython Documentation, Release 1.18

class socket

Methods

socket.close()
Mark the socket closed and release all resources. Once that happens, all future operations on the socket object
will fail. The remote end will receive EOF indication if supported by protocol.

Sockets are automatically closed when they are garbage-collected, but it is recommended to close() them
explicitly as soon you finished working with them.

socket.bind(address)
Bind the socket to address. The socket must not already be bound.

socket.listen(|backlog |)
Enable a server to accept connections. If backlog is specified, it must be at least O (if its lower, it will be set to 0);
and specifies the number of unaccepted connections that the system will allow before refusing new connections.
If not specified, a default reasonable value is chosen.

socket.accept()
Accept a connection. The socket must be bound to an address and listening for connections. The return value is
a pair (conn, address) where conn is a new socket object usable to send and receive data on the connection, and
address is the address bound to the socket on the other end of the connection.

socket.connect (address)
Connect to a remote socket at address.

socket.send (bytes)
Send data to the socket. The socket must be connected to a remote socket. Returns number of bytes sent, which
may be smaller than the length of data (short write).

socket.sendall (bytes)
Send all data to the socket. The socket must be connected to a remote socket. Unlike send (), this method will
try to send all of data, by sending data chunk by chunk consecutively.

The behaviour of this method on non-blocking sockets is undefined. Due to this, on MicroPython, its recom-
mended to use write () method instead, which has the same no short writes policy for blocking sockets, and
will return number of bytes sent on non-blocking sockets.

socket.recv(bufsize)
Receive data from the socket. The return value is a bytes object representing the data received. The maximum
amount of data to be received at once is specified by bufsize.

socket.sendto (bytes, address)
Send data to the socket. The socket should not be connected to a remote socket, since the destination socket is
specified by address.

socket.recvfrom(bufsize)
Receive data from the socket. The return value is a pair (bytes, address) where bytes is a bytes object representing
the data received and address is the address of the socket sending the data.

socket.setsockopt (level, optname, value)
Set the value of the given socket option. The needed symbolic constants are defined in the socket module (SO_*
etc.). The value can be an integer or a bytes-like object representing a buffer.

socket.settimeout (value)
Note: Not every port supports this method, see below.

Set a timeout on blocking socket operations. The value argument can be a nonnegative floating point number
expressing seconds, or None. If a non-zero value is given, subsequent socket operations will raise an OSError

1.1. Python standard libraries and micro-libraries 27

MicroPython Documentation, Release 1.18

exception if the timeout period value has elapsed before the operation has completed. If zero is given, the socket
is put in non-blocking mode. If None is given, the socket is put in blocking mode.

Not every MicroPython port supports this method. A more portable and generic solution is to use select.poll
object. This allows to wait on multiple objects at the same time (and not just on sockets, but on generic stream
objects which support polling). Example:

Instead of:
s.settimeout(1.0) # time in seconds
s.read(10) # may timeout

Use:
poller = select.poll()
poller.register(s, select.POLLIN)
res = poller.poll(1000) # time in milliseconds
if not res:
s is still not ready for input, i.e. operation timed out

Difference to CPython

CPython raises a socket. timeout exception in case of timeout, which is an OSError subclass. MicroPython
raises an OSError directly instead. If you use except OSError: to catch the exception, your code will work
both in MicroPython and CPython.

socket.setblocking(flag)

Set blocking or non-blocking mode of the socket: if flag is false, the socket is set to non-blocking, else to blocking
mode.

This method is a shorthand for certain settimeout () calls:
* sock.setblocking(True) is equivalent to sock.settimeout (None)

* sock.setblocking(False) is equivalent to sock.settimeout (0)

socket.makefile (mode="rb’, buffering=0, /)

Return a file object associated with the socket. The exact returned type depends on the arguments given to
makefile(). The support is limited to binary modes only (rb, wb, and rwb). CPythons arguments: encoding,
errors and newline are not supported.

Difference to CPython

As MicroPython doesnt support buffered streams, values of buffering parameter is ignored and treated as if it
was 0 (unbuffered).

Difference to CPython

Closing the file object returned by makefile() WILL close the original socket as well.

socket.read([size])

Read up to size bytes from the socket. Return a bytes object. If size is not given, it reads all data available from
the socket until EOF; as such the method will not return until the socket is closed. This function tries to read as
much data as requested (no short reads). This may be not possible with non-blocking socket though, and then
less data will be returned.

28

Chapter 1. MicroPython libraries

MicroPython Documentation, Release 1.18

socket.readinto (buf[, nbytes])
Read bytes into the buf. If nbytes is specified then read at most that many bytes. Otherwise, read at most len(buf)
bytes. Just as read (), this method follows no short reads policy.

Return value: number of bytes read and stored into buf.

socket.readline()
Read a line, ending in a newline character.

Return value: the line read.

socket.write(buf)
Write the buffer of bytes to the socket. This function will try to write all data to a socket (no short writes). This
may be not possible with a non-blocking socket though, and returned value will be less than the length of buf.

Return value: number of bytes written.

exception socket.error
MicroPython does NOT have this exception.

Difference to CPython

CPython used to have a socket.error exception which is now deprecated, and is an alias of OSError. In
MicroPython, use OSError directly.

1.1.18 ssl — SSL/TLS module

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: ssl.

This module provides access to Transport Layer Security (previously and widely known as Secure Sockets Layer)
encryption and peer authentication facilities for network sockets, both client-side and server-side.

Functions

ssl.wrap_socket (sock, server_side=False, keyfile=None, certfile=None, cert_reqs=CERT_NONE,
ca_certs=None, do_handshake=True)
Takes a stream sock (usually socket.socket instance of SOCK_STREAM type), and returns an instance of
ssl.SSLSocket, which wraps the underlying stream in an SSL context. Returned object has the usual stream
interface methods like read (), write (), etc. A server-side SSL socket should be created from a normal socket
returned from accept () on a non-SSL listening server socket.

* do_handshake determines whether the handshake is done as part of the wrap_socket or whether it is
deferred to be done as part of the initial reads or writes (there is no do_handshake method as in CPython).
For blocking sockets doing the handshake immediately is standard. For non-blocking sockets (i.e. when
the sock passed into wrap_socket is in non-blocking mode) the handshake should generally be deferred
because otherwise wrap_socket blocks until it completes. Note that in AXTLS the handshake can be
deferred until the first read or write but it then blocks until completion.

Depending on the underlying module implementation in a particular MicroPython port, some or all keyword
arguments above may be not supported.

Warning: Some implementations of ss1 module do NOT validate server certificates, which makes an SSL con-
nection established prone to man-in-the-middle attacks.

1.1. Python standard libraries and micro-libraries 29

https://docs.python.org/3.5/library/ssl.html#module-ssl

MicroPython Documentation, Release 1.18

CPythons wrap_socket returns an SSLSocket object which has methods typical for sockets, such as send, recv,
etc. MicroPythons wrap_socket returns an object more similar to CPythons SSLObject which does not have
these socket methods.

Exceptions

ssl.SSLError
This exception does NOT exist. Instead its base class, OSError, is used.

Constants

ss1.CERT_NONE
ss1.CERT_OPTIONAL
ss1.CERT_REQUIRED
Supported values for cert_regs parameter.

1.1.19 struct — pack and unpack primitive data types

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: struct.

Supported size/byte order prefixes: @, <, >, !.

Supported format codes: b, B, h,H, i, I,1,L,q,Q,s,P, £, d (the latter 2 depending on the floating-point support).

Difference to CPython

Whitespace is not supported in format strings.

Functions

struct.calcsize (fint)
Return the number of bytes needed to store the given fint.

struct.pack(fmzt, vi, v2,...)
Pack the values v/, v2, according to the format string fint. The return value is a bytes object encoding the values.

struct.pack_into (fint, buffer, offset, vi, v2, ...)
Pack the values v/, v2, according to the format string fmt into a buffer starting at offset. offset may be negative
to count from the end of buffer.

struct.unpack (fint, data)
Unpack from the data according to the format string fint. The return value is a tuple of the unpacked values.

struct.unpack_from(fint, data, offset=0, /)
Unpack from the data starting at offset according to the format string fmt. offset may be negative to count from
the end of buffer. The return value is a tuple of the unpacked values.

30 Chapter 1. MicroPython libraries

https://docs.python.org/3.5/library/struct.html#module-struct

MicroPython Documentation, Release 1.18

1.1.20 sys - system specific functions

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: sys.

Functions

sys.exit (retval=0,/)
Terminate current program with a given exit code. Underlyingly, this function raise as SystemExit exception.
If an argument is given, its value given as an argument to SystemExit.

sys.atexit (func)
Register func to be called upon termination. func must be a callable that takes no arguments, or None to disable
the call. The atexit function will return the previous value set by this function, which is initially None.

Difference to CPython

This function is a MicroPython extension intended to provide similar functionality to the atexit module in
CPython.

sys.print_exception(exc, file=sys.stdout, /)
Print exception with a traceback to a file-like object file (or sys. stdout by default).

Difference to CPython

This is simplified version of a function which appears in the traceback module in CPython. Unlike traceback.
print_exception(), this function takes just exception value instead of exception type, exception value, and
traceback object; file argument should be positional; further arguments are not supported. CPython-compatible
traceback module can be found in micropython-1ib.

sys.settrace (tracefunc)
Enable tracing of bytecode execution. For details see the CPython documentaion.

This function requires a custom MicroPython build as it is typically not present in pre-built firmware (due to it
affecting performance). The relevant configuration option is MICROPY_PY_SYS_SETTRACE.

Constants
sys.argv
A mutable list of arguments the current program was started with.

sys.byteorder
The byte order of the system ("1little" or "big").

sys.implementation
Object with information about the current Python implementation. For MicroPython, it has following attributes:

* name - string micropython
* version - tuple (major, minor, micro), e.g. (1, 7, 0)

This object is the recommended way to distinguish MicroPython from other Python implementations (note that
it still may not exist in the very minimal ports).

Difference to CPython

1.1. Python standard libraries and micro-libraries 31

https://docs.python.org/3.5/library/sys.html#module-sys
https://docs.python.org/3.5/library/atexit.html#module-atexit
https://docs.python.org/3/library/sys.html#sys.settrace

MicroPython Documentation, Release 1.18

CPython mandates more attributes for this object, but the actual useful bare minimum is implemented in Mi-
croPython.

sys.maxsize

Maximum value which a native integer type can hold on the current platform, or maximum value representable by
MicroPython integer type, if its smaller than platform max value (that is the case for MicroPython ports without
long int support).

This attribute is useful for detecting bitness of a platform (32-bit vs 64-bit, etc.). Its recommended to not compare
this attribute to some value directly, but instead count number of bits in it:

bits = 0
vV = sys.maxsize
while v:
bits += 1
v >>=1
if bits > 32:
64-bit (or more) platform

else:
32-bit (or less) platform
Note that on 32-bit platform, value of bits may be less than 32
(e.g. 31) due to peculiarities described above, so use "> 16",
"> 32", "> 64" style of comparisons.

sys.modules

Dictionary of loaded modules. On some ports, it may not include builtin modules.

sys.path
A mutable list of directories to search for imported modules.
Difference to CPython
On MicroPython, an entry with the value " . frozen" will indicate that import should search frozen modules at
that point in the search. If no frozen module is found then search will not look for a directory called . frozen,
instead it will continue with the next entry in sys.path.
sys.platform
The platform that MicroPython is running on. For OS/RTOS ports, this is usually an identifier of the OS, e.g.
"linux". For baremetal ports it is an identifier of a board, e.g. "pyboard" for the original MicroPython
reference board. It thus can be used to distinguish one board from another. If you need to check whether your
program runs on MicroPython (vs other Python implementation), use sys. implementation instead.
sys.stderr
Standard error stream.
sys.stdin
Standard input stream.
sys.stdout
Standard output stream.
sys.version
Python language version that this implementation conforms to, as a string.
sys.version_info
Python language version that this implementation conforms to, as a tuple of ints.
32 Chapter 1. MicroPython libraries

MicroPython Documentation, Release 1.18

Difference to CPython

Only the first three version numbers (major, minor, micro) are supported and they can be referenced
only by index, not by name.

1.1.21 time - time related functions

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: time.

The time module provides functions for getting the current time and date, measuring time intervals, and for delays.

Time Epoch: Unix port uses standard for POSIX systems epoch of 1970-01-01 00:00:00 UTC. However, embedded
ports use epoch of 2000-01-01 00:00:00 UTC.

Maintaining actual calendar date/time: This requires a Real Time Clock (RTC). On systems with underlying OS
(including some RTOS), an RTC may be implicit. Setting and maintaining actual calendar time is responsibility of
OS/RTOS and is done outside of MicroPython, it just uses OS API to query date/time. On baremetal ports how-
ever system time depends on machine.RTC() object. The current calendar time may be set using machine.RTC() .
datetime(tuple) function, and maintained by following means:

* By a backup battery (which may be an additional, optional component for a particular board).
 Using networked time protocol (requires setup by a port/user).

* Set manually by a user on each power-up (many boards then maintain RTC time across hard resets, though some
may require setting it again in such case).

If actual calendar time is not maintained with a system/MicroPython RTC, functions below which require reference to
current absolute time may behave not as expected.

Functions

time. gmtlme(seq,
time.localtime(secs])

Convert the time secs expressed in seconds since the Epoch (see above) into an 8-tuple which contains: (year,
month, mday, hour, minute, second, weekday, yearday) If secs is not provided or None, then the
current time from the RTC is used.

The gmtime () function returns a date-time tuple in UTC, and localtime () returns a date-time tuple in local
time.

The format of the entries in the 8-tuple are:
* year includes the century (for example 2014).
e month is 1-12
* mday is 1-31
* hour is 0-23
* minute is 0-59
* second is 0-59
* weekday is 0-6 for Mon-Sun
* yearday is 1-366

1.1. Python standard libraries and micro-libraries 33

https://docs.python.org/3.5/library/time.html#module-time

MicroPython Documentation, Release 1.18

time.

time.

time.

time.

time.

time.

time.

time.

mktime()
This is inverse function of localtime. Its argument is a full 8-tuple which expresses a time as per localtime. It
returns an integer which is the number of seconds since Jan 1, 2000.

sleep (seconds)

Sleep for the given number of seconds. Some boards may accept seconds as a floating-point number to sleep for a
fractional number of seconds. Note that other boards may not accept a floating-point argument, for compatibility
with them use sleep_ms() and sleep_us() functions.

sleep_ms (ms)
Delay for given number of milliseconds, should be positive or 0.

This function will delay for at least the given number of milliseconds, but may take longer than that if other
processing must take place, for example interrupt handlers or other threads. Passing in O for ms will still allow
this other processing to occur. Use sleep_us () for more precise delays.

sleep_us(us)
Delay for given number of microseconds, should be positive or 0.

This function attempts to provide an accurate delay of at least us microseconds, but it may take longer if the
system has other higher priority processing to perform.

ticks_ms()
Returns an increasing millisecond counter with an arbitrary reference point, that wraps around after some value.

The wrap-around value is not explicitly exposed, but we will refer to it as TICKS_MAX to simplify discussion.
Period of the values is TICKS_PERIOD = TICKS_MAX + 1. TICKS_PERIOD is guaranteed to be a power
of two, but otherwise may differ from port to port. The same period value is used for all of ticks_ms(),
ticks_us(), ticks_cpu() functions (for simplicity). Thus, these functions will return a value in range [0 ..
TICKS_MAX], inclusive, total TICKS_PERIOD values. Note that only non-negative values are used. For the
most part, you should treat values returned by these functions as opaque. The only operations available for them
are ticks_diff() and ticks_add() functions described below.

Note: Performing standard mathematical operations (+, -) or relational operators (<, <=, >, >=) directly on these
value will lead to invalid result. Performing mathematical operations and then passing their results as arguments
to ticks_diff() or ticks_add() will also lead to invalid results from the latter functions.

ticks_us()
Just like ticks_ms () above, but in microseconds.

ticks_cpu()

Similar to ticks_ms () and ticks_us(), but with the highest possible resolution in the system. This is usually
CPU clocks, and thats why the function is named that way. But it doesnt have to be a CPU clock, some other
timing source available in a system (e.g. high-resolution timer) can be used instead. The exact timing unit
(resolution) of this function is not specified on time module level, but documentation for a specific port may
provide more specific information. This function is intended for very fine benchmarking or very tight real-time
loops. Avoid using it in portable code.

Auvailability: Not every port implements this function.

ticks_add(zicks, delta)

Offset ticks value by a given number, which can be either positive or negative. Given a ticks value, this func-
tion allows to calculate ticks value delta ticks before or after it, following modular-arithmetic definition of tick
values (see ticks_ms() above). ticks parameter must be a direct result of call to ticks_ms(), ticks_us(),
or ticks_cpu() functions (or from previous call to ticks_add()). However, delta can be an arbitrary integer
number or numeric expression. ticks_add() is useful for calculating deadlines for events/tasks. (Note: you
must use ticks_diff() function to work with deadlines.)

Examples:

34

Chapter 1. MicroPython libraries

MicroPython Documentation, Release 1.18

Find out what ticks value there was 100ms ago
print(ticks_add(time.ticks_ms(), -100))

Calculate deadline for operation and test for it

deadline = ticks_add(time.ticks_ms(), 200)

while ticks_diff(deadline, time.ticks_ms()) > 0:
do_a_little_of_something()

Find out TICKS_MAX used by this port
print(ticks_add(0®, -1))

time.ticks_diff (ticksl, ticks2)
Measure ticks difference between values returned from ticks_ms (), ticks_us(), or ticks_cpu() functions,
as a signed value which may wrap around.

The argument order is the same as for subtraction operator, ticks_diff(ticksl, ticks2) has the same
meaning as ticksl - ticks2. However, values returned by ticks_ms (), etc. functions may wrap around,
so directly using subtraction on them will produce incorrect result. That is why ticks_diff() is needed,
it implements modular (or more specifically, ring) arithmetics to produce correct result even for wrap-around
values (as long as they not too distant inbetween, see below). The function returns signed value in the range
[-TICKS_PERIOD/2 .. TICKS_PERIOD/2-1] (thats a typical range definition for twos-complement signed bi-
nary integers). If the result is negative, it means that ticks! occurred earlier in time than ficks2. Otherwise, it
means that ticks] occurred after ticks2. This holds only if ficks] and ticks2 are apart from each other for no
more than TICKS_PERIOD/2-1 ticks. If that does not hold, incorrect result will be returned. Specifically, if
two tick values are apart for TICKS_PERIOD/2-1 ticks, that value will be returned by the function. However,
if TICKS_PERIOD/2 of real-time ticks has passed between them, the function will return -TICKS_PERIOD/2
instead, i.e. result value will wrap around to the negative range of possible values.

Informal rationale of the constraints above: Suppose you are locked in a room with no means to monitor passing
of time except a standard 12-notch clock. Then if you look at dial-plate now, and dont look again for another 13
hours (e.g., if you fall for a long sleep), then once you finally look again, it may seem to you that only 1 hour has
passed. To avoid this mistake, just look at the clock regularly. Your application should do the same. Too long
sleep metaphor also maps directly to application behaviour: dont let your application run any single task for too
long. Run tasks in steps, and do time-keeping inbetween.

ticks_diff() is designed to accommodate various usage patterns, among them:

* Polling with timeout. In this case, the order of events is known, and you will deal only with positive results
of ticks_diff():

Wait for GPIO pin to be asserted, but at most 500us
start = time.ticks_usQ)
while pin.value() ==
if time.ticks_diff(time.ticks_us(), start) > 500:
raise TimeoutError

¢ Scheduling events. In this case, ticks_diff() result may be negative if an event is overdue:

This code snippet is not optimized

now = time.ticks_ms()

scheduled_time = task.scheduled_time()

if ticks_diff(scheduled_time, now) > 0:
print("Too early, let's nap")
sleep_ms(ticks_diff(scheduled_time, now))
task.run(Q)

(continues on next page)

1.1. Python standard libraries and micro-libraries 35

MicroPython Documentation, Release 1.18

(continued from previous page)

elif ticks_diff(scheduled_time, now) == 0:
print("Right at time!")
task.run()
elif ticks_diff(scheduled_time, now) < 0:
print("Oops, running late, tell task to run faster!")
task.run(run_faster=true)

Note: Do not pass time () values to ticks_diff(), you should use normal mathematical operations on them.
But note that time () may (and will) also overflow. This is known as https://en.wikipedia.org/wiki/Year_2038_
problem .

time.time()

Returns the number of seconds, as an integer, since the Epoch, assuming that underlying RTC is set and main-
tained as described above. If an RTC is not set, this function returns number of seconds since a port-specific
reference point in time (for embedded boards without a battery-backed RTC, usually since power up or reset).
If you want to develop portable MicroPython application, you should not rely on this function to provide higher
than second precision. If you need higher precision, absolute timestamps, use time_ns(). If relative times
are acceptable then use the ticks_ms() and ticks_us() functions. If you need calendar time, gmtime () or
localtime () without an argument is a better choice.

Difference to CPython

In CPython, this function returns number of seconds since Unix epoch, 1970-01-01 00:00 UTC, as a floating-
point, usually having microsecond precision. With MicroPython, only Unix port uses the same Epoch, and if
floating-point precision allows, returns sub-second precision. Embedded hardware usually doesnt have floating-
point precision to represent both long time ranges and subsecond precision, so they use integer value with second
precision. Some embedded hardware also lacks battery-powered RTC, so returns number of seconds since last
power-up or from other relative, hardware-specific point (e.g. reset).

time.time_ns()

Similar to time () but returns nanoseconds since the Epoch, as an integer (usually a big integer, so will allocate
on the heap).

1.1.22 uasyncio asynchronous I/O scheduler

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: asyncio

Example:

import uasyncio

async def blink(led, period_ms):

while True:
led.onQ)
await uasyncio.sleep_ms(5)
led.off(Q
await uasyncio.sleep_ms(period_ms)

async def main(ledl, led2):

uasyncio.create_task(blink(ledl, 700))
uasyncio.create_task(blink(led2, 400))

(continues on next page)

36

Chapter 1. MicroPython libraries

https://en.wikipedia.org/wiki/Year_2038_problem
https://en.wikipedia.org/wiki/Year_2038_problem
https://docs.python.org/3.8/library/asyncio.html

MicroPython Documentation, Release 1.18

(continued from previous page)

await uasyncio.sleep_ms(10_000)

Running on a pyboard
from pyb import LED
uasyncio.run(main(LED(1), LED(2)))

Running on a generic board
from machine import Pin
uasyncio.run(main(Pin(1), Pin(2)))

Core functions

uasyncio.create_task(coro)
Create a new task from the given coroutine and schedule it to run.
Returns the corresponding Task object.

uasyncio.current_task()
Return the Task object associated with the currently running task.

uasyncio.run(coro)
Create a new task from the given coroutine and run it until it completes.

Returns the value returned by coro.

uasyncio.sleep(?)
Sleep for # seconds (can be a float).

This is a coroutine.

uasyncio.sleep_ms(r)
Sleep for ¢ milliseconds.

This is a coroutine, and a MicroPython extension.

Additional functions

uasyncio.wait_£for (awaitable, timeout)
Wait for the awaitable to complete, but cancel it if it takes longer than timeout seconds. If awaitable is not a task
then a task will be created from it.

If a timeout occurs, it cancels the task and raises asyncio.TimeoutError: this should be trapped by the caller.
The task receives asyncio.CancelledError which may be ignored or trapped using try. . .except or try.
. .finally to run cleanup code.

Returns the return value of awaitable.
This is a coroutine.

uasyncio.wait_for_ms (awaitable, timeout)
Similar to wait_for but timeout is an integer in milliseconds.

This is a coroutine, and a MicroPython extension.

uasyncio.gather (*awaitables, return_exceptions=False)
Run all awaitables concurrently. Any awaitables that are not tasks are promoted to tasks.

Returns a list of return values of all awaitables.

1.1. Python standard libraries and micro-libraries 37

MicroPython Documentation, Release 1.18

This is a coroutine.

class Task

class uasyncio.Task
This object wraps a coroutine into a running task. Tasks can be waited on using await task, which will wait
for the task to complete and return the return value of the task.

Tasks should not be created directly, rather use create_task to create them.

Task.cancel ()
Cancel the task by injecting asyncio.CancelledError into it. The task may ignore this exception. Cleanup
code may be run by trapping it, or via try ... finally.

class Event
class uasyncio.Event
Create a new event which can be used to synchronise tasks. Events start in the cleared state.

Event.is_set()
Returns True if the event is set, False otherwise.

Event.set()
Set the event. Any tasks waiting on the event will be scheduled to run.

Note: This must be called from within a task. It is not safe to call this from an IRQ, scheduler callback, or other
thread. See ThreadSafeFlag.

Event.clear()
Clear the event.

Event.wait()
Wait for the event to be set. If the event is already set then it returns immediately.

This is a coroutine.

class ThreadSafeFlag

class uasyncio.ThreadSafeFlag
Create a new flag which can be used to synchronise a task with code running outside the asyncio loop, such as
other threads, IRQs, or scheduler callbacks. Flags start in the cleared state.

ThreadSafeFlag.set()
Set the flag. If there is a task waiting on the event, it will be scheduled to run.

ThreadSafeFlag.wait()
Wait for the flag to be set. If the flag is already set then it returns immediately.

A flag may only be waited on by a single task at a time.

This is a coroutine.

38 Chapter 1. MicroPython libraries

MicroPython Documentation, Release 1.18

class Lock

class uasyncio.Lock
Create a new lock which can be used to coordinate tasks. Locks start in the unlocked state.
In addition to the methods below, locks can be used in an async with statement.

Lock.locked()
Returns True if the lock is locked, otherwise False.

Lock.acquire()
Wait for the lock to be in the unlocked state and then lock it in an atomic way. Only one task can acquire the lock
at any one time.

This is a coroutine.

Lock.release()
Release the lock. If any tasks are waiting on the lock then the next one in the queue is scheduled to run and the
lock remains locked. Otherwise, no tasks are waiting an the lock becomes unlocked.

TCP stream connections

uasyncio.open_connection(host, port)
Open a TCP connection to the given host and port. The host address will be resolved using socket.
getaddrinfo, which is currently a blocking call.

Returns a pair of streams: a reader and a writer stream. Will raise a socket-specific OSError if the host could
not be resolved or if the connection could not be made.

This is a coroutine.

uasyncio.start_server (callback, host, port, backlog=5)
Start a TCP server on the given host and port. The callback will be called with incoming, accepted connections,
and be passed 2 arguments: reader and writer streams for the connection.

Returns a Server object.
This is a coroutine.

class uasyncio.Stream
This represents a TCP stream connection. To minimise code this class implements both a reader and a writer,
and both StreamReader and StreamWriter alias to this class.

Stream.get_extra_info(v)
Get extra information about the stream, given by v. The valid values for v are: peername.

Stream.close()
Close the stream.

Stream.wait_closed()
Wait for the stream to close.

This is a coroutine.

Stream.read(n)
Read up to n bytes and return them.

This is a coroutine.

Stream.readinto (buf)
Read up to n bytes into buf with n being equal to the length of buf.

Return the number of bytes read into buf.

1.1. Python standard libraries and micro-libraries 39

MicroPython Documentation, Release 1.18

This is a coroutine, and a MicroPython extension.

Stream.readexactly(n)
Read exactly n bytes and return them as a bytes object.

Raises an EOFError exception if the stream ends before reading n bytes.
This is a coroutine.

Stream.readline()
Read a line and return it.

This is a coroutine.

Stream.write (buf)
Accumulated buf to the output buffer. The data is only flushed when Stream.drain is called. It is recommended
to call Stream.drain immediately after calling this function.

Stream.drain()
Drain (write) all buffered output data out to the stream.

This is a coroutine.

class uasyncio.Server
This represents the server class returned from start_server. It can be used in an async with statement to
close the server upon exit.

Server.close()
Close the server.

Server.wait_closed()
Wait for the server to close.

This is a coroutine.

Event Loop

uasyncio.get_event_loop()
Return the event loop used to schedule and run tasks. See Loop.

uasyncio.new_event_loop()
Reset the event loop and return it.

Note: since MicroPython only has a single event loop this function just resets the loops state, it does not create
anew one.

class uasyncio.Loop
This represents the object which schedules and runs tasks. It cannot be created, use get_event_Iloop instead.

Loop.create_task(coro)
Create a task from the given coro and return the new Task object.

Loop.run_forever()
Run the event loop until stop () is called.

Loop.run_until_complete(awaitable)
Run the given awaitable until it completes. If awaitable is not a task then it will be promoted to one.

Loop.stop()
Stop the event loop.

Loop.close()
Close the event loop.

40 Chapter 1. MicroPython libraries

MicroPython Documentation, Release 1.18

Loop.set_exception_handler (handler)
Set the exception handler to call when a Task raises an exception that is not caught. The handler should accept
two arguments: (loop, context).

Loop.get_exception_handler()
Get the current exception handler. Returns the handler, or None if no custom handler is set.

Loop.default_exception_handler (context)
The default exception handler that is called.

Loop.call_exception_handler (context)
Call the current exception handler. The argument confext is passed through and is a dictionary containing keys:
'message’, 'exception', 'future'.

1.1.23 zlib - zlib decompression

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: z11ib.

This module allows to decompress binary data compressed with DEFLATE algorithm (commonly used in zlib library
and gzip archiver). Compression is not yet implemented.

Functions

z1ib.decompress (data, wbits=0, bufsize=0, /)
Return decompressed data as bytes. wbits is DEFLATE dictionary window size used during compression (8-15,
the dictionary size is power of 2 of that value). Additionally, if value is positive, data is assumed to be zlib stream
(with zlib header). Otherwise, if its negative, its assumed to be raw DEFLATE stream. bufsize parameter is for
compatibility with CPython and is ignored.

class zlib.DecompIO(stream, wbits=0, /)
Create a stream wrapper which allows transparent decompression of compressed data in another stream. This
allows to process compressed streams with data larger than available heap size. In addition to values described
in decompress (), wbits may take values 24..31 (16 + 8..15), meaning that input stream has gzip header.

Difference to CPython

This class is MicroPython extension. Its included on provisional basis and may be changed considerably or
removed in later versions.

1.1.24 _thread — multithreading support

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: _thread.

This module implements multithreading support.

This module is highly experimental and its API is not yet fully settled and not yet described in this documentation.

1.1. Python standard libraries and micro-libraries 41

https://docs.python.org/3.5/library/zlib.html#module-zlib
https://en.wikipedia.org/wiki/DEFLATE
https://docs.python.org/3.5/library/_thread.html#module-_thread

MicroPython Documentation, Release 1.18

1.2 MicroPython-specific libraries

Functionality specific to the MicroPython implementation is available in the following libraries.

1.2.1 bluetooth low-level Bluetooth

This module provides an interface to a Bluetooth controller on a board. Currently this supports Bluetooth Low En-
ergy (BLE) in Central, Peripheral, Broadcaster, and Observer roles, as well as GATT Server and Client and L2CAP
connection-oriented-channels. A device may operate in multiple roles concurrently. Pairing (and bonding) is supported
on some ports.

This API is intended to match the low-level Bluetooth protocol and provide building-blocks for higher-level abstractions
such as specific device types.

Note: This module is still under development and its classes, functions, methods and constants are subject to change.

class BLE
Constructor

class bluetooth.BLE
Returns the singleton BLE object.

Configuration

BLE.active([active] /)
Optionally changes the active state of the BLE radio, and returns the current state.

The radio must be made active before using any other methods on this class.

BLE.config('param’,/)

BLE.config (*, param=value, ...)
Get or set configuration values of the BLE interface. To get a value the parameter name should be quoted as
a string, and just one parameter is queried at a time. To set values use the keyword syntax, and one ore more
parameter can be set at a time.

Currently supported values are:

e 'mac': The current address in use, depending on the current address mode. This returns a tuple of
(addr_type, addr).

See gatts_write for details about address type.

This may only be queried while the interface is currently active.
e 'addr_mode': Sets the address mode. Values can be:
0x00 - PUBLIC - Use the controllers public address.
0x01 - RANDOM - Use a generated static address.

0x02 - RPA - Use resolvable private addresses.

0x03 - NRPA - Use non-resolvable private addresses.

42 Chapter 1. MicroPython libraries

MicroPython Documentation, Release 1.18

By default the interface mode will use a PUBLIC address if available, otherwise it will use a RANDOM
address.

e 'gap_name': Get/set the GAP device name used by service 0x1800, characteristic 0x2a00. This can be
set at any time and changed multiple times.

e 'rxbuf': Get/set the size in bytes of the internal buffer used to store incoming events. This buffer is
global to the entire BLE driver and so handles incoming data for all events, including all characteristics.
Increasing this allows better handling of bursty incoming data (for example scan results) and the ability to
receive larger characteristic values.

e 'mtu’: Get/set the MTU that will be used during a ATT MTU exchange. The resulting MTU will be
the minimum of this and the remote devices MTU. ATT MTU exchange will not happen automatically
(unless the remote device initiates it), and must be manually initiated with gattc_exchange_mtu. Use
the _TRQ_MTU_EXCHANGED event to discover the MTU for a given connection.

* 'bond': Sets whether bonding will be enabled during pairing. When enabled, pairing requests will set the
bond flag and the keys will be stored by both devices.

e 'mitm': Sets whether MITM-protection is required for pairing.
e 'io': Sets the I/O capabilities of this device.

Available options are:

_IO_CAPABILITY_DISPLAY_ONLY = const(0)
_IO_CAPABILITY_DISPLAY_YESNO = const(1l)
_IO_CAPABILITY_KEYBOARD_ONLY = const(2)
_IO_CAPABILITY_NO_INPUT_OUTPUT = const(3)
_IO_CAPABILITY_KEYBOARD_DISPLAY = const(4)

* 'le_secure': Sets whether LE Secure pairing is required. Default is false (i.e. allow Legacy Pairing).

Event Handling

BLE.irq(handler,/)
Registers a callback for events from the BLE stack. The handler takes two arguments, event (which will be one
of the codes below) and data (which is an event-specific tuple of values).

Note: As an optimisation to prevent unnecessary allocations, the addr, adv_data, char_data, notify_data,
and uuid entries in the tuples are read-only memoryview instances pointing to bIluetooths internal ringbuffer,
and are only valid during the invocation of the IRQ handler function. If your program needs to save one of these
values to access after the IRQ handler has returned (e.g. by saving it in a class instance or global variable), then
it needs to take a copy of the data, either by using bytes() or bluetooth.UUID(), like this:

connected_addr = bytes(addr) # equivalently: adv_data, char_data, or notify_data
matched_uuid = bluetooth.UUID(uuid)

For example, the IRQ handler for a scan result might inspect the adv_data to decide if its the correct device,
and only then copy the address data to be used elsewhere in the program. And to print data from within the IRQ
handler, print (bytes(addr)) will be needed.

An event handler showing all possible events:

def bt_irg(event, data):
if event == _IRQ_CENTRAL_CONNECT:
A central has connected to this peripheral.
conn_handle, addr_type, addr = data

(continues on next page)

1.2. MicroPython-specific libraries 43

MicroPython Documentation, Release 1.18

(continued from previous page)

elif event == _IRQ_CENTRAL_DISCONNECT:
A central has disconnected from this peripheral.
conn_handle, addr_type, addr = data
elif event == _IRQ_GATTS_WRITE:
A client has written to this characteristic or descriptor.
conn_handle, attr_handle = data
elif event == _IRQ_GATTS_READ_REQUEST:
A client has issued a read. Note: this is only supported on STM32.
Return a non-zero integer to deny the read (see below), or zero (or None)
to accept the read.
conn_handle, attr_handle = data
elif event == _TIRQ_SCAN_RESULT:
A single scan result.
addr_type, addr, adv_type, rssi, adv_data = data

elif event == _IRQ_SCAN_DONE:
Scan duration finished or manually stopped.
pass

elif event == _IRQ_PERIPHERAL_CONNECT:

A successful gap_connect().
conn_handle, addr_type, addr = data
elif event == _IRQ_PERIPHERAL_DISCONNECT:
Connected peripheral has disconnected.
conn_handle, addr_type, addr = data
elif event == _IRQ_GATTC_SERVICE_RESULT:
Called for each service found by gattc_discover_services().
conn_handle, start_handle, end_handle, uuid = data
elif event == _IRQ_GATTC_SERVICE_DONE:
Called once service discovery is complete.
Note: Status will be zero on success, implementation-specific value.
—sotherwise.
conn_handle, status = data
elif event == _TRQ_GATTC_CHARACTERISTIC_RESULT:
Called for each characteristic found by gattc_discover_services().
conn_handle, def_handle, value_handle, properties, uuid = data
elif event == _IRQ_GATTC_CHARACTERISTIC_DONE:
Called once service discovery is complete.
Note: Status will be zero on success, implementation-specific value.
—otherwise.
conn_handle, status = data
elif event == _IRQ_GATTC_DESCRIPTOR_RESULT:
Called for each descriptor found by gattc_discover_descriptors().
conn_handle, dsc_handle, uuid = data
elif event == _IRQ_GATTC_DESCRIPTOR_DONE:
Called once service discovery is complete.
Note: Status will be zero on success, implementation-specific value.
—otherwise.
conn_handle, status = data
elif event == _IRQ_GATTC_READ_RESULT:
A gattc_read() has completed.
conn_handle, value_handle, char_data = data
elif event == _IRQ_GATTC_READ_DONE:
A gattc_read() has completed.

(continues on next page)

44

Chapter 1. MicroPython libraries

MicroPython Documentation, Release 1.18

(continued from previous page)

Note: The value_handle will be zero on btstack (but present on NimBLE).
Note: Status will be zero on success, implementation-specific value.
< otherwise.
conn_handle, value_handle, status = data
elif event == _IRQ_GATTC_WRITE_DONE:
A gattc_write() has completed.
Note: The value_handle will be zero on btstack (but present on NimBLE).
Note: Status will be zero on success, implementation-specific value.
< otherwise.
conn_handle, value_handle, status = data
elif event == _IRQ_GATTC_NOTIFY:
A server has sent a notify request.
conn_handle, value_handle, notify_data = data
elif event == _IRQ_GATTC_INDICATE:
A server has sent an indicate request.
conn_handle, value_handle, notify_data = data
elif event == _IRQ_GATTS_INDICATE_DONE:
A client has acknowledged the indication.
Note: Status will be zero on successful acknowledgment, implementation-
—sspecific value otherwise.
conn_handle, value_handle, status = data
elif event == _IRQ_MTU_EXCHANGED:
ATT MTU exchange complete (either initiated by us or the remote device).
conn_handle, mtu = data
elif event == _IRQ_L2CAP_ACCEPT:
A new channel has been accepted.
Return a non-zero integer to reject the connection, or zero (or None) to.
—,accept.
conn_handle, cid, psm, our_mtu, peer_mtu = data
elif event == _IRQ_L2CAP_CONNECT:
A new channel is now connected (either as a result of connecting or.
—,accepting).
conn_handle, cid, psm, our_mtu, peer_mtu = data
elif event == _IRQ_L2CAP_DISCONNECT:
Existing channel has disconnected (status is zero), or a connection.,
—attempt failed (non-zero status).
conn_handle, cid, psm, status = data
elif event == _IRQ_L2CAP_RECV:
New data is available on the channel. Use l2cap_recvinto to read.
conn_handle, cid = data
elif event == _IRQ_L2CAP_SEND_READY:
A previous 12cap_send that returned False has now completed and the.
<—schannel is ready to send again.
If status is non-zero, then the transmit buffer overflowed and the.
—application should re-send the data.
conn_handle, cid, status = data
elif event == _IRQ_CONNECTION_UPDATE:
The remote device has updated connection parameters.
conn_handle, conn_interval, conn_latency, supervision_timeout, status = data
elif event == _IRQ_ENCRYPTION_UPDATE:
The encryption state has changed (likely as a result of pairing or.
—bonding).

(continues on next page)

. MicroPython-specific libraries 45

MicroPython Documentation, Release 1.18

(continued from previous page)

conn_handle, encrypted, authenticated, bonded, key_size = data
elif event == _IRQ_GET_SECRET:
Return a stored secret.
If key is None, return the index'th value of this sec_type.
Otherwise return the corresponding value for this sec_type and key.
sec_type, index, key = data
return value
elif event == _IRQ_SET_SECRET:
Save a secret to the store for this sec_type and key.
sec_type, key, value = data
return True
elif event == _IRQ_PASSKEY_ACTION:
Respond to a passkey request during pairing.
See gap_passkey() for details.
action will be an action that is compatible with the configured "io'".
—config.
passkey will be non-zero if action is "numeric comparison'.
conn_handle, action, passkey = data

The event codes are:

from micropython import const
_TIRQ_CENTRAL_CONNECT = const(1)
_IRQ_CENTRAL_DISCONNECT = const(2)
_IRQ_GATTS_WRITE = const(3)
_IRQ_GATTS_READ_REQUEST = const(4)
_IRQ_SCAN_RESULT = const(5)
_IRQ_SCAN_DONE = const(6)
_IRQ_PERIPHERAL_CONNECT = const(7)
_IRQ_PERIPHERAL_DISCONNECT = const(8)
_IRQ_GATTC_SERVICE_RESULT = const(9)
_IRQ_GATTC_SERVICE_DONE = const(10)
_IRQ_GATTC_CHARACTERISTIC_RESULT = const(11)
_TRQ_GATTC_CHARACTERISTIC_DONE = const(12)
_TRQ_GATTC_DESCRIPTOR_RESULT = const(13)
_IRQ_GATTC_DESCRIPTOR_DONE = const(14)
_IRQ_GATTC_READ_RESULT = const(15)
_IRQ_GATTC_READ_DONE = const(16)
_IRQ_GATTC_WRITE_DONE = const(17)
_IRQ_GATTC_NOTIFY = const(18)
_TIRQ_GATTC_INDICATE = const(19)
_IRQ_GATTS_INDICATE_DONE = const(20)
_IRQ_MTU_EXCHANGED = const(21)
_IRQ_L2CAP_ACCEPT = const(22)
_TRQ_L2CAP_CONNECT = const(23)
_IRQ_L2CAP_DISCONNECT = const(24)
_IRQ_L2CAP_RECV = const(25)
_IRQ_L2CAP_SEND_READY = const(26)
_IRQ_CONNECTION_UPDATE = const(27)
_IRQ_ENCRYPTION_UPDATE = const(28)
_IRQ_GET_SECRET = const(29)
_IRQ_SET_SECRET = const(30)

46 Chapter 1. MicroPython libraries

MicroPython Documentation, Release 1.18

For the _TRQ_GATTS_READ_REQUEST event, the available return codes are:

_GATTS_NO_ERROR = const(0x00)
_GATTS_ERROR_READ_NOT_PERMITTED = const(0x02)
_GATTS_ERROR_WRITE_NOT_PERMITTED = const(0x03)
_GATTS_ERROR_INSUFFICIENT_AUTHENTICATION = const(0x05)
_GATTS_ERROR_INSUFFICIENT_AUTHORIZATION = const(0x08)
_GATTS_ERROR_INSUFFICIENT_ENCRYPTION = const(0x0f)

For the _TRQ_PASSKEY_ACTION event, the available actions are:

_PASSKEY_ACTION_NONE = const(0)
_PASSKEY_ACTION_INPUT = const(2)
_PASSKEY_ACTION_DISPLAY = const(3)
_PASSKEY_ACTION_NUMERIC_COMPARISON = const(4)

In order to save space in the firmware, these constants are not included on the bluetooth module. Add the ones that
you need from the list above to your program.

Broadcaster Role (Advertiser)

BLE.gap_advertise (interval_us, adv_data=None, *, resp_data=None, connectable=True)
Starts advertising at the specified interval (in microseconds). This interval will be rounded down to the nearest
625us. To stop advertising, set interval_us to None.

adv_data and resp_data can be any type that implements the buffer protocol (e.g. bytes, bytearray, str).
adv_data is included in all broadcasts, and resp_data is send in reply to an active scan.

Note: if adv_data (or resp_data) is None, then the data passed to the previous call to gap_advertise will be
re-used. This allows a broadcaster to resume advertising with just gap_advertise(interval_us). To clear
the advertising payload pass an empty bytes,i.e. b'".

Observer Role (Scanner)

BLE.gap_scan(duration_ms, interval_us=1280000, window_us=11250, active=False, /)
Run a scan operation lasting for the specified duration (in milliseconds).
To scan indefinitely, set duration_ms to 0.
To stop scanning, set duration_ms to None.

Use interval_us and window_us to optionally configure the duty cycle. The scanner will run for window_us
microseconds every inferval_us microseconds for a total of duration_ms milliseconds. The default interval and
window are 1.28 seconds and 11.25 milliseconds respectively (background scanning).

For each scan result the _TRQ_SCAN_RESULT event will be raised, with event data (addr_type, addr,
adv_type, rssi, adv_data).

addr_type values indicate public or random addresses:
¢ 0x00 - PUBLIC
* 0x01 - RANDOM (either static, RPA, or NRPA, the type is encoded in the address itself)
adv_type values correspond to the Bluetooth Specification:
* 0x00 - ADV_IND - connectable and scannable undirected advertising
¢ 0x01 - ADV_DIRECT_IND - connectable directed advertising

1.2. MicroPython-specific libraries 47

MicroPython Documentation, Release 1.18

e 0x02 - ADV_SCAN_IND - scannable undirected advertising
* 0x03 - ADV_NONCONN_IND - non-connectable undirected advertising
e 0x04 - SCAN_RSP - scan response

active can be set True if you want to receive scan responses in the results.

When scanning is stopped (either due to the duration finishing or when explicitly stopped), the _TRQ_SCAN_DONE
event will be raised.

Central Role
A central device can connect to peripherals that it has discovered using the observer role (see gap_scan) or with a
known address.

BLE.gap_connect (addr_type, addr, scan_duration_ms=2000, min_conn_interval_us=None,
max_conn_interval_us=None, /)
Connect to a peripheral.

See gap_scan for details about address types.
To cancel an outstanding connection attempt early, call gap_connect (None).

On success, the _TRQ_PERIPHERAL_CONNECT event will be raised. If cancelling a connection attempt, the
_IRQ_PERIPHERAL_DISCONNECT event will be raised.

The device will wait up to scan_duration_ms to receive an advertising payload from the device.

The connection interval can be configured in microseconds using either or both of min_conn_interval_us and
max_conn_interval_us. Otherwise a default interval will be chosen, typically between 30000 and 50000 mi-
croseconds. A shorter interval will increase throughput, at the expense of power usage.

Peripheral Role
A peripheral device is expected to send connectable advertisements (see gap_advertise). It will usually be acting as
a GATT server, having first registered services and characteristics using gatts_register_services.

When a central connects, the _TRQ_CENTRAL_CONNECT event will be raised.

Central & Peripheral Roles

BLE.gap_disconnect (conn_handle, /)
Disconnect the specified connection handle. This can either be a central that has connected to this device (if
acting as a peripheral) or a peripheral that was previously connected to by this device (if acting as a central).

On success, the _TRQ_PERIPHERAL_DISCONNECT or _IRQ_CENTRAL_DISCONNECT event will be raised.

Returns False if the connection handle wasnt connected, and True otherwise.

48 Chapter 1. MicroPython libraries

MicroPython Documentation, Release 1.18

GATT Server

A GATT server has a set of registered services. Each service may contain characteristics, which each have a value.
Characteristics can also contain descriptors, which themselves have values.

These values are stored locally, and are accessed by their value handle which is generated during service registration.
They can also be read from or written to by a remote client device. Additionally, a server can notify a characteristic to
a connected client via a connection handle.

A device in either central or peripheral roles may function as a GATT server, however in most cases it will be more
common for a peripheral device to act as the server.

Characteristics and descriptors have a default maximum size of 20 bytes. Anything written to them by a client will
be truncated to this length. However, any local write will increase the maximum size, so if you want to allow larger
writes from a client to a given characteristic, use gatts_write after registration. e.g. gatts_write(char_handle,
bytes(100)).

BLE.gatts_register_services(services_definition, /)
Configures the server with the specified services, replacing any existing services.

services_definition is a list of services, where each service is a two-element tuple containing a UUID and a list
of characteristics.

Each characteristic is a two-or-three-element tuple containing a UUID, a flags value, and optionally a list of
descriptors.

Each descriptor is a two-element tuple containing a UUID and a flags value.

The flags are a bitwise-OR combination of the flags defined below. These set both the behaviour of the charac-
teristic (or descriptor) as well as the security and privacy requirements.

The return value is a list (one element per service) of tuples (each element is a value handle). Characteristics and
descriptor handles are flattened into the same tuple, in the order that they are defined.

The following example registers two services (Heart Rate, and Nordic UART):

HR_UUID = bluetooth.UUID(0x180D)

HR_CHAR = (bluetooth.UUID(0x2A37), bluetooth.FLAG_READ | bluetooth.FLAG_NOTIFY,)
HR_SERVICE = (HR_UUID, (HR_CHAR,),)

UART_UUID = bluetooth.UUID('6E400001-B5A3-F393-E0A9-E50E24DCCA9E")

UART_TX = (bluetooth.UUID('6E400003-B5A3-F393-EOA9-ES50E24DCCA9E"), bluetooth.FLAG_
—READ | bluetooth.FLAG_NOTIFY,)

UART_RX = (bluetooth.UUID('6E400002-B5A3-F393-EOA9-E50E24DCCA9E"), bluetooth.FLAG_
~WRITE,)

UART_SERVICE = (UART_UUID, (UART_TX, UART_RX,),)

SERVICES = (HR_SERVICE, UART_SERVICE,)

(¢hr,), (tx, rx,),) = bt.gatts_register_services(SERVICES)

The three value handles (hr, tx, rx) can be used with gatts_read, gatts_write, gatts_notify, and
gatts_indicate.

Note: Advertising must be stopped before registering services.

Auvailable flags for characteristics and descriptors are:

from micropython import const
_FLAG_BROADCAST = const(0x0001)
_FLAG_READ = const(0x0002)
_FLAG_WRITE_NO_RESPONSE = const(0x0004)

(continues on next page)

1.2. MicroPython-specific libraries 49

MicroPython Documentation, Release 1.18

(continued from previous page)

_FLAG_WRITE = const(0x0008)

_FLAG_NOTIFY = const(0x0010)

_FLAG_INDICATE = const(0x0020)
_FLAG_AUTHENTICATED_SIGNED_WRITE = const(0x0040)

_FLAG_AUX_WRITE = const(0x0100)
_FLAG_READ_ENCRYPTED = const(0x0200)
_FLAG_READ_AUTHENTICATED = const(0x0400)
_FLAG_READ_AUTHORIZED = const(0x0800)
_FLAG_WRITE_ENCRYPTED = const(0x1000)
_FLAG_WRITE_AUTHENTICATED = const(0x2000)
_FLAG_WRITE_AUTHORIZED = const(0x4000)

As for the IRQs above, any required constants should be added to your Python code.

BLE.gatts_read(value_handle, /)
Reads the local value for this handle (which has either been written by gatts_write or by a remote client).

BLE.gatts_write(value_handle, data, send_update=False, /)
Writes the local value for this handle, which can be read by a client.

If send_update is True, then any subscribed clients will be notified (or indicated, depending on what theyre
subscribed to and which operations the characteristic supports) about this write.

BLE.gatts_notify(conn_handle, value_handle, data=None, /)
Sends a notification request to a connected client.

If data is not None, then that value is sent to the client as part of the notification. The local value will not be
modified.

Otherwise, if data is None, then the current local value (as set with gatts_write) will be sent.
Note: The notification will be sent regardless of the subscription status of the client to this characteristic.

BLE.gatts_indicate(conn_handle, value_handle, /)
Sends an indication request containing the characteristics current value to a connected client.

On acknowledgment (or failure, e.g. timeout), the _TRQ_GATTS_INDICATE_DONE event will be raised.
Note: The indication will be sent regardless of the subscription status of the client to this characteristic.

BLE.gatts_set_buffer (value_handle, len, append=False, /)
Sets the internal buffer size for a value in bytes. This will limit the largest possible write that can be received.
The default is 20.

Setting append to True will make all remote writes append to, rather than replace, the current value. At most
len bytes can be buffered in this way. When you use gatts_read, the value will be cleared after reading. This
feature is useful when implementing something like the Nordic UART Service.

50 Chapter 1. MicroPython libraries

MicroPython Documentation, Release 1.18

GATT Client

A GATT client can discover and read/write characteristics on a remote GATT server.

It is more common for a central role device to act as the GATT client, however its also possible for a peripheral to act
as a client in order to discover information about the central that has connected to it (e.g. to read the device name from
the device information service).

BLE.gattc_discover_services (conn_handle, uuid=None, /)
Query a connected server for its services.

Optionally specify a service uuid to query for that service only.

For each service discovered, the _IRQ_GATTC_SERVICE_RESULT event will be raised, followed by
_IRQ_GATTC_SERVICE_DONE on completion.

BLE.gattc_discover_characteristics(conn_handle, start_handle, end_handle, uuid=None, /)
Query a connected server for characteristics in the specified range.

Optionally specify a characteristic uuid to query for that characteristic only.
You can use start_handle=1, end_handle=0xffff to search for a characteristic in any service.

For each characteristic discovered, the _TRQ_GATTC_CHARACTERISTIC_RESULT event will be raised, followed
by _IRQ_GATTC_CHARACTERISTIC_DONE on completion.

BLE.gattc_discover_descriptors(conn_handle, start_handle, end_handle, /)
Query a connected server for descriptors in the specified range.

For each descriptor discovered, the _TRQ_GATTC_DESCRIPTOR_RESULT event will be raised, followed by
_IRQ_GATTC_DESCRIPTOR_DONE on completion.

BLE.gattc_read(conn_handle, value_handle, /)
Issue a remote read to a connected server for the specified characteristic or descriptor handle.

When a value is available, the _IRQ_GATTC_READ_RESULT event will be raised. = Additionally, the
_TIRQ_GATTC_READ_DONE will be raised.

BLE.gattc_write(conn_handle, value_handle, data, mode=0, /)
Issue a remote write to a connected server for the specified characteristic or descriptor handle.

The argument mode specifies the write behaviour, with the currently supported values being:

* mode=0 (default) is a write-without-response: the write will be sent to the remote server but no confirmation
will be returned, and no event will be raised.

* mode=1 is a write-with-response: the remote server is requested to send a response/acknowledgement that
it received the data.

If a response is received from the remote server the _TRQ_GATTC_WRITE_DONE event will be raised.

BLE.gattc_exchange_mtu(conn_handle, /)
Initiate MTU exchange with a connected server, using the preferred MTU set using BLE. config(mtu=value).

The _TRQ_MTU_EXCHANGED event will be raised when MTU exchange completes.

Note: MTU exchange is typically initiated by the central. When using the BlueKitchen stack in the central role,
it does not support a remote peripheral initiating the MTU exchange. NimBLE works for both roles.

1.2. MicroPython-specific libraries 51

MicroPython Documentation, Release 1.18

L2CAP connection-oriented-channels

This feature allows for socket-like data exchange between two BLE devices. Once the devices are connected
via GAP, either device can listen for the other to connect on a numeric PSM (Protocol/Service Multiplexer).

Note: This is currently only supported when using the NimBLE stack on STM32 and Unix (not ESP32).
Only one L2CAP channel may be active at a given time (i.e. you cannot connect while listening).

Active L2CAP channels are identified by the connection handle that they were established on and a CID
(channel ID).

Connection-oriented channels have built-in credit-based flow control. Unlike ATT, where devices negoti-
ate a shared MTU, both the listening and connecting devices each set an independent MTU which limits
the maximum amount of outstanding data that the remote device can send before it is fully consumed in
12cap_recvinto.

BLE.12cap_listen(psm, mtu, /)

Start listening for incoming L2CAP channel requests on the specified psm with the local MTU set to mtu.

When a remote device initiates a connection, the _TRQ_L2CAP_ACCEPT event will be raised, which gives the
listening server a chance to reject the incoming connection (by returning a non-zero integer).

Once the connection is accepted, the _TRQ_L2CAP_CONNECT event will be raised, allowing the server to obtain
the channel id (CID) and the local and remote MTU.

Note: It is not currently possible to stop listening.

BLE.12cap_connect (conn_handle, psm, mtu, /)

Connect to a listening peer on the specified psm with local MTU set to mtzu.

On successful connection, the the _TRQ_L2CAP_CONNECT event will be raised, allowing the client to obtain the
CID and the local and remote (peer) MTU.

An unsuccessful connection will raise the _TRQ_L2CAP_DISCONNECT event with a non-zero status.

BLE.12cap_disconnect (conn_handle, cid, /)

Disconnect an active L2ZCAP channel with the specified conn_handle and cid.

BLE.12cap_send(conn_handle, cid, buf, /)

Send the specified buf (which must support the buffer protocol) on the L2ZCAP channel identified by conn_handle
and cid.

The specified buffer cannot be larger than the remote (peer) MTU, and no more than twice the size of the local
MTU.

This will return False if the channel is now stalled, which means that 12cap_send must not be called again
until the _TRQ_L2CAP_SEND_READY event is received (which will happen when the remote device grants more
credits, typically after it has received and processed the data).

BLE.12cap_recvinto(conn_handle, cid, buf, /)

Receive data from the specified conn_handle and cid into the provided buf (which must support the buffer
protocol, e.g. bytearray or memoryview).

Returns the number of bytes read from the channel.
If buf is None, then returns the number of bytes available.

Note: After receiving the _TRQ_L2CAP_RECV event, the application should continue calling 12cap_recvinto
until no more bytes are available in the receive buffer (typically up to the size of the remote (peer) MTU).

Until the receive buffer is empty, the remote device will not be granted more channel credits and will be unable
to send any more data.

52

Chapter 1. MicroPython libraries

MicroPython Documentation, Release 1.18

Pairing and bonding

Pairing allows a connection to be encrypted and authenticated via exchange of secrets (with optional MITM
protection via passkey authentication).

Bonding is the process of storing those secrets into non-volatile storage. When bonded, a device is
able to resolve a resolvable private address (RPA) from another device based on the stored identity
resolving key (IRK). To support bonding, an application must implement the _TRQ_GET_SECRET and
_IRQ_SET_SECRET events.

Note: This is currently only supported when using the NimBLE stack on STM32 and Unix (not ESP32).

BLE.gap_pair(conn_handle, /)
Initiate pairing with the remote device.

Before calling this, ensure that the 1o, mitm, le_secure, and bond configuration options are set (via config).
On successful pairing, the _TRQ_ENCRYPTION_UPDATE event will be raised.

BLE.gap_passkey (conn_handle, action, passkey, /)
Respond to a _TRQ_PASSKEY_ACTION event for the specified conn_handle and action.

The passkey is a numeric value and will depend on on the action (which will depend on what I/O capability has
been set):

* When the action is _PASSKEY_ACTION_INPUT, then the application should prompt the user to enter the
passkey that is shown on the remote device.

* When the action is _PASSKEY_ACTION_DISPLAY, then the application should generate a random 6-digit
passkey and show it to the user.

e When the action is _PASSKEY_ACTION_NUMERIC_COMPARISON, then the application should show the
passkey that was provided in the _TRQ_PASSKEY_ACTION event and then respond with either ® (cancel
pairing), or 1 (accept pairing).

class UUID
Constructor
class bluetooth.UUID(value,/)
Creates a UUID instance with the specified value.
The value can be either:
* A 16-bit integer. e.g. 0x2908.
e A 128-bit UUID string. e.g. '6E400001-B5A3-F393-EQA9-E50E24DCCA9E".

1.2.2 btree — simple BTree database

The btree module implements a simple key-value database using external storage (disk files, or in general case, a
random-access stream). Keys are stored sorted in the database, and besides efficient retrieval by a key value, a database
also supports efficient ordered range scans (retrieval of values with the keys in a given range). On the application
interface side, BTree database work as close a possible to a way standard dict type works, one notable difference is
that both keys and values must be bytes objects (so, if you want to store objects of other types, you need to serialize
them to bytes first).

The module is based on the well-known BerkelyDB library, version 1.xx.

Example:

1.2. MicroPython-specific libraries 53

MicroPython Documentation, Release 1.18

import btree

First, we need to open a stream which holds a database
This is usually a file, but can be in-memory database
using io.BytesIO, a raw flash partition, etc.
Oftentimes, you want to create a database file if it doesn't
exist and open if it exists. Idiom below takes care of this.
DO NOT open database with "a+b" access mode.
try:
f = open("mydb", "r+b")
except OSError:
f = open("mydb", "w+b")

Now open a database itself
db = btree.open(f)

The keys you add will be sorted internally in the database
db[b"3"] = b"three"

db[b"1"] = b"one"

db[b"2"] = b"two"

Assume that any changes are cached in memory unless

explicitly flushed (or database closed). Flush database
at the end of each "transaction".

db. flush(Q

Prints b'two’
print(db[b"2"])

Iterate over sorted keys in the database, starting from b"2"
until the end of the database, returning only values.
Mind that arguments passed to values() method are *key* values.
Prints:
b'two'
b'three’
for word in db.values(b"2"):
print (word)

del db[b"2"]

No longer true, prints False
print(b"2" in db)

Prints:

b"1"

b"3"

for key in db:
print (key)

db.close()

Don't forget to close the underlying stream!
f.close()

54 Chapter 1. MicroPython libraries

MicroPython Documentation, Release 1.18

Functions

btree.open(stream, *, flags=0, pagesize=0, cachesize=0, minkeypage=0)
Open a database from a random-access stream (like an open file). All other parameters are optional and
keyword-only, and allow to tweak advanced parameters of the database operation (most users will not need
them):

¢ flags - Currently unused.

* pagesize - Page size used for the nodes in BTree. Acceptable range is 512-65536. If 0, a port-specific
default will be used, optimized for ports memory usage and/or performance.

* cachesize - Suggested memory cache size in bytes. For a board with enough memory using larger values
may improve performance. Cache policy is as follows: entire cache is not allocated at once; instead, ac-
cessing a new page in database will allocate a memory buffer for it, until value specified by cachesize is
reached. Then, these buffers will be managed using LRU (least recently used) policy. More buffers may
still be allocated if needed (e.g., if a database contains big keys and/or values). Allocated cache buffers
arent reclaimed.

* minkeypage - Minimum number of keys to store per page. Default value of O equivalent to 2.

Returns a BTree object, which implements a dictionary protocol (set of methods), and some additional methods
described below.

Methods

btree.close()
Close the database. Its mandatory to close the database at the end of processing, as some unwritten data may be
still in the cache. Note that this does not close underlying stream with which the database was opened, it should be
closed separately (which is also mandatory to make sure that data flushed from buffer to the underlying storage).

btree. flush()
Flush any data in cache to the underlying stream.
tree. Y,
E‘%ge gégz}ée e au{% Ieoni)/)
tree %
tree con ey)
Standard dictionary methods.

btree.__iter__Q
A BTree object can be iterated over directly (similar to a dictionary) to get access to all keys in order.

btree.ke s([st rt key[d key ﬂ

btree.values [Istart ke ﬂ% i

btree. 1tems(fstart key end key
These methods are similar to standard dictionary methods, but also can take optional parameters to iterate over
a key sub-range, instead of the entire database. Note that for all 3 methods, start_key and end_key arguments
represent key values. For example, values () method will iterate over values corresponding to they key range
given. None values for start_key means from the first key, no end_key or its value of None means until the
end of database. By default, range is inclusive of start_key and exclusive of end_key, you can include end_key
in iteration by passing flags of btree.INCL. You can iterate in descending key direction by passing flags of
btree.DESC. The flags values can be ORed together.

1.2. MicroPython-specific libraries 55

MicroPython Documentation, Release 1.18

Constants
btree.INCL
A flag for keys (), values (), items () methods to specify that scanning should be inclusive of the end key.

btree.DESC
A flag for keys (), values (), items () methods to specify that scanning should be in descending direction of
keys.

1.2.3 cryptolib — cryptographic ciphers

Classes

class cryptolib.aes

classmethod __init__(key, mode [VA%])
Initialize cipher object, suitable for encryption/decryption. Note: after initialization, cipher object can be
use only either for encryption or decryption. Running decrypt() operation after encrypt() or vice versa is
not supported.

Parameters are:

* key is an encryption/decryption key (bytes-like).

* mode is:
— 1 (or cryptolib.MODE_ECB if it exists) for Electronic Code Book (ECB).
— 2 (or cryptolib.MODE_CBC if it exists) for Cipher Block Chaining (CBC).
— 6 (or cryptolib.MODE_CTR if it exists) for Counter mode (CTR).

[V is an initialization vector for CBC mode.

¢ For Counter mode, IV is the initial value for the counter.

encrypt (in_buf [out_buf])
Encrypt in_buf. If no out_buf is given result is returned as a newly allocated bytes object. Otherwise,
result is written into mutable buffer out_buf. in_buf and out_buf can also refer to the same mutable buffer,
in which case data is encrypted in-place.

decrypt (in_buf [, out_buf])
Like encrypt (), but for decryption.

1.2.4 framebuf frame buffer manipulation

This module provides a general frame buffer which can be used to create bitmap images, which can then be sent to a
display.

56 Chapter 1. MicroPython libraries

MicroPython Documentation, Release 1.18

class FrameBuffer

The FrameBuffer class provides a pixel buffer which can be drawn upon with pixels, lines, rectangles, text and even
other FrameBuffers. It is useful when generating output for displays.

For example:

import framebuf

FrameBuffer needs 2 bytes for every RGB565 pixel
fbuf = framebuf.FrameBuffer(bytearray(100 * 10 * 2), 100, 10, framebuf.RGB565)

fbuf. £i11(0)
fbuf.text('MicroPython!', 0, 0, Oxffff)
fbuf.hline(®, 9, 96, Oxffff)

Constructors

class framebuf.FrameBuffer (buffer, width, height, format, stride=width, /)
Construct a FrameBuffer object. The parameters are:

* buffer is an object with a buffer protocol which must be large enough to contain every pixel defined by the
width, height and format of the FrameBuffer.

* width is the width of the FrameBuffer in pixels
* height is the height of the FrameBuffer in pixels

* format specifies the type of pixel used in the FrameBuffer; permissible values are listed under Constants
below. These set the number of bits used to encode a color value and the layout of these bits in buffer.
Where a color value c is passed to a method, c is a small integer with an encoding that is dependent on the
format of the FrameBuffer.

* stride is the number of pixels between each horizontal line of pixels in the FrameBuffer. This defaults to
width but may need adjustments when implementing a FrameBuffer within another larger FrameBuffer or
screen. The buffer size must accommodate an increased step size.

One must specify valid buffer, width, height, format and optionally stride. Invalid buffer size or dimensions may
lead to unexpected errors.

Drawing primitive shapes

The following methods draw shapes onto the FrameBuffer.

FrameBuffer.fill(c)
Fill the entire FrameBuffer with the specified color.

FrameBuffer.pixel (x, y[, c])
If ¢ is not given, get the color value of the specified pixel. If c is given, set the specified pixel to the given color.

FrameBuffer.hline(x, y, w, ¢)
FrameBuffer.vline(x,y, i, ¢)

FrameBuffer.line(x/, yl, x2, y2, ¢)
Draw a line from a set of coordinates using the given color and a thickness of 1 pixel. The 1ine method draws
the line up to a second set of coordinates whereas the hline and vIine methods draw horizontal and vertical
lines respectively up to a given length.

1.2. MicroPython-specific libraries 57

MicroPython Documentation, Release 1.18

FrameBuffer.rect(x,y, w, i, ¢)

FrameBuffer.fill_rect(x, y, w, h, ¢)
Draw a rectangle at the given location, size and color. The rect method draws only a 1 pixel outline whereas
the fi11_rect method draws both the outline and interior.

Drawing text

FrameBuffer.text(s, x, y[, c])
Write text to the FrameBuffer using the the coordinates as the upper-left corner of the text. The color of the text
can be defined by the optional argument but is otherwise a default value of 1. All characters have dimensions of
8x8 pixels and there is currently no way to change the font.

Other methods

FrameBuffer.scroll (xstep, ystep)
Shift the contents of the FrameBuffer by the given vector. This may leave a footprint of the previous colors in
the FrameBuffer.

FrameBuffer.blit(fbuf, x, y, key=- 1, palette=None)
Draw another FrameBuffer on top of the current one at the given coordinates. If key is specified then it should be
a color integer and the corresponding color will be considered transparent: all pixels with that color value will
not be drawn.

The palette argument enables blitting between FrameBuffers with differing formats. Typical usage is to render
a monochrome or grayscale glyph/icon to a color display. The palette is a FrameBuffer instance whose format
is that of the current FrameBuffer. The palette height is one pixel and its pixel width is the number of colors
in the source FrameBuffer. The palette for an N-bit source needs 2**N pixels; the palette for a monochrome
source would have 2 pixels representing background and foreground colors. The application assigns a color to
each pixel in the palette. The color of the current pixel will be that of that palette pixel whose x position is the
color of the corresponding source pixel.

Constants

framebuf.MONO_VLSB
Monochrome (1-bit) color format This defines a mapping where the bits in a byte are vertically mapped with bit 0
being nearest the top of the screen. Consequently each byte occupies 8 vertical pixels. Subsequent bytes appear
at successive horizontal locations until the rightmost edge is reached. Further bytes are rendered at locations
starting at the leftmost edge, 8 pixels lower.

framebuf.MONO_HLSB
Monochrome (1-bit) color format This defines a mapping where the bits in a byte are horizontally mapped. Each
byte occupies 8 horizontal pixels with bit 7 being the leftmost. Subsequent bytes appear at successive horizontal
locations until the rightmost edge is reached. Further bytes are rendered on the next row, one pixel lower.

framebuf . MONO_HMSB
Monochrome (1-bit) color format This defines a mapping where the bits in a byte are horizontally mapped. Each
byte occupies 8 horizontal pixels with bit O being the leftmost. Subsequent bytes appear at successive horizontal
locations until the rightmost edge is reached. Further bytes are rendered on the next row, one pixel lower.

framebuf.RGB565
Red Green Blue (16-bit, 5+6+5) color format

framebuf.GS2_HMSB
Grayscale (2-bit) color format

58 Chapter 1. MicroPython libraries

MicroPython Documentation, Release 1.18

framebuf.GS4_HMSB
Grayscale (4-bit) color format

framebuf.GS8
Grayscale (8-bit) color format

1.2.5 machine functions related to the hardware

The machine module contains specific functions related to the hardware on a particular board. Most functions in
this module allow to achieve direct and unrestricted access to and control of hardware blocks on a system (like CPU,
timers, buses, etc.). Used incorrectly, this can lead to malfunction, lockups, crashes of your board, and in extreme
cases, hardware damage.

A note of callbacks used by functions and class methods of machine module: all these callbacks should be considered
as executing in an interrupt context. This is true for both physical devices with IDs >= 0 and virtual devices with
negative IDs like -1 (these virtual devices are still thin shims on top of real hardware and real hardware interrupts). See
Writing interrupt handlers.

Reset related functions

machine.reset()
Resets the device in a manner similar to pushing the external RESET button.

machine.soft_reset()
Performs a soft reset of the interpreter, deleting all Python objects and resetting the Python heap. It tries to retain
the method by which the user is connected to the MicroPython REPL (eg serial, USB, Wifi).

machine.reset_cause()
Get the reset cause. See constants for the possible return values.

machine.bootloader/([value])
Reset the device and enter its bootloader. This is typically used to put the device into a state where it can be
programmed with new firmware.

Some ports support passing in an optional value argument which can control which bootloader to enter, what to
pass to it, or other things.

Interrupt related functions

machine.disable_irq(Q)
Disable interrupt requests. Returns the previous IRQ state which should be considered an opaque value. This
return value should be passed to the enable_irqg() function to restore interrupts to their original state, before
disable_irq() was called.

machine.enable_irq(state)
Re-enable interrupt requests. The state parameter should be the value that was returned from the most recent call
to the disable_irqg() function.

1.2. MicroPython-specific libraries 59

MicroPython Documentation, Release 1.18

Power related functions

machine. freq([hz])

Returns the CPU frequency in hertz.

On some ports this can also be used to set the CPU frequency by passing in hz.

machine.idle()

Gates the clock to the CPU, useful to reduce power consumption at any time during short or long periods. Periph-
erals continue working and execution resumes as soon as any interrupt is triggered (on many ports this includes
system timer interrupt occurring at regular intervals on the order of millisecond).

machine.sleep()

Note: This function is deprecated, use 1ightsleep() instead with no arguments.

machine. lightsleepf [time_mj })

machine.deepsleep(

fime_ms
Stops execution in an attempt to enter a low power state.

If time_ms is specified then this will be the maximum time in milliseconds that the sleep will last for. Otherwise
the sleep can last indefinitely.

With or without a timeout, execution may resume at any time if there are events that require processing. Such
events, or wake sources, should be configured before sleeping, like Pin change or RTC timeout.

The precise behaviour and power-saving capabilities of lightsleep and deepsleep is highly dependent on the
underlying hardware, but the general properties are:

* A lightsleep has full RAM and state retention. Upon wake execution is resumed from the point where the
sleep was requested, with all subsystems operational.

* A deepsleep may not retain RAM or any other state of the system (for example peripherals or network
interfaces). Upon wake execution is resumed from the main script, similar to a hard or power-on reset. The
reset_cause () function will return machine. DEEPSLEEP and this can be used to distinguish a deepsleep
wake from other resets.

machine.wake_reason()

Get the wake reason. See constants for the possible return values.

Auvailability: ESP32, WiPy.

Miscellaneous functions

machine.unique_id()

Returns a byte string with a unique identifier of a board/SoC. It will vary from a board/SoC instance to another,
if underlying hardware allows. Length varies by hardware (so use substring of a full value if you expect a short
ID). In some MicroPython ports, ID corresponds to the network MAC address.

machine.time_pulse_us (pin, pulse_level, timeout_us=1000000, /)

Time a pulse on the given pin, and return the duration of the pulse in microseconds. The pulse_level argument
should be 0 to time a low pulse or 1 to time a high pulse.

If the current input value of the pin is different to pulse_level, the function first (*) waits until the pin input
becomes equal to pulse_level, then (¥*) times the duration that the pin is equal to pulse_level. If the pin is
already equal to pulse_level then timing starts straight away.

60

Chapter 1. MicroPython libraries

MicroPython Documentation, Release 1.18

The function will return -2 if there was timeout waiting for condition marked (*) above, and -1 if there was
timeout during the main measurement, marked (**) above. The timeout is the same for both cases and given by

timeout_us (which is in microseconds).

machine.bitstream(pin, encoding, timing, data, /)

Transmits data by bit-banging the specified pin. The encoding argument specifies how the bits are encoded, and

timing is an encoding-specific timing specification.

The supported encodings are:

» 0 for high low pulse duration modulation. This will transmit O and 1 bits as timed pulses, starting with
the most significant bit. The #iming must be a four-tuple of nanoseconds in the format (high_time_0,

low_time_0, high_time_1, low_time_1).
specification for WS2812 RGB LEDs at 800kHz.

For example, (400, 850, 800, 450) is the timing

The accuracy of the timing varies between ports. On Cortex MO at 48MHz, it is at best +/- 120ns, however on
faster MCUs (ESP8266, ESP32, STM32, Pyboard), it will be closer to +/-30ns.

Note: For controlling WS2812 / NeoPixel strips, see the neopixel module for a higher-level API.

machine.rng()

Return a 24-bit software generated random number.

Auvailability: WiPy.

Constants

machine.IDLE

machine.SLEEP

machine .DEEPSLEEP
IRQ wake values.

machine .PWRON_RESET
machine .HARD_RESET
machine .WDT_RESET
machine .DEEPSLEEP_RESET
machine.SOFT_RESET

Reset causes.

machine.WLAN_WAKE

machine.PIN_WAKE

machine.RTC_WAKE
Wake-up reasons.

Classes

class Pin — control I/O pins

A pin object is used to control I/O pins (also known as GPIO - general-purpose input/output). Pin objects are commonly
associated with a physical pin that can drive an output voltage and read input voltages. The pin class has methods to
set the mode of the pin (IN, OUT, etc) and methods to get and set the digital logic level. For analog control of a pin,

see the ADC class.

1.2. MicroPython-specific libraries

61

MicroPython Documentation, Release 1.18

A pin object is constructed by using an identifier which unambiguously specifies a certain I/O pin. The allowed forms
of the identifier and the physical pin that the identifier maps to are port-specific. Possibilities for the identifier are an
integer, a string or a tuple with port and pin number.

Usage Model:

from machine import Pin

create an output pin on pin #0
p® = Pin(0, Pin.OUT)

set the value low then high

pO.value(0)
pO.value(l)

create an input pin on pin #2, with a pull up resistor
p2 = Pin(2, Pin.IN, Pin.PULL_UP)

read and print the pin value
print(p2.value())

reconfigure pin #0 in input mode with a pull down resistor
p0®.init(p0®.IN, p®.PULL_DOWN)

configure an irq callback
p0®.irg(lambda p:print(p))

Constructors

class machine.Pin(id, mode=- 1, pull=- 1, *, value, drive, alt)
Access the pin peripheral (GPIO pin) associated with the given id. If additional arguments are given in the
constructor then they are used to initialise the pin. Any settings that are not specified will remain in their previous

state.

The arguments are:

* id is mandatory and can be an arbitrary object. Among possible value types are: int (an internal Pin
identifier), str (a Pin name), and tuple (pair of [port, pin]).

* mode specifies the pin mode, which can be one of:

Pin.IN - Pin is configured for input. If viewed as an output the pin is in high-impedance state.
Pin.OUT - Pin is configured for (normal) output.

Pin.OPEN_DRAIN - Pin is configured for open-drain output. Open-drain output works in the following
way: if the output value is set to O the pin is active at a low level; if the output value is 1 the pin is in a
high-impedance state. Not all ports implement this mode, or some might only on certain pins.

Pin.ALT - Pin is configured to perform an alternative function, which is port specific. For a pin
configured in such a way any other Pin methods (except Pin.init ()) are not applicable (calling them
will lead to undefined, or a hardware-specific, result). Not all ports implement this mode.

Pin.ALT_OPEN_DRAIN - The Same as Pin.ALT, but the pin is configured as open-drain. Not all ports
implement this mode.

Pin.ANALOG - Pin is configured for analog input, see the ADC class.

62

Chapter 1. MicroPython libraries

MicroPython Documentation, Release 1.18

* pull specifies if the pin has a (weak) pull resistor attached, and can be one of:
— None - No pull up or down resistor.
— Pin.PULL_UP - Pull up resistor enabled.
— Pin.PULL_DOWN - Pull down resistor enabled.

* value is valid only for Pin.OUT and Pin.OPEN_DRAIN modes and specifies initial output pin value if
given, otherwise the state of the pin peripheral remains unchanged.

* drive specifies the output power of the pin and can be one of: Pin.LOW_POWER, Pin.MED_POWER or
Pin.HIGH_POWER. The actual current driving capabilities are port dependent. Not all ports implement this
argument.

 alt specifies an alternate function for the pin and the values it can take are port dependent. This argument
is valid only for Pin.ALT and Pin.ALT_OPEN_DRAIN modes. It may be used when a pin supports more
than one alternate function. If only one pin alternate function is supported the this argument is not required.
Not all ports implement this argument.

As specified above, the Pin class allows to set an alternate function for a particular pin, but it does not specify any
further operations on such a pin. Pins configured in alternate-function mode are usually not used as GPIO but
are instead driven by other hardware peripherals. The only operation supported on such a pin is re-initialising,
by calling the constructor or Pin.init() method. If a pin that is configured in alternate-function mode is
re-initialised with Pin.IN, Pin.OUT, or Pin.OPEN_DRAIN, the alternate function will be removed from the pin.

Methods

Pin.init(mode=- 1, pull=- 1, *, value, drive, alt)
Re-initialise the pin using the given parameters. Only those arguments that are specified will be set. The rest of
the pin peripheral state will remain unchanged. See the constructor documentation for details of the arguments.

Returns None.

Pin.value([x])
This method allows to set and get the value of the pin, depending on whether the argument x is supplied or not.

If the argument is omitted then this method gets the digital logic level of the pin, returning O or 1 corresponding
to low and high voltage signals respectively. The behaviour of this method depends on the mode of the pin:

e Pin.IN - The method returns the actual input value currently present on the pin.
e Pin.OUT - The behaviour and return value of the method is undefined.

e Pin.OPEN_DRAIN - If the pin is in state O then the behaviour and return value of the method is undefined.
Otherwise, if the pin is in state 1, the method returns the actual input value currently present on the pin.

If the argument is supplied then this method sets the digital logic level of the pin. The argument x can be
anything that converts to a boolean. If it converts to True, the pin is set to state 1, otherwise it is set to state 0.
The behaviour of this method depends on the mode of the pin:

e Pin.IN - The value is stored in the output buffer for the pin. The pin state does not change, it remains in the
high-impedance state. The stored value will become active on the pin as soon as it is changed to Pin.OUT
or Pin.OPEN_DRAIN mode.

* Pin.OUT - The output buffer is set to the given value immediately.

e Pin.OPEN_DRAIN - If the value is O the pin is set to a low voltage state. Otherwise the pin is set to high-
impedance state.

When setting the value this method returns None.

1.2. MicroPython-specific libraries 63

MicroPython Documentation, Release 1.18

Pin

Pin

Pin

Pin.

._call__([x])

Pin objects are callable. The call method provides a (fast) shortcut to set and get the value of the pin. It is
equivalent to Pin.value([x]). See Pin.value () for more details.

.on()

Set pin to 1 output level.

.off(O

Set pin to 0 output level.

irq(handler=None, trigger=Pin.IRQ_FALLING | Pin.IRQ_RISING, *, priority=1, wake=None, hard=False)
Configure an interrupt handler to be called when the trigger source of the pin is active. If the pin mode is Pin.IN
then the trigger source is the external value on the pin. If the pin mode is Pin.OUT then the trigger source is the
output buffer of the pin. Otherwise, if the pin mode is Pin.OPEN_DRAIN then the trigger source is the output
buffer for state 0 and the external pin value for state 1.

The arguments are:

* handler is an optional function to be called when the interrupt triggers. The handler must take exactly one
argument which is the Pin instance.

* trigger configures the event which can generate an interrupt. Possible values are:

— Pin.IRQ_FALLING interrupt on falling edge.

Pin.IRQ_RISING interrupt on rising edge.

Pin.IRQ_LOW_LEVEL interrupt on low level.

Pin.IRQ_HIGH_LEVEL interrupt on high level.
These values can be ORed together to trigger on multiple events.

* priority sets the priority level of the interrupt. The values it can take are port-specific, but higher values
always represent higher priorities.

» wake selects the power mode in which this interrupt can wake up the system. It can be machine.IDLE,
machine.SLEEP or machine .DEEPSLEEP. These values can also be ORed together to make a pin generate
interrupts in more than one power mode.

* hard if true a hardware interrupt is used. This reduces the delay between the pin change and the handler
being called. Hard interrupt handlers may not allocate memory; see Writing interrupt handlers. Not all
ports support this argument.

This method returns a callback object.

The following methods are not part of the core Pin API and only implemented on certain ports.

Pin.

Pin.

low()
Set pin to 0 output level.

Auvailability: nrf, rp2, stm32 ports.

high(Q
Set pin to 1 output level.

Availability: nrf, rp2, stm32 ports.

Pin.mode([mode])

Get or set the pin mode. See the constructor documentation for details of the mode argument.

Availability: ¢c3200, stm32 ports.

Pin.pull([pull]

Get or set the pin pull state. See the constructor documentation for details of the pull argument.

64

Chapter 1. MicroPython libraries

MicroPython Documentation, Release 1.18

Auvailability: cc3200, stm32 ports.

Pin.drive([drive])
Get or set the pin drive strength. See the constructor documentation for details of the drive argument.

Availability: ¢c3200 port.

Constants

The following constants are used to configure the pin objects. Note that not all constants are available on all ports.

Pin.IN
Pin.OUT
Pin.OPEN_DRAIN
Pin.ALT
Pin.ALT_OPEN_DRAIN
Pin.ANALOG

Selects the pin mode.

Pin.PULL_UP
Pin.PULL_DOWN
Pin.PULL_HOLD
Selects whether there is a pull up/down resistor. Use the value None for no pull.

Pin.LOW_POWER
Pin.MED_POWER
Pin.HIGH_POWER

Selects the pin drive strength.

Pin.IRQ_FALLING
Pin.IRQ_RISING
Pin.IRQ_LOW_LEVEL
Pin.IRQ_HIGH_LEVEL

Selects the IRQ trigger type.

class Signal — control and sense external I/O devices

The Signal class is a simple extension of the Pin class. Unlike Pin, which can be only in absolute O and 1 states, a
Signal can be in asserted (on) or deasserted (off) states, while being inverted (active-low) or not. In other words, it
adds logical inversion support to Pin functionality. While this may seem a simple addition, it is exactly what is needed
to support wide array of simple digital devices in a way portable across different boards, which is one of the major
MicroPython goals. Regardless of whether different users have an active-high or active-low LED, a normally open
or normally closed relay - you can develop a single, nicely looking application which works with each of them, and
capture hardware configuration differences in few lines in the config file of your app.

Example:

from machine import Pin, Signal

Suppose you have an active-high LED on pin 0
ledl_pin = Pin(0, Pin.OUT)

... and active-low LED on pin 1

led2_pin = Pin(1l, Pin.OUT)

Now to light up both of them using Pin class, you'll need to set

(continues on next page)

1.2. MicroPython-specific libraries 65

MicroPython Documentation, Release 1.18

(continued from previous page)

them to different values
ledl_pin.value(1l)
led2_pin.value(0)

Signal class allows to abstract away active-high/active-low
difference

ledl = Signal(ledl_pin, invert=False)

led2 = Signal(led2_pin, invert=True)

Now lighting up them looks the same
ledl.value(l)
led2.value(1)

Even better:
ledl.on()
led2.on()

Following is the guide when Signal vs Pin should be used:

» Use Signal: If you want to control a simple on/off (including software PWM!) devices like LEDs, multi-segment
indicators, relays, buzzers, or read simple binary sensors, like normally open or normally closed buttons, pulled
high or low, Reed switches, moisture/flame detectors, etc. etc. Summing up, if you have a real physical de-
vice/sensor requiring GPIO access, you likely should use a Signal.

e Use Pin: If you implement a higher-level protocol or bus to communicate with more complex devices.

The split between Pin and Signal come from the use cases above and the architecture of MicroPython: Pin offers the
lowest overhead, which may be important when bit-banging protocols. But Signal adds additional flexibility on top of
Pin, at the cost of minor overhead (much smaller than if you implemented active-high vs active-low device differences
in Python manually!). Also, Pin is a low-level object which needs to be implemented for each support board, while
Signal is a high-level object which comes for free once Pin is implemented.

If in doubt, give the Signal a try! Once again, it is offered to save developers from the need to handle unexciting
differences like active-low vs active-high signals, and allow other users to share and enjoy your application, instead of
being frustrated by the fact that it doesnt work for them simply because their LEDs or relays are wired in a slightly
different way.

Constructors

class machine.Signal (pin_obj, invert=False)
class machine.Signal (pin_arguments..., *, invert=False)
Create a Signal object. Therere two ways to create it:

* By wrapping existing Pin object - universal method which works for any board.

* By passing required Pin parameters directly to Signal constructor, skipping the need to create intermediate
Pin object. Available on many, but not all boards.

The arguments are:
* pin_obj is existing Pin object.
* pin_arguments are the same arguments as can be passed to Pin constructor.

e invert - if True, the signal will be inverted (active low).

66 Chapter 1. MicroPython libraries

MicroPython Documentation, Release 1.18

Methods

Signal .value([x])
This method allows to set and get the value of the signal, depending on whether the argument x is supplied or
not.

If the argument is omitted then this method gets the signal level, 1 meaning signal is asserted (active) and O -
signal inactive.

If the argument is supplied then this method sets the signal level. The argument x can be anything that converts
to a boolean. If it converts to True, the signal is active, otherwise it is inactive.

Correspondence between signal being active and actual logic level on the underlying pin depends on whether
signal is inverted (active-low) or not. For non-inverted signal, active status corresponds to logical 1, inactive - to
logical 0. For inverted/active-low signal, active status corresponds to logical 0, while inactive - to logical 1.

Signal.on(Q)
Activate signal.

Signal.off()
Deactivate signal.

class ADC - analog to digital conversion

The ADC class provides an interface to analog-to-digital convertors, and represents a single endpoint that can sample
a continuous voltage and convert it to a discretised value.

Example usage:

import machine

adc = machine.ADC(pin) # create an ADC object acting on a pin
val = adc.read_ul6() # read a raw analog value in the range 0-65535
Constructors

class machine.ADC(id)
Access the ADC associated with a source identified by id. This id may be an integer (usually specifying a channel
number), a Pin object, or other value supported by the underlying machine.

Methods

ADC.read_ul6()
Take an analog reading and return an integer in the range 0-65535. The return value represents the raw reading
taken by the ADC, scaled such that the minimum value is 0 and the maximum value is 65535.

1.2. MicroPython-specific libraries 67

MicroPython Documentation, Release 1.18

class PWM - pulse width modulation

This class provides pulse width modulation output.

Example usage:

from machine import PWM

pwm = PWM(pin) # create a PWM object on a pin
pwm.duty_ul6(32768) # set duty to 50%

reinitialise with a period of 200us, duty of 5us
pvwm.init(freq=5000, duty_ns=5000)

pwm.duty_ns(3000) # set pulse width to 3us

pwm.deinit()

Constructors

class machine.PWM(dest, *, freq, duty_ul6, duty_ns)
Construct and return a new PWM object using the following parameters:

* dest is the entity on which the PWM is output, which is usually a machine.Pin object, but a port may allow
other values, like integers.

* freq should be an integer which sets the frequency in Hz for the PWM cycle.
* duty_ul6 sets the duty cycle as a ratio duty_ul6é / 65535.
* duty_ns sets the pulse width in nanoseconds.

Setting freq may affect other PWM objects if the objects share the same underlying PWM generator (this is
hardware specific). Only one of duty_ul6 and duty_ns should be specified at a time.

Methods

PWM.init (*, freq, duty_ul6, duty_ns)
Modity settings for the PWM object. See the above constructor for details about the parameters.

PWM.deinit ()
Disable the PWM output.

PWM. freq([value])
Get or set the current frequency of the PWM output.

With no arguments the frequency in Hz is returned.

With a single value argument the frequency is set to that value in Hz. The method may raise a ValueError if
the frequency is outside the valid range.

PWM. duty_u16([value |)
Get or set the current duty cycle of the PWM output, as an unsigned 16-bit value in the range 0 to 65535 inclusive.

With no arguments the duty cycle is returned.

With a single value argument the duty cycle is set to that value, measured as the ratio value / 65535.

68 Chapter 1. MicroPython libraries

MicroPython Documentation, Release 1.18

PWM.duty_ns([value])
Get or set the current pulse width of the PWM output, as a value in nanoseconds.

With no arguments the pulse width in nanoseconds is returned.

With a single value argument the pulse width is set to that value.

Limitations of PWM

 Not all frequencies can be generated with absolute accuracy due to the discrete nature of the computing hardware.
Typically the PWM frequency is obtained by dividing some integer base frequency by an integer divider. For
example, if the base frequency is 80MHz and the required PWM frequency is 300kHz the divider must be a non-
integer number 80000000 / 300000 = 266.67. After rounding the divider is set to 267 and the PWM frequency
will be 80000000 / 267 = 299625.5 Hz, not 300kHz. If the divider is set to 266 then the PWM frequency will be
80000000 / 266 = 300751.9 Hz, but again not 300kHz.

e The duty cycle has the same discrete nature and its absolute accuracy is not achievable. On most hardware
platforms the duty will be applied at the next frequency period. Therefore, you should wait more than 1/frequency
before measuring the duty.

» The frequency and the duty cycle resolution are usually interdependent. The higher the PWM frequency the
lower the duty resolution which is available, and vice versa. For example, a 300kHz PWM frequency can have
a duty cycle resolution of 8 bit, not 16-bit as may be expected. In this case, the lowest 8 bits of duty_ul6 are
insignificant. So:

pvwm=PWM(Pin(13), freq=300_000, duty_ul6=2%*16//2)

and:

pwm=PWM(Pin(13), freq=300_000, duty_ul6=2%*16//2 + 255)

will generate PWM with the same 50% duty cycle.

class UART - duplex serial communication bus

UART implements the standard UART/USART duplex serial communications protocol. At the physical level it consists
of 2 lines: RX and TX. The unit of communication is a character (not to be confused with a string character) which
can be 8 or 9 bits wide.

UART objects can be created and initialised using:

from machine import UART

uart = UART(1, 9600) # init with given baudrate
uart.init (9600, bits=8, parity=None, stop=1) # init with given parameters

Supported parameters differ on a board:

Pyboard: Bits can be 7, 8 or 9. Stop can be 1 or 2. With parity=None, only 8 and 9 bits are supported. With parity
enabled, only 7 and 8 bits are supported.

WiPy/CC3200: Bits can be 5, 6, 7, 8. Stop can be 1 or 2.

A UART object acts like a stream object and reading and writing is done using the standard stream methods:

1.2. MicroPython-specific libraries 69

MicroPython Documentation, Release 1.18

uart.read(10)
uart.read()
uart.readline()
uart.readinto(buf)
uart.write('abc')

read 10 characters, returns a bytes object
read all available characters

read a line

read and store into the given buffer
write the 3 characters

HOH H W W

Constructors

class machine.UART(id,...)
Construct a UART object of the given id.

Methods

UART . init (baudrate=9600, bits=8, parity=None, stop=1, *, ...)
Initialise the UART bus with the given parameters:

* baudrate is the clock rate.
* bits is the number of bits per character, 7, 8 or 9.
e parity is the parity, None, 0 (even) or 1 (odd).
* stop is the number of stop bits, 1 or 2.
Additional keyword-only parameters that may be supported by a port are:
* tx specifies the TX pin to use.
* rx specifies the RX pin to use.
* rts specifies the RTS (output) pin to use for hardware receive flow control.
* cts specifies the CTS (input) pin to use for hardware transmit flow control.
* txbuf specifies the length in characters of the TX buffer.
* rxbuf specifies the length in characters of the RX buffer.
e timeout specifies the time to wait for the first character (in ms).
e timeout_char specifies the time to wait between characters (in ms).
* invert specifies which lines to invert.
* flow specifies which hardware flow control signals to use. The value is a bitmask.
— 0 will ignore hardware flow control signals.

— UART.RTS will enable receive flow control by using the RTS output pin to signal if the receive FIFO
has sufficient space to accept more data.

— UART.CTS will enable transmit flow control by pausing transmission when the CTS input pin signals
that the receiver is running low on buffer space.

— UART.RTS | UART.CTS will enable both, for full hardware flow control.
On the WiPy only the following keyword-only parameter is supported:

e pins is a 4 or 2 item list indicating the TX, RX, RTS and CTS pins (in that order). Any of the pins can be
None if one wants the UART to operate with limited functionality. If the RTS pin is given the the RX pin
must be given as well. The same applies to CTS. When no pins are given, then the default set of TX and

70 Chapter 1. MicroPython libraries

MicroPython Documentation, Release 1.18

RX pins is taken, and hardware flow control will be disabled. If pins is None, no pin assignment will be
made.

UART.deinit()
Turn off the UART bus.

UART.any ()
Returns an integer counting the number of characters that can be read without blocking. It will return O if there
are no characters available and a positive number if there are characters. The method may return 1 even if there
is more than one character available for reading.

For more sophisticated querying of available characters use select.poll:

poll = select.poll()
poll.register(uart, select.POLLIN)
poll.poll(timeout)

UART .read([nbytes])
Read characters. If nbytes is specified then read at most that many bytes, otherwise read as much data as
possible. It may return sooner if a timeout is reached. The timeout is configurable in the constructor.

Return value: a bytes object containing the bytes read in. Returns None on timeout.

UART .readinto (buf [, nbytes])
Read bytes into the buf. If nbytes is specified then read at most that many bytes. Otherwise, read at most
len(buf) bytes. It may return sooner if a timeout is reached. The timeout is configurable in the constructor.

Return value: number of bytes read and stored into buf or None on timeout.

UART.readline()
Read a line, ending in a newline character. It may return sooner if a timeout is reached. The timeout is config-
urable in the constructor.

Return value: the line read or None on timeout.

UART.write(buf)
Write the buffer of bytes to the bus.

Return value: number of bytes written or None on timeout.

UART.sendbreak ()
Send a break condition on the bus. This drives the bus low for a duration longer than required for a normal
transmission of a character.

UART.irq(trigger, priority=1, handler=None, wake=machine.IDLE)
Create a callback to be triggered when data is received on the UART.

e trigger can only be UART .RX_ANY
* priority level of the interrupt. Can take values in the range 1-7. Higher values represent higher priorities.
* handler an optional function to be called when new characters arrive.

* wake can only be machine.IDLE.

Note: The handler will be called whenever any of the following two conditions are met:
* 8 new characters have been received.

* At least 1 new character is waiting in the Rx buffer and the Rx line has been silent for the duration of 1
complete frame.

1.2. MicroPython-specific libraries 71

MicroPython Documentation, Release 1.18

This means that when the handler function is called there will be between 1 to 8 characters waiting.

Returns an irq object.

Availability: WiPy.

Constants

UART .RX_ANY
IRQ trigger sources

Availability: WiPy.

class SPI — a Serial Peripheral Interface bus protocol (controller side)

SPI is a synchronous serial protocol that is driven by a controller. At the physical level, a bus consists of 3 lines: SCK,
MOSI, MISO. Multiple devices can share the same bus. Each device should have a separate, 4th signal, CS (Chip
Select), to select a particular device on a bus with which communication takes place. Management of a CS signal
should happen in user code (via machine.Pin class).

Both hardware and software SPI implementations exist via the machine.SPI and machine. SoftSPI classes. Hardware
SPI uses underlying hardware support of the system to perform the reads/writes and is usually efficient and fast but
may have restrictions on which pins can be used. Software SPI is implemented by bit-banging and can be used on
any pin but is not as efficient. These classes have the same methods available and differ primarily in the way they are
constructed.

Example usage:

from machine import SPI, Pin

spi = SPI(0, baudrate=400000) # Create SPI peripheral 0 at frequency of 400kHz.
Depending on the use case, extra parameters.
—may be required
to select the bus characteristics and/or pins.
- to use.

cs = Pin(4, mode=Pin.OUT, value=1)

Create chip-select on pin 4.

try:

cs(®) Select peripheral.

spi.write(b"12345678") Write 8 bytes, and don't care about received.
—data.
finally:

cs(l) Deselect peripheral.
try:

cs(0) Select peripheral.

rxdata = spi.read(8, 0x42) Read 8 bytes while writing 0x42 for each byte.
finally:

cs(D) Deselect peripheral.

rxdata = bytearray(8)
try:
cs(0)

Select peripheral.

(continues on next page)

72

Chapter 1. MicroPython libraries

MicroPython Documentation, Release 1.18

(continued from previous page)

spi.readinto(rxdata, 0x42) # Read 8 bytes inplace while writing 0x42 for.
—each byte.
finally:
cs(D) # Deselect peripheral.
txdata = b"12345678"
rxdata = bytearray(len(txdata))
try:
cs(®) # Select peripheral.
spi.write_readinto(txdata, rxdata) # Simultaneously write and read bytes.
finally:
cs(1) # Deselect peripheral.
Constructors

class machine.SPI(id,...)
Construct an SPI object on the given bus, id. Values of id depend on a particular port and its hardware. Values
0, 1, etc. are commonly used to select hardware SPI block #0, #1, etc.

With

no additional parameters, the SPI object is created but not initialised (it has the settings from the last

initialisation of the bus, if any). If extra arguments are given, the bus is initialised. See init for parameters of
initialisation.

class machine. SoftSPI (baudrate=500000, *, polarity=0, phase=0, bits=8, firstbit=MSB, sck=None,

mosi=None, miso=None)

Construct a new software SPI object. Additional parameters must be given, usually at least sck, mosi and miso,
and these are used to initialise the bus. See SPI.init for a description of the parameters.

Methods

SPI.init (baudrate=1000000, *, polarity=0, phase=0, bits=8, firstbit=SPI.MSB, sck=None, mosi=None,

miso=None, pins=(SCK, MOSI, MISO))

Initialise the SPI bus with the given parameters:

L]

baudrate is the SCK clock rate.

polarity can be O or 1, and is the level the idle clock line sits at.

phase can be 0 or 1 to sample data on the first or second clock edge respectively.

bits is the width in bits of each transfer. Only 8 is guaranteed to be supported by all hardware.
firstbit can be SPI.MSB or SPI.LSB.

sck, mosi, miso are pins (machine.Pin) objects to use for bus signals. For most hardware SPI blocks (as
selected by id parameter to the constructor), pins are fixed and cannot be changed. In some cases, hardware
blocks allow 2-3 alternative pin sets for a hardware SPI block. Arbitrary pin assignments are possible only
for a bitbanging SPI driver (id = -1).

pins - WiPy port doesnt sck, mosi, miso arguments, and instead allows to specify them as a tuple of pins
parameter.

In the case of hardware SPI the actual clock frequency may be lower than the requested baudrate. This is depen-
dant on the platform hardware. The actual rate may be determined by printing the SPI object.

1.2. MicroPython-specific libraries 73

MicroPython Documentation, Release 1.18

SPI.deinit()
Turn off the SPI bus.

SPI.read(nbytes, write=0x00)
Read a number of bytes specified by nbytes while continuously writing the single byte given by write. Returns
a bytes object with the data that was read.

SPI.readinto (buf, write=0x00)
Read into the buffer specified by buf while continuously writing the single byte given by write. Returns None.

Note: on WiPy this function returns the number of bytes read.

SPI.write(buf)
Write the bytes contained in buf. Returns None.

Note: on WiPy this function returns the number of bytes written.

SPI.write_readinto (write_buf, read_buf)
Write the bytes from write_buf while reading into read_buf. The buffers can be the same or different, but
both buffers must have the same length. Returns None.

Note: on WiPy this function returns the number of bytes written.

Constants

SPI.CONTROLLER
for initialising the SPI bus to controller; this is only used for the WiPy

SPI.MSB
set the first bit to be the most significant bit

SPI.LSB
set the first bit to be the least significant bit

class 12C — a two-wire serial protocol

12C is a two-wire protocol for communicating between devices. At the physical level it consists of 2 wires: SCL and
SDA, the clock and data lines respectively.

I2C objects are created attached to a specific bus. They can be initialised when created, or initialised later on.
Printing the I2C object gives you information about its configuration.

Both hardware and software I2C implementations exist via the machine.I2C and machine. SoftI2C classes. Hardware
I2C uses underlying hardware support of the system to perform the reads/writes and is usually efficient and fast but
may have restrictions on which pins can be used. Software 12C is implemented by bit-banging and can be used on
any pin but is not as efficient. These classes have the same methods available and differ primarily in the way they are
constructed.

Example usage:

from machine import I2C
i2c = I2C(freq=400000) # create I2C peripheral at frequency of 400kHz
depending on the port, extra parameters may be required

to select the peripheral and/or pins to use

i2c.scan() # scan for peripherals, returning a list of 7-bit.

N |
—adaresses (continues on next page)

74 Chapter 1. MicroPython libraries

MicroPython Documentation, Release 1.18

(continued from previous page)

i2c.writeto(42, b'123") # write 3 bytes to peripheral with 7-bit address 42
i2c.readfrom(42, 4) # read 4 bytes from peripheral with 7-bit address 42
i2c.readfrom_mem(42, 8, 3) # read 3 bytes from memory of peripheral 42,

starting at memory-address 8 in the peripheral
i2c.writeto_mem(42, 2, b'\x10') # write 1 byte to memory of peripheral 42
starting at address 2 in the peripheral

Constructors

class machine.I2C(id, *, scl, sda, freg=400000)
Construct and return a new I2C object using the following parameters:

* id identifies a particular I2C peripheral. Allowed values for depend on the particular port/board
* scl should be a pin object specifying the pin to use for SCL.

* sda should be a pin object specifying the pin to use for SDA.

* freq should be an integer which sets the maximum frequency for SCL.

Note that some ports/boards will have default values of sc/ and sda that can be changed in this constructor. Others
will have fixed values of sc/ and sda that cannot be changed.

class machine.SoftI2C(scl, sda, *, freg=400000, timeout=255)
Construct a new software I2C object. The parameters are:

¢ scl should be a pin object specifying the pin to use for SCL.
* sda should be a pin object specifying the pin to use for SDA.
e freq should be an integer which sets the maximum frequency for SCL.

* timeout is the maximum time in microseconds to wait for clock stretching (SCL held low by another device
on the bus), after which an OSError (ETIMEDOUT) exception is raised.

General Methods

I2C.1init(scl, sda, *, freq=400000)
Initialise the I2C bus with the given arguments:

¢ scl is a pin object for the SCL line
* sda is a pin object for the SDA line
e freq is the SCL clock rate

I2C.deinit
Turn off the I12C bus.

Availability: WiPy.

I2C.scan()
Scan all I2C addresses between 0x08 and 0x77 inclusive and return a list of those that respond. A device responds
if it pulls the SDA line low after its address (including a write bit) is sent on the bus.

1.2. MicroPython-specific libraries 75

MicroPython Documentation, Release 1.18

Primitive 12C operations

The following methods implement the primitive I2C controller bus operations and can be combined to make any 12C
transaction. They are provided if you need more control over the bus, otherwise the standard methods (see below) can
be used.

These methods are only available on the machine. SoftI2C class.

I2C.start()
Generate a START condition on the bus (SDA transitions to low while SCL is high).

I2C.stop(Q)
Generate a STOP condition on the bus (SDA transitions to high while SCL is high).

I2C.readinto (buf, nack=True, /)
Reads bytes from the bus and stores them into buf. The number of bytes read is the length of buf. An ACK will
be sent on the bus after receiving all but the last byte. After the last byte is received, if nack is true then a NACK
will be sent, otherwise an ACK will be sent (and in this case the peripheral assumes more bytes are going to be
read in a later call).

I2C.write(buf)
Write the bytes from buf to the bus. Checks that an ACK is received after each byte and stops transmitting the
remaining bytes if a NACK is received. The function returns the number of ACKs that were received.

Standard bus operations

The following methods implement the standard I2C controller read and write operations that target a given peripheral
device.

I2C.readfrom(addr, nbytes, stop=True, /)
Read nbytes from the peripheral specified by addr. If stop is true then a STOP condition is generated at the end
of the transfer. Returns a by tes object with the data read.

I2C.readfrom_into(addr, buf, stop=True, /)
Read into buf from the peripheral specified by addr. The number of bytes read will be the length of buf. If stop
is true then a STOP condition is generated at the end of the transfer.

The method returns None.

I2C.writeto (addr, buf, stop=True, /)
Write the bytes from buf to the peripheral specified by addr. If a NACK is received following the write of a byte
from buf then the remaining bytes are not sent. If stop is true then a STOP condition is generated at the end of
the transfer, even if a NACK is received. The function returns the number of ACKSs that were received.

I2C.writevto(addr, vector, stop=True, /)
Write the bytes contained in vector to the peripheral specified by addr. vector should be a tuple or list of objects
with the buffer protocol. The addr is sent once and then the bytes from each object in vector are written out
sequentially. The objects in vector may be zero bytes in length in which case they dont contribute to the output.

If a NACK is received following the write of a byte from one of the objects in vector then the remaining bytes,
and any remaining objects, are not sent. If stop is true then a STOP condition is generated at the end of the
transfer, even if a NACK is received. The function returns the number of ACKs that were received.

76 Chapter 1. MicroPython libraries

MicroPython Documentation, Release 1.18

Memory operations

Some 12C devices act as a memory device (or set of registers) that can be read from and written to. In this case there
are two addresses associated with an I2C transaction: the peripheral address and the memory address. The following
methods are convenience functions to communicate with such devices.

I2C.readfrom_mem(addr, memaddr, nbytes, *, addrsize=8)
Read nbytes from the peripheral specified by addr starting from the memory address specified by memaddr. The
argument addrsize specifies the address size in bits. Returns a bytes object with the data read.

I2C.readfrom_mem_into (addr, memaddr, buf, *, addrsize=8)
Read into buf from the peripheral specified by addr starting from the memory address specified by memaddr.
The number of bytes read is the length of buf. The argument addrsize specifies the address size in bits (on
ESP8266 this argument is not recognised and the address size is always 8 bits).

The method returns None.

I2C.writeto_mem(addr, memaddr, buf, *, addrsize=8)
Write buf to the peripheral specified by addr starting from the memory address specified by memaddr. The
argument addrsize specifies the address size in bits (on ESP8266 this argument is not recognised and the address
size is always 8 bits).

The method returns None.

class 12S - Inter-IC Sound bus protocol

I12S is a synchronous serial protocol used to connect digital audio devices. At the physical level, a bus consists of 3
lines: SCK, WS, SD. The 12S class supports controller operation. Peripheral operation is not supported.

The I2S class is currently available as a Technical Preview. During the preview period, feedback from users is encour-
aged. Based on this feedback, the 12S class API and implementation may be changed.

I2S objects can be created and initialized using:

from machine import I2S
from machine import Pin

ESP32

sck_pin = Pin(14) # Serial clock output
wS_pin Pin(13) # Word clock output
sd_pin = Pin(12) # Serial data output

or

PyBoards

sck_pin = Pin("Y6") # Serial clock output
ws_pin = Pin("Y5") # Word clock output
sd_pin = Pin("Y8") # Serial data output

audio_out = I2S(2,
sck=sck_pin, ws=ws_pin, sd=sd_pin,
mode=I2S.TX,
bits=16,
format=I2S.MONO,
rate=44100,

(continues on next page)

1.2. MicroPython-specific libraries 77

MicroPython Documentation, Release 1.18

(continued from previous page)

ibuf=20000)

audio_in = I2S(2,
sck=sck_pin, ws=ws_pin, sd=sd_pin,
mode=I2S.RX,
bits=32,
format=I2S.STEREO,
rate=22050,
ibuf=20000)

3 modes of operation are supported:
* blocking
* non-blocking
* uasyncio

blocking:

num_written = audio_out.write(buf) # blocks until buf emptied

num_read = audio_in.readinto(buf) # blocks until buf filled

non-blocking:

audio_out.irq(i2s_callback) # 12s_callback is called when buf is emptied
num_written = audio_out.write(buf) # returns immediately

audio_in.irq(i2s_callback) # i2s_callback is called when buf is filled
num_read = audio_in.readinto(buf) # returns immediately

uasyncio:

swriter = uasyncio.StreamlWiriter(audio_out)
swriter.write(buf)
await swriter.drain()

sreader = uasyncio.StreamReader(audio_in)
num_read = await sreader.readinto(buf)

Constructor

class machine.I2S(id, *, sck, ws, sd, mode, bits, format, rate, ibuf)
Construct an I2S object of the given id:

* id identifies a particular I2S bus.
id is board and port specific:
* PYBv1.0/vl.1: has one I2S bus with id=2.
* PYBD-SFxW: has two 125 buses with id=1 and id=2.
* ESP32: has two I2S buses with id=0 and id=1.

Keyword-only parameters that are supported on all ports:

78 Chapter 1. MicroPython libraries

MicroPython Documentation, Release 1.18

* sck is a pin object for the serial clock line

* ws is a pin object for the word select line

* sd is a pin object for the serial data line

* mode specifies receive or transmit

* bits specifies sample size (bits), 16 or 32

* format specifies channel format, STEREO or MONO
* rate specifies audio sampling rate (samples/s)
 ibuf specifies internal buffer length (bytes)

For all ports, DMA runs continuously in the background and allows user applications to perform other operations
while sample data is transfered between the internal buffer and the I2S peripheral unit. Increasing the size of the
internal buffer has the potential to increase the time that user applications can perform non-12S operations before
underflow (e.g. write method) or overflow (e.g. readinto method).

Methods

I2S.init(sck,...)
see Constructor for argument descriptions

I2S.deinit()
Deinitialize the 12S bus

I2S.readinto(buf)
Read audio samples into the buffer specified by buf. buf must support the buffer protocol, such as bytearray or
array. buf byte ordering is little-endian. For Stereo format, left channel sample precedes right channel sample.
For Mono format, the left channel sample data is used. Returns number of bytes read

I2S.write(buf)
Write audio samples contained in buf. buf must support the buffer protocol, such as bytearray or array. buf
byte ordering is little-endian. For Stereo format, left channel sample precedes right channel sample. For Mono
format, the sample data is written to both the right and left channels. Returns number of bytes written

I12S.1irqChandler)
Set a callback. handler is called when buf is emptied (write method) or becomes full (readinto method).
Setting a callback changes the write and readinto methods to non-blocking operation. handler is called in
the context of the MicroPython scheduler.

static I2S.shift(* buf, bits, shift)
bitwise shift of all samples contained in buf. bits specifies sample size in bits. shift specifies the number of
bits to shift each sample. Positive for left shift, negative for right shift. Typically used for volume control. Each
bit shift changes sample volume by 6dB.

1.2. MicroPython-specific libraries 79

MicroPython Documentation, Release 1.18

Constants

I2S.RX
for initialising the I2S bus mode to receive

I2S.TX
for initialising the I2S bus mode to transmit

I2S.STEREO
for initialising the I2S bus format to stereo

I2S.MONO
for initialising the I2S bus format to mono

class RTC — real time clock

The RTC is an independent clock that keeps track of the date and time.

Example usage:

rtc = machine.RTC()
rtc.datetime((2020, 1, 21, 2, 10, 32, 36, 0))
print(rtc.datetime())

Constructors

class machine.RTC(id=0, ...)
Create an RTC object. See init for parameters of initialization.

Methods

RTC.datetime([datetimetuple])
Get or set the date and time of the RTC.

With no arguments, this method returns an 8-tuple with the current date and time. With 1 argument (being an
8-tuple) it sets the date and time.

The 8-tuple has the following format:
(year, month, day, weekday, hours, minutes, seconds, subseconds)
The meaning of the subseconds field is hardware dependent.

RTC.init (datetime)
Initialise the RTC. Datetime is a tuple of the form:

(year, month, day[, hour[, minute[, second[, microsecond[, tzinfo]]]]])

RTC.now()
Get get the current datetime tuple.

RTC.deinit()
Resets the RTC to the time of January 1, 2015 and starts running it again.

80 Chapter 1. MicroPython libraries

MicroPython Documentation, Release 1.18

RTC.alarm(id, time, *, repeat=Fualse)
Set the RTC alarm. Time might be either a millisecond value to program the alarm to current time + time_in_ms
in the future, or a datetimetuple. If the time passed is in milliseconds, repeat can be set to True to make the
alarm periodic.

RTC.alarm_left (alarm_id=0)
Get the number of milliseconds left before the alarm expires.

RTC. cancel (alarm_id=0)
Cancel a running alarm.

RTC.irq(*, trigger, handler=None, wake=machine.IDLE)
Create an irq object triggered by a real time clock alarm.

e trigger must be RTC.ALARMO
* handler is the function to be called when the callback is triggered.

* wake specifies the sleep mode from where this interrupt can wake up the system.

Constants

RTC.ALARMO
irq trigger source

class Timer — control hardware timers

Hardware timers deal with timing of periods and events. Timers are perhaps the most flexible and heterogeneous kind
of hardware in MCUs and SoCs, differently greatly from a model to a model. MicroPythons Timer class defines a
baseline operation of executing a callback with a given period (or once after some delay), and allow specific boards to
define more non-standard behaviour (which thus wont be portable to other boards).

See discussion of important constraints on Timer callbacks.

Note: Memory cant be allocated inside irq handlers (an interrupt) and so exceptions raised within a handler dont give
much information. See micropython.alloc_emergency_exception_buf() for how to get around this limitation.

If you are using a WiPy board please refer to machine. TimerWiPy instead of this class.

Constructors

class machine.Timer(id,/, ...)
Construct a new timer object of the given id. id of -1 constructs a virtual timer (if supported by a board). id
shall not be passed as a keyword argument.

See init for parameters of initialisation.

1.2. MicroPython-specific libraries 81

MicroPython Documentation, Release 1.18

Methods

Timer.init (*, mode=Timer.PERIODIC, period=- 1, callback=None)
Initialise the timer. Example:

def mycallback(t):
pass

periodic with 100ms period
tim.init(period=100, callback=mycallback)

one shot firing after 1000ms
tim.init(mode=Timer.ONE_SHOT, period=1000, callback=mycallback)

Keyword arguments:
» mode can be one of:
— Timer.ONE_SHOT - The timer runs once until the configured period of the channel expires.
— Timer.PERIODIC - The timer runs periodically at the configured frequency of the channel.
* period - The timer period, in milliseconds.

* callback - The callable to call upon expiration of the timer period. The callback must take one argument,
which is passed the Timer object. The callback argument shall be specified. Otherwise an exception will
occurr upon timer expiration: TypeError: 'NoneType' object isn't callable

Timer.deinit()
Deinitialises the timer. Stops the timer, and disables the timer peripheral.

Constants

Timer.ONE_SHOT
Timer .PERIODIC
Timer operating mode.

class WDT - watchdog timer

The WDT is used to restart the system when the application crashes and ends up into a non recoverable state. Once
started it cannot be stopped or reconfigured in any way. After enabling, the application must feed the watchdog peri-
odically to prevent it from expiring and resetting the system.

Example usage:

from machine import WDT
wdt = WDT(timeout=2000) # enable it with a timeout of 2s
wdt . feed()

Availability of this class: pyboard, WiPy, esp8266, esp32.

82 Chapter 1. MicroPython libraries

MicroPython Documentation, Release 1.18

Constructors

class machine.WDT (id=0, timeout=5000)
Create a WDT object and start it. The timeout must be given in milliseconds. Once it is running the timeout
cannot be changed and the WDT cannot be stopped either.

Notes: On the esp32 the minimum timeout is 1 second. On the esp8266 a timeout cannot be specified, it is
determined by the underlying system.

Methods

wdt . feed()
Feed the WDT to prevent it from resetting the system. The application should place this call in a sensible place
ensuring that the WDT is only fed after verifying that everything is functioning correctly.

class SD - secure digital memory card (cc3200 port only)

Warning: This is a non-standard class and is only available on the cc3200 port.

The SD card class allows to configure and enable the memory card module of the WiPy and automatically mount it as
/sd as part of the file system. There are several pin combinations that can be used to wire the SD card socket to the
WiPy and the pins used can be specified in the constructor. Please check the pinout and alternate functions table. for
more info regarding the pins which can be remapped to be used with a SD card.

Example usage:

from machine import SD

import os

clk cmd and dat® pins must be passed along with
their respective alternate functions

sd = machine.SD(pins=('GP10', 'GP11', 'GP15'))
os.mount(sd, '/sd')

do normal file operations

Constructors

class machine.SD(id,...)
Create a SD card object. See init () for parameters if initialization.

Methods

SD.init (id=0, pins=('GP10', 'GP11', 'GP15'))
Enable the SD card. In order to initialize the card, give it a 3-tuple: (clk_pin, cmd_pin, dat®_pin).

SD.deinit ()
Disable the SD card.

1.2. MicroPython-specific libraries 83

https://raw.githubusercontent.com/wipy/wipy/master/docs/PinOUT.png

MicroPython Documentation, Release 1.18

class SDCard — secure digital memory card

SD cards are one of the most common small form factor removable storage media. SD cards come in a variety of sizes
and physical form factors. MMC cards are similar removable storage devices while eMMC devices are electrically
similar storage devices designed to be embedded into other systems. All three form share a common protocol for
communication with their host system and high-level support looks the same for them all. As such in MicroPython
they are implemented in a single class called machine. SDCard .

Both SD and MMC interfaces support being accessed with a variety of bus widths. When being accessed with a 1-
bit wide interface they can be accessed using the SPI protocol. Different MicroPython hardware platforms support
different widths and pin configurations but for most platforms there is a standard configuration for any given hardware.
In general constructing an SDCard object with without passing any parameters will initialise the interface to the default
card slot for the current hardware. The arguments listed below represent the common arguments that might need to be
set in order to use either a non-standard slot or a non-standard pin assignment. The exact subset of arguments supported
will vary from platform to platform.

class machine.SDCard(slor=1, width=1, cd=None, wp=None, sck=None, miso=None, mosi=None, cs=None,
Sfreq=20000000)
This class provides access to SD or MMC storage cards using either a dedicated SD/MMC interface hardware
or through an SPI channel. The class implements the block protocol defined by os.AbstractBlockDev. This
allows the mounting of an SD card to be as simple as:

os.mount (machine.SDCard(), "/sd"™)

The constructor takes the following parameters:
* slot selects which of the available interfaces to use. Leaving this unset will select the default interface.
* width selects the bus width for the SD/MMC interface.
* cd can be used to specify a card-detect pin.
* wp can be used to specify a write-protect pin.
* sck can be used to specify an SPI clock pin.
* miso can be used to specify an SPI miso pin.
* mosi can be used to specify an SPI mosi pin.
* cs can be used to specify an SPI chip select pin.

¢ freq selects the SD/MMC interface frequency in Hz (only supported on the ESP32).

Implementation-specific details

Different implementations of the SDCard class on different hardware support varying subsets of the options above.

84 Chapter 1. MicroPython libraries

MicroPython Documentation, Release 1.18

PyBoard

The standard PyBoard has just one slot. No arguments are necessary or supported.

ESP32

The ESP32 provides two channels of SD/MMC hardware and also supports access to SD Cards through either of the
two SPI ports that are generally available to the user. As a result the slot argument can take a value between 0 and 3,
inclusive. Slots 0 and 1 use the built-in SD/MMC hardware while slots 2 and 3 use the SPI ports. Slot O supports 1, 4
or 8-bit wide access while slot 1 supports 1 or 4-bit access; the SPI slots only support 1-bit access.

Note: Slot 0 is used to communicate with on-board flash memory on most ESP32 modules and so will
be unavailable to the user.

Note: Most ESP32 modules that provide an SD card slot using the dedicated hardware only wire up 1
data pin, so the default value for width is 1.

The pins used by the dedicated SD/MMC hardware are fixed. The pins used by the SPI hardware can be reassigned.

Note: If any of the SPI signals are remapped then all of the SPI signals will pass through a GPIO multi-
plexer unit which can limit the performance of high frequency signals. Since the normal operating speed
for SD cards is 40MHz this can cause problems on some cards.

The default (and preferred) pin assignment are as follows:

Slot 0 1 2 3
Signal | Pin | Pin | Pin | Pin
sck 6 14 18 14
cmd 11 15

cs 5 15
miso 19 12
mosi 23 13
DO 7 2

D1 8 4

D2 9 12

D3 10 13

D4 16

D5 17

D6 5

D7 18

1.2. MicroPython-specific libraries 85

MicroPython Documentation, Release 1.18

cc3200

You can set the pins used for SPI access by passing a tuple as the pins argument.

Note: The current cc3200 SD card implementation names the this class machine. SD rather than machine. SDCard .

1.2.6 micropython — access and control MicroPython internals

Functions

micropython.const (expr)
Used to declare that the expression is a constant so that the compile can optimise it. The use of this function
should be as follows:

from micropython import const

CONST_X = const(123)
CONST_Y const(2 * CONST_X + 1)

Constants declared this way are still accessible as global variables from outside the module they are declared
in. On the other hand, if a constant begins with an underscore then it is hidden, it is not available as a global
variable, and does not take up any memory during execution.

This const function is recognised directly by the MicroPython parser and is provided as part of the
micropython module mainly so that scripts can be written which run under both CPython and MicroPython,
by following the above pattern.

micropython.opt_level([level])
If level is given then this function sets the optimisation level for subsequent compilation of scripts, and returns
None. Otherwise it returns the current optimisation level.

The optimisation level controls the following compilation features:

* Assertions: at level 0 assertion statements are enabled and compiled into the bytecode; at levels 1 and
higher assertions are not compiled.

* Built-in __debug__ variable: at level O this variable expands to True; at levels 1 and higher it expands to
False.

» Source-code line numbers: at levels 0, 1 and 2 source-code line number are stored along with the bytecode
so that exceptions can report the line number they occurred at; at levels 3 and higher line numbers are not
stored.

The default optimisation level is usually level 0.

micropython.alloc_emergency_exception_buf (size)
Allocate size bytes of RAM for the emergency exception buffer (a good size is around 100 bytes). The buffer is
used to create exceptions in cases when normal RAM allocation would fail (eg within an interrupt handler) and
therefore give useful traceback information in these situations.

A good way to use this function is to put it at the start of your main script (eg boot.py or main.py) and then
the emergency exception buffer will be active for all the code following it.

micropython.mem_info([verbuse])
Print information about currently used memory. If the verbose argument is given then extra information is printed.

The information that is printed is implementation dependent, but currently includes the amount of stack and heap
used. In verbose mode it prints out the entire heap indicating which blocks are used and which are free.

86 Chapter 1. MicroPython libraries

MicroPython Documentation, Release 1.18

micropython.qgstr_info([verbose])
Print information about currently interned strings. If the verbose argument is given then extra information is
printed.

The information that is printed is implementation dependent, but currently includes the number of interned strings
and the amount of RAM they use. In verbose mode it prints out the names of all RAM-interned strings.

micropython.stack_use()
Return an integer representing the current amount of stack that is being used. The absolute value of this is not
particularly useful, rather it should be used to compute differences in stack usage at different points.

micropython.heap_lock()
micropython.heap_unlock()

micropython.heap_locked()
Lock or unlock the heap. When locked no memory allocation can occur and a MemoryError will be raised if
any heap allocation is attempted. heap_Iocked() returns a true value if the heap is currently locked.

These functions can be nested, ie heap_lock () can be called multiple times in a row and the lock-depth will
increase, and then heap_unlock () must be called the same number of times to make the heap available again.

Both heap_unlock () and heap_locked() return the current lock depth (after unlocking for the former) as a
non-negative integer, with 0 meaning the heap is not locked.

If the REPL becomes active with the heap locked then it will be forcefully unlocked.

Note: heap_locked() is not enabled on most ports by default, requires
MICROPY_PY_MICROPYTHON_HEAP_LOCKED.

micropython.kbd_intr(chr)
Set the character that will raise a KeyboardInterrupt exception. By default this is set to 3 during script
execution, corresponding to Ctrl-C. Passing -1 to this function will disable capture of Ctrl-C, and passing 3 will
restore it.

This function can be used to prevent the capturing of Ctrl-C on the incoming stream of characters that is usually
used for the REPL, in case that stream is used for other purposes.

micropython.schedule (func, arg)
Schedule the function func to be executed very soon. The function is passed the value arg as its single argument.
Very soon means that the MicroPython runtime will do its best to execute the function at the earliest possible
time, given that it is also trying to be efficient, and that the following conditions hold:

* A scheduled function will never preempt another scheduled function.

* Scheduled functions are always executed between opcodes which means that all fundamental Python oper-
ations (such as appending to a list) are guaranteed to be atomic.

* A given port may define critical regions within which scheduled functions will never be executed. Functions
may be scheduled within a critical region but they will not be executed until that region is exited. An
example of a critical region is a preempting interrupt handler (an IRQ).

A use for this function is to schedule a callback from a preempting IRQ. Such an IRQ puts restrictions on the
code that runs in the IRQ (for example the heap may be locked) and scheduling a function to call later will lift
those restrictions.

Note: If schedule() is called from a preempting IRQ, when memory allocation is not allowed and the callback
to be passed to schedule () is a bound method, passing this directly will fail. This is because creating a reference
to a bound method causes memory allocation. A solution is to create a reference to the method in the class
constructor and to pass that reference to schedule (). This is discussed in detail here reference documentation
under Creation of Python objects.

1.2. MicroPython-specific libraries 87

MicroPython Documentation, Release 1.18

There is a finite queue to hold the scheduled functions and schedule () will raise a RuntimeError if the queue
is full.

1.2.7 neopixel control of WS2812 / NeoPixel LEDs

This module provides a driver for WS2818 / NeoPixel LEDs.

Note: This module is only included by default on the ESP8266 and ESP32 ports. On STM32 / Pyboard, you can
download the module and copy it to the filesystem.

class NeoPixel

This class stores pixel data for a WS2812 LED strip connected to a pin. The application should set pixel data and then
call NeoPixel.write() when it is ready to update the strip.

For example:

import neopixel

32 LED strip connected to X8.
p = machine.Pin.board.X8
n = neopixel.NeoPixel(p, 32)

Draw a red gradient.
for i in range(32):
n[i] = @ * 8, 0, 0

Update the strip.
n.write()

Constructors
class neopixel.NeoPixel (pin, n, *, bpp=3, timing=1)
Construct an NeoPixel object. The parameters are:
* pin is a machine.Pin instance.
* nis the number of LEDs in the strip.
e bpp is 3 for RGB LEDs, and 4 for RGBW LEDs.
e timing is 0 for 400KHz, and 1 for 800kHz LEDs (most are 800kHz).

88 Chapter 1. MicroPython libraries

https://github.com/micropython/micropython/blob/master/drivers/neopixel/neopixel.py

MicroPython Documentation, Release 1.18

Pixel access methods
NeoPixel. fill (pixel)
Sets the value of all pixels to the specified pixel value (i.e. an RGB/RGBW tuple).

NeoPixel.__len__(Q)
Returns the number of LEDs in the strip.

NeoPixel.__setitem__(index, val)
Set the pixel at index to the value, which is an RGB/RGBW tuple.

NeoPixel.__getitem__ (index)
Returns the pixel at index as an RGB/RGBW tuple.

Output methods

NeoPixel.write()
Writes the current pixel data to the strip.

1.2.8 network network configuration

This module provides network drivers and routing configuration. To use this module, a MicroPython variant/build with
network capabilities must be installed. Network drivers for specific hardware are available within this module and are
used to configure hardware network interface(s). Network services provided by configured interfaces are then available
for use via the socket module.

For example:

connect/ show IP config a specific network interface
see below for examples of specific drivers
import network
import time
nic = network.Driver(...)
if not nic.isconnected():
nic.connect()
print("Waiting for connection...™)
while not nic.isconnected():
time.sleep(1)
print(nic.ifconfig())

now use socket as usual

import socket

addr = socket.getaddrinfo('micropython.org', 80)[0][-1]

s = socket.socket()

s.connect (addr)

s.send(b'GET / HTTP/1.1\r\nHost: micropython.org\r\n\r\n')
data = s.recv(1000)

s.close()

1.2. MicroPython-specific libraries 89

MicroPython Documentation, Release 1.18

Common network adapter interface

This section describes an (implied) abstract base class for all network interface classes implemented by MicroPython
ports for different hardware. This means that MicroPython does not actually provide AbstractNIC class, but any
actual NIC class, as described in the following sections, implements methods as described here.

class network.AbstractNIC(id=None,...)

Instantiate a network interface object. Parameters are network interface dependent. If there are more than one interface
of the same type, the first parameter should be id.

AbstractNIC.active([is_active])
Activate (up) or deactivate (down) the network interface, if a boolean argument is passed. Otherwise, query
current state if no argument is provided. Most other methods require an active interface (behaviour of calling
them on inactive interface is undefined).

AbstractNIC.connect([service_id, key=None, *, ...])

Connect the interface to a network. This method is optional, and available only for interfaces which are not always
connected. If no parameters are given, connect to the default (or the only) service. If a single parameter is given, it
is the primary identifier of a service to connect to. It may be accompanied by a key (password) required to access
said service. There can be further arbitrary keyword-only parameters, depending on the networking medium type
and/or particular device. Parameters can be used to: a) specify alternative service identifier types; b) provide
additional connection parameters. For various medium types, there are different sets of predefined/recommended
parameters, among them:

* WiFi: bssid keyword to connect to a specific BSSID (MAC address)

AbstractNIC.disconnect()
Disconnect from network.

AbstractNIC.isconnected()
Returns True if connected to network, otherwise returns False.

AbstractNIC.scan(¥*, ...)
Scan for the available network services/connections. Returns a list of tuples with discovered service parameters.
For various network media, there are different variants of predefined/ recommended tuple formats, among them:

e WiFi: (ssid, bssid, channel, RSSI, authmode, hidden). There may be further fields, specific to a particular
device.

The function may accept additional keyword arguments to filter scan results (e.g. scan for a particular service,
on a particular channel, for services of a particular set, etc.), and to affect scan duration and other parameters.
Where possible, parameter names should match those in connect().

AbstractNIC.status([param])
Query dynamic status information of the interface. When called with no argument the return value describes the
network link status. Otherwise param should be a string naming the particular status parameter to retrieve.

The return types and values are dependent on the network medium/technology. Some of the parameters that may
be supported are:

* WiFi STA: use 'rssi' to retrieve the RSSI of the AP signal

* WiFi AP: use 'stations' to retrieve a list of all the STAs connected to the AP. The list contains tuples of
the form (MAC, RSSI).

AbstractNIC.ifconfig([(ip, subnet, gateway, dns)])
Get/set IP-level network interface parameters: IP address, subnet mask, gateway and DNS server. When called
with no arguments, this method returns a 4-tuple with the above information. To set the above values, pass a
4-tuple with the required information. For example:

90 Chapter 1. MicroPython libraries

MicroPython Documentation, Release 1.18

nic.ifconfig(('192.168.0.4", '255.255.255.0", '192.168.0.1"', '8.8.8.8'))

AbstractNIC.config('param")

AbstractNIC.config(param=value, ...)
Get or set general network interface parameters. These methods allow to work with additional parameters beyond
standard IP configuration (as dealt with by ifconfig()). These include network-specific and hardware-specific
parameters. For setting parameters, the keyword argument syntax should be used, and multiple parameters can
be set at once. For querying, a parameter name should be quoted as a string, and only one parameter can be
queried at a time:

Set WiFi access point name (formally known as ESSID) and WiFi channel
ap.config(essid="'My AP', channel=11)

Query params one by one

print(ap.config('essid'))

print(ap.config('channel'))

Specific network class implementations

The following concrete classes implement the AbstractNIC interface and provide a way to control networking interfaces
of various kinds.

class WLAN - control built-in WiFi interfaces

This class provides a driver for WiFi network processors. Example usage:

import network

enable station interface and connect to WiFi access point
nic = network.WLAN(network.STA_IF)

nic.active(True)

nic.connect('your-ssid', 'your-password')

now use sockets as usual

Constructors

class network.WLAN (interface_id)

Create a WLAN network interface object. Supported interfaces are network.STA_IF (station aka client, connects to
upstream WiFi access points) and network.AP_IF (access point, allows other WiFi clients to connect). Availability
of the methods below depends on interface type. For example, only STA interface may WLAN. connect () to an access
point.

1.2. MicroPython-specific libraries 91

MicroPython Documentation, Release 1.18

Methods

WLAN.active([is_active])
Activate (up) or deactivate (down) network interface, if boolean argument is passed. Otherwise, query current
state if no argument is provided. Most other methods require active interface.

WLAN. connect (ssid=None, password=None, *, bssid=None)
Connect to the specified wireless network, using the specified password. If bssid is given then the connection
will be restricted to the access-point with that MAC address (the ssid must also be specified in this case).

WLAN.disconnect ()
Disconnect from the currently connected wireless network.

WLAN.scan()
Scan for the available wireless networks. Hidden networks — where the SSID is not broadcast — will also be

scanned if the WLAN interface allows it.
Scanning is only possible on STA interface. Returns list of tuples with the information about WiFi access points:
(ssid, bssid, channel, RSSI, authmode, hidden)

bssid is hardware address of an access point, in binary form, returned as bytes object. You can use binascii.
hex1ify () to convert it to ASCII form.

There are five values for authmode:

* 0 - open
e 1 -WEP
* 2 - WPA-PSK

* 3 - WPA2-PSK

* 4 — WPA/WPA2-PSK
and two for hidden:

* 0 - visible

e 1 —hidden

WLAN. status([param])
Return the current status of the wireless connection.

When called with no argument the return value describes the network link status. The possible statuses are
defined as constants:

e STAT_IDLE — no connection and no activity,

e STAT_CONNECTING — connecting in progress,

e STAT_WRONG_PASSWORD - failed due to incorrect password,

* STAT_NO_AP_FOUND - failed because no access point replied,
e STAT_CONNECT_FAIL — failed due to other problems,

* STAT_GOT_IP — connection successful.

When called with one argument param should be a string naming the status parameter to retrieve. Supported
parameters in WiFI STA mode are: 'rssi'.

WLAN.isconnected()
In case of STA mode, returns True if connected to a WiFi access point and has a valid IP address. In AP mode
returns True when a station is connected. Returns False otherwise.

92 Chapter 1. MicroPython libraries

MicroPython Documentation, Release 1.18

WLAN. ifconfig([(ip, subnet, gateway, dns)])
Get/set IP-level network interface parameters: IP address, subnet mask, gateway and DNS server. When called
with no arguments, this method returns a 4-tuple with the above information. To set the above values, pass a
4-tuple with the required information. For example:

nic.ifconfig(('192.168.0.4", '255.255.255.0"', '192.168.0.1", '8.8.8.8'))

WLAN.config(‘param")

WLAN. config(param=value, ...)
Get or set general network interface parameters. These methods allow to work with additional parameters beyond
standard IP configuration (as dealt with by WLAN. i fconfig()). These include network-specific and hardware-
specific parameters. For setting parameters, keyword argument syntax should be used, multiple parameters can
be set at once. For querying, parameters name should be quoted as a string, and only one parameter can be
queries at time:

Set WiFi access point name (formally known as ESSID) and WiFi channel
ap.config(essid="My AP', channel=11)

Query params one by one

print(ap.config('essid'))

print(ap.config('channel'))

Following are commonly supported parameters (availability of a specific parameter depends on network tech-
nology type, driver, and MicroPython port).

Parameter Description

mac MAC address (bytes)

essid WiFi access point name (string)

channel WiFi channel (integer)

hidden Whether ESSID is hidden (boolean)

authmode Authentication mode supported (enumeration, see module constants)
password Access password (string)

dhcp_hostname | The DHCP hostname to use

reconnects Number of reconnect attempts to make (integer, O=none, -1=unlimited)

class WLANWIPy — WiPy specific WiFi control

Note: This class is a non-standard WLAN implementation for the WiPy. It is available simply as network.WLAN
on the WiPy but is named in the documentation below as network . WLANWiPy to distinguish it from the more general
network. WLAN class.

This class provides a driver for the WiFi network processor in the WiPy. Example usage:

import network
import time
setup as a station
wlan = network.WLAN(mode=WLAN.STA)
wlan.connect('your-ssid', auth=(WLAN.WPA2, 'your-key'))
while not wlan.isconnected():
time.sleep_ms(50)
print(wlan.ifconfig(Q))

(continues on next page)

1.2. MicroPython-specific libraries 93

MicroPython Documentation, Release 1.18

(continued from previous page)

now use socket as usual

Constructors

class network.WLANWiPy (id=0, ...)
Create a WLAN object, and optionally configure it. See init () for params of configuration.

Note: The WLAN constructor is special in the sense that if no arguments besides the id are given, it will return the
already existing WLAN instance without re-configuring it. This is because WLAN is a system feature of the WiPy. If the
already existing instance is not initialized it will do the same as the other constructors an will initialize it with default
values.

Methods

WLANWiPy.init (mode, *, ssid, auth, channel, antenna)
Set or get the WiFi network processor configuration.

Arguments are:
* mode can be either WLAN. STA or WLAN. AP.
* ssid is a string with the ssid name. Only needed when mode is WLAN. AP.

* auth is a tuple with (sec, key). Security can be None, WLAN.WEP, WLAN.WPA or WLAN.WPA2. The key is a
string with the network password. If sec is WLAN.WEP the key must be a string representing hexadecimal
values (e.g. ABCIDE45BF). Only needed when mode is WLAN . AP.

* channel a number in the range 1-11. Only needed when mode is WLAN . AP.

e antenna selects between the internal and the external antenna. Can be either WLAN.INT_ANT or WLAN.
EXT_ANT.

For example, you can do:
